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SUMMARY
Improving clinical care for individuals infected with SARS-CoV-2 variants is a global health priority. Small-
molecule antivirals like remdesivir (RDV) and biologics such as human monoclonal antibodies (mAbs) have
demonstrated therapeutic efficacy against SARS-CoV-2, the causative agent of coronavirus disease 2019
(COVID-19). It is not known whether combination RDV/mAb will improve outcomes over single-agent thera-
pies or whether antibody therapies will remain efficacious against variants. Here, we show that a combination
of two mAbs in clinical trials, C144 and C135, have potent antiviral effects against even when initiated 48 h
after infection and have therapeutic efficacy in vivo against the B.1.351 variant of concern (VOC). Combining
RDV and antibodies provided a modest improvement in outcomes compared with single agents. These data
support the continued use of RDV to treat SARS-CoV-2 infections and the continued clinical development of
the C144 and C135 antibody combination to treat patients infected with SARS-CoV-2 variants.
INTRODUCTION

A novel human coronavirus, severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2), emerged in late 2019 in Wuhan,

China (Zhou et al., 2020b; Zhu et al., 2020) as the causative agent

of coronavirus disease 2019 (COVID-19). The spread of SARS-

CoV-2 was explosive with �140 million confirmed cases and >3

million deathsworldwide as of April 2021. Few therapies are avail-

able to treat COVID-19 in humans, and the rapid evolution of

SARS-CoV-2 variants threatens to diminish their efficacy. Remde-

sivir (RDV; Veklury) is the only US Food and Drug Administration

(FDA)-approved direct-acting, small molecule antiviral to treat

COVID-19. Prior to the emergence of SARS-CoV-2, RDV showed

broad-spectrum activity against highly pathogenic human CoVs,

including SARS-CoV,Middle East respiratory syndromecoronavi-

rus (MERS-CoV), their related enzootic viruses, and endemic

common-cold-causing CoV in various in vitro and in vivo preclin-

ical models of CoV pathogenesis (Brown et al., 2019; deWit et al.,

2020; Sheahan et al., 2017, 2020).More recently, RDVwas shown

to exert potent antiviral activity against SARS-CoV-2 in vitro

(Pruijssers et al., 2020) and therapeutic efficacy in a SARS-CoV-

2 rhesus macaque model, which recapitulates mild to moderate

respiratory symptoms (Williamson et al., 2020). In a double-blind,
This is an open access article und
randomized, placebo-controlled trial (Adaptive COVID-19 Treat-

ment Trial [ACTT-1]), RDV was shown to shorten recovery time

in hospitalized COVID-19 patients by 5 days on average as

compared with those receiving placebo (Beigel et al., 2020). In

contrast, in an open-label, non-placebo-controlled, and non-

blinded clinical trial (WHO Solidarity trial), RDV was not shown

to improve outcomes in hospitalized patients (Wang et al.,

2020). Importantly,mutations in the viral RNA-dependent RNApo-

lymerase (RdRp) known to interfere with the antiviral activity of

RDV are not found in the SARS-CoV-2 variants of concern

(VOCs) (Martin et al., 2021). Because combinations of RDV with

immunomodulators (baricitinib) have very recently been shown

to improve COVID-19 outcomes over single-agent treatment (Kalil

et al., 2021), it remains unknown whether RDV combinations with

other antiviral drugswith complementarymodalitieswill yield simi-

larly promising results.

Several monoclonal antibodies (mAbs) targeting the SARS-

CoV-2 spike have been shown to potently neutralize SARS-

CoV-2 in vitro (Dieterle et al., 2020; Jones et al., 2020; Li et al.,

2021; Robbiani et al., 2020; Rogers et al., 2020; Yang et al.,

2020; Zost et al., 2020a, 2020b). mAb drugs targeting the

SARS-CoV-2 spike have demonstrated therapeutic efficacy in

multiple pre-clinical models of viral pathogenesis, and a select
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few have been authorized for emergency use by the FDA to

treat COVID-19 (Ly-CoV016/LyCoV555 [Eli Lilly]; REGN10987/

REGN10933 [Regeneron]) (ACTIV-3/TICO LY-CoV555 Study

Group, 2021; Barnes et al., 2020a, 2020b; Jones et al., 2020;

Schäfer et al., 2021). Most clinical candidate mAbs are RBD spe-

cific and have varying modes of binding and epitope specificities

(Barnes et al., 2020a). Lilly’s LY-CoV555 can recognize the RBD

in both the up and down conformations (Jones et al., 2020).

REGN10987 binds to the RBD outside the ACE2 binding site,

whereas REGN10933 binds to the top of the RBD and competes

with the ACE2 binding site (Hansen et al., 2020). Two recently

described highly potent SARS-CoV-2 neutralizing mAbs,

C144 and C135, are currently being evaluated in human

trials at the Rockefeller University Hospital (ClinicalTrials.gov:

NCT04700163) and licensed to Bristol Myers Squibb for devel-

opment (Robbiani et al., 2020). C144 (inhibitory concentration

at which 50% reduction is observed [IC50] = 2.55 ng/mL) and

C135 (IC50 = 2.98 ng/mL) were isolated from convalescent hu-

man patients and target non-overlapping sites on the receptor

binding domain (RBD) on the SARS-CoV-2 spike protein similar

to the REGNmAb cocktail (Barnes et al., 2020a, 2020b; Robbiani

et al., 2020; Schäfer et al., 2021). Because mAb prophylaxis can

prevent COVID-19, preliminary results from human clinical trials

evaluating the therapeutic efficacy of mAbs in COVID-19 outpa-

tients have thus far been promising (Weinreich et al., 2021; Zhou

et al., 2020b).

The emergence of SARS-CoV-2 variants that can partially or

completely evade mAbs in advanced clinical development is a

growing concern. For example, the SARS-CoV-2 South African

B.1.351 variant can completely evade neutralization by mAb LY-

CoV555 (Wang et al., 2021a, 2021b). Other mAbs in clinical devel-

opment, including the AstraZeneca COV2-2196 mAb and the Brii

BioSciences mAb Brii-198, have a reduction in neutralization po-

tency bymore than 6-fold as a result of the presence of the E484K

mutation (Chen et al., 2021; Wang et al., 2021b). Moreover, the

neutralization activity of the Regeneron mAb REGN10933 is also

dampened by the E484K mutation (Wang et al., 2021b). In

contrast, the variants do not affect the neutralization potency of

C135 (Wang et al., 2021b). Lastly, although the variants do not

affect the C144 + C135 antibody combination in vitro (Wang

et al., 2021c), it is not yet known if this mAb cocktail can protect

against the SARS-CoV-2 variants in vivo.

We previously developed a mouse-adapted model of SARS-

CoV-2 (SARS-CoV-2 MA10) pathogenesis based on the ancestral

pandemic strain (Leist et al., 2020). Following SARS-CoV-2 MA10

infection of standard laboratory mice, virus replicates primarily in

ciliated epithelial cells and type II pneumocytes with peak titers

by 48 h postinfection (hpi) concurrent with body weight loss, loss

of pulmonary function, the development of acute lung injury

(ALI), andmortality, consistent with severe humanCOVID-19 path-

ogenesis (Leist et al., 2020). Here, we define the prophylactic and

therapeutic efficacy of RDV and C144 + C135 mAbs used singly

and in combination in mice infected with SARS-CoV-2 MA10.

We show that the prophylactic and therapeutic administration of

RDV ormAb exert a robust antiviral effect, and their ability to abro-

gate diseasediminishedas a function of initiation time.Whencom-

bined, RDV/mAb therapy modestly improved outcomes

compared with monotherapy, suggesting that combination ther-
2 Cell Reports 36, 109450, July 27, 2021
apy may provide an additional therapeutic benefit over single

agents in humans with COVID-19. Importantly, we demonstrate

that C144 + C135 mAb combination protects from severe disease

against SARS-CoV-2 South African B.1.351 variant challenge in a

mouse model of age-related COVID-19 pathogenesis. These data

support the continued use of RDV to treat SARS-CoV-2 infections

and support the continued clinical development of the C144 and

C135 antibody combination to treat patients infected with SARS-

CoV-2 variants.

RESULTS

Prophylactic and therapeutic RDV protect against
COVID-19 in mice
First, we sought to determine the time at which RDV therapy

would fail to improve outcomes in SARS-CoV-2-infected mice.

Due to a serum esterase absent in humans but present in mice

that reduces RDV stability (carboxyesterase 1c [Ces1c]), we per-

formed all of our RDV efficacy studies in C57BL/6 mice that lack

this gene (Ces1c�/�) (Sheahan et al., 2017). Although we had

previously explored the in vivo efficacy of RDV against SARS-

CoV/SARS-CoV-2 chimeric viruses (Pruijssers et al., 2020), we

had not yet evaluated RDV in mice infected with our recently

described SARS-CoV-2 MA10 (Leist et al., 2020). We initiated

twice-daily treatment of mice with a human equivalent dose of

RDV (25 mg/kg) or vehicle �12 h prior to infection or 12 (early),

24 (mid-late), or 48 (late) hpi with 1 3 104 particle-forming units

(PFUs) of SARS-CoV-2 MA10. Body weight loss is a crude

marker of emerging CoV disease in mice. Body weight loss

observed in vehicle-treated animals was prevented with prophy-

lactic RDV (Figure 1A). When initiated after SARS-CoV-2 infec-

tion, only early therapeutic intervention (+12 h) was able to signif-

icantly diminish weight loss (Figure 1A). Although RDV therapy

initiated at 24 h did not prevent weight loss, lung viral load was

significantly diminished in this group similar to those receiving

prophylaxis (�12 h) or early therapeutic intervention (+12 h) (Fig-

ure 1B). Similarly, lung discoloration, a gross pathologic feature

characteristic of severe lung damage, was observed in the

vehicle-treated animals but was diminished in all treatment

groups except the 48 hpi RDV group (Figure 1C). We then

used a histologic tool developed by the American Thoracic Soci-

ety (ATS) to quantitate the pathological features of ALI that we

recently utilized to examine the pulmonary pathology of SARS-

CoV-2 MA10-infected BALB/c mice (Leist et al., 2020; Matute-

Bello et al., 2011). Per animal, three random diseased fields in

lung tissue sections were blindly evaluated by a board-certified

veterinary pathologist for alveolar septal thickening, protein

exudate in the air space, hyaline membrane formation, and neu-

trophils in the interstitium or air spaces. Scoring revealed that

RDV prophylaxis and therapy initiated at both +12 and +24 hpi

reduced ALI as compared with vehicle-treated animals (Figures

1D and 2). A complementary histological tool measuring the

pathological hallmark of ALI, diffuse alveolar damage (DAD), re-

vealed consistent data (Figures 1E and 2) with those in Figure 1D

(Schmidt et al., 2018; Sheahan et al., 2020). Lastly, pulmonary

function was measured daily in a subset of mice per group

(n = 4) by whole-body plethysmography (WBP). As shown with

the WBP metric enhanced pause (PenH), a metric for airway



Figure 1. The prophylactic and therapeutic efficacy of RDV against SARS-CoV-2 in mice

(A)% starting weight in prophylactically treated mice with RDV at 12 h before infection and therapeutically at 12, 24, and 48 h postinfection (hpi). From left to right,

light blue bars denote�12 h prophylactic treatment, orange bars denote +12 h therapeutic treatment, purple bars denote +24 h therapeutic treatment, aqua bars

denote +48 h therapeutic treatment, and gray bars denote vehicle-treated mice.

(B) Lung viral titers in prophylactically and therapeutically treated mice with RDV.

(C) Lung discoloration score in prophylactically and therapeutically treated mice with RDV.

(D and E) Lung pathology in prophylactically and therapeutically treated mice with RDV.

(F) Pulmonary function in prophylactically and therapeutically treatedmicewith RDV. p values are from a two-way ANOVA after Sidak’smultiple comparisons test.

LoD, limit of detection. Error bars denote min and max.
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resistance or obstruction that was previously validated in animal

models of CoV pathogenesis (Menachery et al., 2015; Sheahan

et al., 2017), only prophylactic and early therapeutic administra-

tion of RDV (+12 hpi) prevented the loss of pulmonary function

observed in the other groups. Together, these data show that

prophylactic and therapeutic RDV exert a profound antiviral ef-

fect when administered up to 24 hpi, but the ability of RDV ther-

apy to improve disease outcomes wanes with time of initiation.

Prophylactic and therapeutic single mAb and mAb
combinations reduce SARS-CoV-2 pathogenesis
In COVID-19 patients, the time at which mAb therapy loses its

protective effect remains unknown. To address this, we sought
to determine the prophylactic and therapeutic efficacy of a

cocktail of clinical candidate mAbs, C144 and C135, in the

SARS-CoV-2 MA10 pathogenesis model noted above. We first

established therapeutic efficacy profiles for single mAbs. We

treated C57BL/6 mice with mAb C144, mAb C135, or control

HIV mAb 12 h before infection or 12, 24, or 48 hpi with 1 3 104

PFUs of SARS-CoV-2 MA10 (Figures S1–S4). Both mAbs signif-

icantly prevented (prophylactic) or reduced (+12 h, +24 h) SARS-

CoV-2MA10 pathogenesis (bodyweight loss, lung discoloration,

ALI scores, etc.), with C135 exerting more robust protection over

C144 with measurable improvements in weight loss and

gross pathology even when initiated 48 hpi (Figures S1–S4). Un-

like C135 mAb, C144 mAb did not completely prevent virus
Cell Reports 36, 109450, July 27, 2021 3



Figure 2. Lung pathology of SARS-CoV-2-infected mice treated with RDV and vehicle prophylactically and therapeutically

Pathologic features of acute lung injury (ALI) were scored using two separate tools: the American Thoracic Society Lung Injury Scoring (ATS ALI) and the diffuse

alveolar damage (DAD) system. Using these systems, we created an aggregate score for the following features: neutrophils in the alveolar and interstitial space,

hyaline membranes, proteinaceous debris filling the air spaces, and alveolar septal thickening. Three randomly chosen high-power (360) fields of diseased lung

were assessed permouse. Representative images are shown from vehicle- and RDV-treatedmice. Symbols identifying example features of disease are indicated

in the figure. All images were taken at the same magnification. Scale bars indicate 100 mm.
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replication in the lung when administered at 24 hpi, suggesting

incomplete viral breakthrough (Figure S3) likely driven by

mouse-adapting Q493K spike mutation, which resides in a re-

gion critical for C144 binding (Barnes et al., 2020a, 2020b; Gae-

bler et al., 2021; Leist et al., 2020). Neither antibody when

administered 48 hpi could prevent weight loss, lung discolor-

ation, or ALI, yet viral lung titers were significantly reduced (Fig-

ure S4). Together, these data demonstrate that clinical candidate

mAbs C135 and C144 can both prevent and significantly

diminish disease in an ongoing SARS-CoV-2 infection in mice.

Next, we evaluated the prophylactic and therapeutic efficacy

of combination C144 + C135 to determine if the single-agent

therapeutic efficacy could be improved with mAb combinations.

Similar to the studies with single-agent mAb, we treated

C57BL/6 mice with mAb combination C144 + C135 12 h prior

to or 12, 24, or 48 h after infection with 1 3 104 PFUs of SARS-
4 Cell Reports 36, 109450, July 27, 2021
CoV-2 MA10. Unlike the uniform and consistent body weight

loss observed in SARS-CoV-2 MA10-infected mice treated

with negative control HIV mAb, prophylactic, early (+12 h), and

mid-late (+24 h) therapeutic administration of C144 + C135

mAbs protected against body weight loss (Figure 3A). Initiation

of therapy 48 hpi afforded limited protection from body weight

loss (Figure 3A). Remarkably, the levels of infectious virus in

the lung were significantly reduced below the limit of detection

(50 PFUs) in all C144 +C135mAb groups by 5 days postinfection

(dpi), unlike control mAb-treated animals (mean lung titer = 1 3

104 PFUs/lobe). Mirroring the trend observed in body weight

loss, gross lung pathology as measured by observation of lung

discoloration was eliminated with prophylactic C144 + C135

mAb, significantly diminished with early (+12 h) and mid-late

(+24 h) dosing of C144 + C135 mAb, and even moderately

reduced with late (+48 h) therapy. We then quantitated the



Figure 3. The prophylactic and therapeutic efficacy of mAbs against SARS-CoV-2 in mice

(A) % starting weight in prophylactically treated mice with C144 + C135 at 12 h before infection and therapeutically at 12, 24, and 48 hpi. From left to right, light

blue bars denote �12 h prophylactic treatment, orange bars denote +12 h therapeutic treatment, purple bars denote +24 h therapeutic treatment, aqua bars

denote +48 h therapeutic treatment, and gray bars denote vehicle-treated mice.

(B) Lung viral titers in prophylactically and therapeutically treated mice with C144 + C135.

(C) Lung discoloration score in prophylactically and therapeutically treated mice with C144 + C135.

(D and E) Lung pathology in prophylactically and therapeutically treated mice with C144 + C135.

(F) Pulmonary function in prophylactically and therapeutically treated mice with C144 + C135. p values are from a two-way ANOVA after Sidak’s multiple

comparisons test. Error bars denote min and max.
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histologic features of ALI using the same tools employed in Fig-

ure 1, which demonstrated that prophylactic and therapy initi-

ated up to 24 hpi significantly reduced ALI observed in negative

control mAb-treated animals (Figures 3D and 4). When applying

the DAD scoring tool to the same tissue sections, we saw a

similar trend, yet only prophylactic and early therapeutic (+12

h) C144 + C135 significantly reduced scores (Figures 3E

and 4). In agreement with the histological assessment, loss of

pulmonary function observed in negative control mAb-treated

animals could be prevented with prophylactic and early thera-

peutic (+12 hpi) C144 + C135 (Figures 3F and 4). Interestingly,

combination mAb therapy initiated at 24 hpi also provided a

benefit in pulmonary function (Figures 3F and 4). Thus, mAb ther-
apy can exert a profound antiviral effect even when administered

at later times postinfection.

Combination RDV/mAb cocktail demonstrates a small
improvement versus mAb therapy alone at 36 hpi
We sought to determine if combination RDV/C144 + C135 mAb

would further curtail viral pathogenesis over that provided by sin-

gle agents. We designed a study where we initiated single-agent

or combination therapy 24 h after SARS-CoV-2 MA10 infection,

treated mice up to 7 dpi, and followed mice until 12 dpi to deter-

mine if therapy accelerated recovery. Among groups receiving

single agents or combination therapies, significant differences

in body weight were not consistently noted (Figure S5A), but all
Cell Reports 36, 109450, July 27, 2021 5



Figure 4. Lung pathology of SARS-CoV-

2-infected mice treated with C144 + C135

and an HIV mAb prophylactically and

therapeutically

Pathologic features of ALI were scored using two

separate tools: ATS ALI and diffuse alveolar dam-

age (DAD). Using these systems, we created an

aggregate score for the following features: neu-

trophils in the alveolar and interstitial space, hya-

linemembranes, proteinaceous debris filling the air

spaces, and alveolar septal thickening. Three

randomly chosen high-power (360) fields of

diseased lung were assessed per mouse. Repre-

sentative images are shown from HIV mAb and

C144 + C135-treated mice. Symbols identifying

example features of disease are indicated in the

figure. All images were taken at the same magni-

fication. Scale bars indicate 100 mm.
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therapeutic treatment groups provided complete protection

from mortality observed with vehicle treatment (Figure S5B).

Upon completion of the study on 12 dpi, differences in gross pa-

thology were not noted among treatment groups (Figure S5C).

We performed pulmonary function by WBP on select groups

(i.e., vehicle/control mAb and RDV/mAb combination) for the first

5 days of infection and observed a rapid improvement in pulmo-

nary function with combination therapy that returned to baseline

by 3 dpi (Figure S5D).

To determine if a further delay in treatment initiation time closer

to peak of virus replication in the lung would reveal an improved

benefit of combination therapy, we performed a therapeutic effi-

cacy study initiating treatment at 36 hpi. Rather than focus on the
6 Cell Reports 36, 109450, July 27, 2021
potential effects on recovery, the goal of

this study was to determine if combina-

tion therapy had a differential effect on

lung pathology and virus replication dur-

ing the acute phase of disease. We

initiated treatment 36 hpi with 1 3 104

PFUs SARS-CoV-2 MA10 in C57BL/6

(Ces1c�/�) mice with the vehicle, single-

agent, and combination groups as

described in the previous combination

experiment. We observed a small but

measurable improvement in body weight

loss with RDV/mAb treatment (Figure 5A).

Similarly, by 3 dpi, only the RDV/control

mAb and RDV/mAb-treated groups had

lower lung viral titers compared with the

vehicle/control mAb-treated group (Fig-

ure 5B). By 5 dpi, vehicle-treated animals

had mean lung titers nearing 1 3 105

PFUs, yet all treatment groups had signif-

icantly reduced lung titers at or near the

limit of detection (Figure 5C). When exam-

ining gross lung pathology 5 dpi, all thera-

pies provided significant protection from

lung discoloration observed with vehicle

treatment, but RDV/mAb combination

therapy group had the overall lowest
score and was significantly improved over single-agent

vehicle/mAb (Figure 5D). We then quantitated the histological

manifestations of ALI using the two complementary scoring tools

employed above. With both ATS and DAD scoring systems, ALI

was readily apparent in vehicle-treated animals (Figures 5E and

5F). Althoughmirroring the trend observed in the gross patholog-

ical observations where combination therapy afforded protec-

tion over single-agent therapy, significant differences were not

observed among groups receiving antiviral therapies, and all

reduced ALI on 5 dpi (Figures 5E and 5F). Lastly, we examined

the effect of combination therapy on pulmonary function. Com-

bination RDV/mAb initiated at 36 hpi reduced the loss of pulmo-

nary function observed with vehicle treatment on 3–5 dpi



Figure 5. The therapeutic efficacy of RDV and

mAbs as single agents and in combination at

36 hpi in SARS-CoV-2-infected mice

(A) % starting weight in therapeutically treated mice with

vehicle + HIV mAb, vehicle + C144 + C135, RDV + HIV

mAb, and RDV +C144 + C135 at 36 hpi. From left to right,

gray bars denote vehicle/control mAb-treated mice, yel-

low bars denote vehicle/mAb therapeutic treatment, blue

bars denote RDV/control mAb therapeutic treatment, and

orange bars denote RDV/mAb therapeutic treatment.

(B) Day 3 postinfection lung viral titers in therapeutically

treated mice with single agents and combination therapy.

(C) Day 5 postinfection lung viral titers in therapeutically

treated mice with single agents and combination therapy.

(D) Lung discoloration scores in therapeutically treated

mice with single agents and combination therapy.

(E and F) Lung pathology in therapeutically treated mice

with single agents and combination therapy.

(G) Pulmonary function in therapeutically treated mice

with vehicle + HIV mAb and RDV + C144 + C135. p values

are from a two-way ANOVA after Sidak’s multiple com-

parisons test. Error bars denote min and max.

Veh., vehicle treatment.
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(Figure 5G). Altogether, our findings suggest that combination

therapy with RDV and potent neutralizing mAbs provides a small

but measurable benefit over single agents in some, but not all,

metrics of SARS-CoV-2 pathogenesis in this model.

C144 + C135 mAb prophylaxis and therapy improve
outcomes in South African B.1.351 VOC-infected mice
The emergence of neutralization-resistant SARS-CoV-2 variants

is a growing threat. B.1.351, which initially emerged in South Af-

rica, is a VOC that can infect mice without adaptation (Montagu-

telli et al., 2021). B.1.351 has characteristic RBD mutations at

residues K417, E484, and N517, which result in resistance to

many of the class 1 and 2 antibodies that dominate the initial

RBD-directed neutralizing response (Barnes et al., 2020a;

Chen et al., 2021; Planas et al., 2021; Wang et al., 2021c). For

example, B.1.351 is completely resistant to Eli Lilly’s Ly-

CoV555 mAb (Wang et al., 2021a), underlining the importance

of monitoring the in vivo efficacy of mAb therapies that are in

advanced clinical testing against SARS-CoV-2 VOCs. To

examine the in vivo efficacy of the C144 + C135 mAb combina-

tion against recombinant mouse-adapted SARS-CoV-2 bearing

the B.1.351 spike, we treated aged BALB/c mice with mAb 12 h

before or after infection with 13 104 PFUs.Weight loss observed

with control antibody treatment was prevented with C144 +

C135 prophylaxis, and lung viral loads were reduced below the

limit of detection on both 3 and 5 dpi (Figures 6A–6C). Similarly,

mAb combination therapy accelerated recovery and diminished

virus replication below the limit of detection by 5 dpi (Figures 6A

and 6C). To complement the infectious virus data, we then quan-

titated viral subgenomic RNAs in mouse lung tissues in each

group. Unlike the quantitation of SARS-CoV-2 genomic RNA,

which has the potential to measure RNA from infectious parti-

cles, defective particles, mAb-bound particles, and various repli-

cative forms of viral RNA, these subgenomic RNA qRT-PCR

assays are specific for envelope (E) and nucleocapsid (N) viral

transcripts that are made only in actively replicating cells. Pro-

phylactic and therapeutic administration of C144 + C135 signif-

icantly reduced lung viral E subgenomic mRNA (sgRNA) (Figures

6D and 6E) and N sgRNA (Figures 6F and 6G) compared with the

control mAb-treated animals, indicating that mAb therapy suc-

cessfully reduced levels of replication of SARS-CoV-2 bearing

the B.1.351 spike in vivo. Finally, gross pathology caused by

mouse-adapted SARS-CoV-2 bearing the B.1.351 spike was

significantly reduced in aged mice with both prophylactic and

therapeutic administration of the C144 + C135 combination (Fig-

ures 6H and 6I). Collectively, these data demonstrate that both

prophylaxis and therapy with combination C144 + C135 mAb

can potently reduce virus replication and improve disease out-

comes in vivo following infection with variant B.1.351.

DISCUSSION

Therapies effective against the current and future SARS-CoV-2

VOCs are desperately needed to treat those yet to be vaccinated

or those experiencing breakthrough infection. RDV is a broad-

spectrum antiviral drug and has potent antiviral activity against

multiple emerging, endemic, and enzootic CoVs, including

SARS-CoV, SARS-CoV-2, MERS-CoV, bat-CoV WIV-1, bat-
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CoV RsSHC014, bat-CoV HKU5, bat-CoV HKU-3-1, HCoV-

229, HCoV-NL63, HCoV-OC43, and porcine deltacoronavirus

(PDCoV) (Agostini et al., 2018; Brown et al., 2019; de Wit et al.,

2020; Sheahan et al., 2017). In addition to the in vitro activity of

RDV against SARS-CoV-2 (Pruijssers et al., 2020), RDV can exert

an antiviral effect and diminish SARS-CoV-2 disease in rhesus

macaques that develop mild respiratory disease (Williamson

et al., 2020). Similarly, the prophylactic efficacies of mAbs

C144 and C135 have previously been evaluated in replication

models of mouse-adapted SARS-CoV-2 based on the ancestral

pandemic strain (Schäfer et al., 2021), but their prevention and

therapy have not yet been evaluated in the context of the

emerging variants that can evade vaccine-elicited antibodies

and existing mAb therapies.

Human clinical data for direct antivirals like mAb and small

molecule antivirals like RDV provide clear evidence that their

success at improving outcomes is directly related to the time af-

ter the onset of symptoms that therapy is initiated. Outpatient

studies evaluating mAb drugs in humans with mild to moderate

COVID-19 demonstrated notable reductions in virus shedding

and symptoms, which enabled the FDA emergency use authori-

zation (EUA) of both Eli Lilly’s and Regeneron’s antibody cock-

tails (Chen et al., 2020; Gottlieb et al., 2021; Weinreich et al.,

2021). However, hospitalized patients with advanced COVID-

19 treated with these mAb drugs did not have measurably

improved outcomes compared with standard of care (ACTIV-3/

TICO LY-CoV555 Study Group, 2021). Although RDV has been

shown to accelerate recovery of COVID-19 hospitalized patients

(Beigel et al., 2020), insight into whether RDV will further improve

outcomes in patients earlier in the course of COVID-19 remains

unknown. Thus, the optimal window after the onset of symptoms

within which to treat with antivirals such as RDV or potent mAbs

remains unknown.

In this study, we aimed to define the time after SARS-CoV-2

infection in mice where RDV or mAb therapy fail to exert an anti-

viral effect and/or fail to improve disease outcomes. Likemouse-

adapted models of SARS-CoV and MERS-CoV, the replication

kinetics of mouse-adapted SARS-CoV-2 MA10 in mice is com-

pressed with peak replication in the lung 48 hpi (Leist et al.,

2020). In contrast, the replication kinetics of SARS-CoV-2 in

the airways of humans is more variable with reports estimating

peak replication within the first week after the onset of symptoms

(Liu et al., 2020; Zheng et al., 2020). Moreover, human patients

can shed viral RNA in the mucosa of the upper respiratory tract

as long as 24 dpi (Zhou et al., 2020a), underlining that sustained

viral shedding and symptoms can last considerably longer in hu-

mans than in mice. Thus, the window within which to intervene

with antiviral therapy prior to the peak of virus replication in hu-

mans is dramatically different from in mice (�2 days). Although

our mousemodel faithfully recapitulates many aspects of human

COVID-19 (e.g., high titer replication in the upper and lower air-

ways, loss of pulmonary function, ALI, age-related exacerbation

of disease, etc.), it is not possible to very finely correlate the com-

pressed kinetics of disease in mouse and those in humans, but

there are a few notable takeaways from the modeling presented

herein. Given early therapeutic treatment at +12 and +24 hpi in

ourmodel provided themost benefit, it is likely the benefit of anti-

body and small molecule antivirals like RDV will be maximized if



Figure 6. The prophylactic and therapeutic efficacy of C144 + C135 against SARS-CoV-2 B.1.351 in aged mice

(A) % starting weight in prophylactically treated mice with C144 + C135 at 12 h before infection and therapeutically at 12 hpi. From left to right, light blue bars

denote �12 h prophylactic treatment, orange bars denote +12 h therapeutic treatment, and gray bars denote prophylactically treated mice with HIV mAb.

(B and C) Lung viral titers at days 3 and 5 postinfection in prophylactically and therapeutically treated mice with C144 + C135 and HIV mAb negative controls.

(D and E) Subgenomic envelope (E) RNA copies/lobe in prophylactically and therapeutically treated mice with C144 + C135 and HIV mAb.

(F and G) Subgenomic nucleocapsid (N) RNA copies/lobe in prophylactically and therapeutically treated mice with C144 + C135 and HIV mAb.

(H and I) Lung discoloration at days 3 and 5 postinfection in prophylactically and therapeutically treated mice with C144 + C135 and HIV mAb. p values are from a

one-way ANOVA following Dunnett’s multiple comparisons. Error bars denote min and max.
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given prior to peak viral replication and/or early in the disease

course before patients are hospitalized. In addition, we show a

small improvement with combination mAb/RDV over single-

agent therapy, which suggests that combinations of antiviral

drugs of disparate modalities may offer an additional benefit in

COVID-19 patients over single agents, something that should

be rigorously evaluated in humans. Although our studies clearly

support the use/evaluation of RDV and mAb as treatments for

COVID-19, both are administered intravenously, limiting their

broad distribution to COVID-19 outpatients. Potential strategies

to allow the wider dissemination of these treatments may include

chemical alteration of RDV to facilitate oral bioavailability and/or

less complicated subcutaneous or intramuscular injections of
mAbs. The effect of mAb injection route (i.e., subcutaneous

versus intravenous) on pharmacokinetics and safety is currently

being evaluated for C144 and C135 in phase 1 clinical studies

(ClinicalTrials.gov: NCT04700163).

Given the growing emergence of SARS-CoV-2 variants, we

examined the prophylactic and therapeutic efficacy of the

C144 + C135 combination against the South African B.1.351

variant spike in a robust age-related mouse model of SARS-

CoV-2 pathogenesis. Importantly, the C144 + C135 cocktail

demonstrated prophylactic and therapeutic efficacy against

the B.1.351 VOC, which is encouraging given that this variant

has demonstrated full escape from other mAbs approved for

emergency use in humans, such as the LY-CoV555. In addition,
Cell Reports 36, 109450, July 27, 2021 9
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the neutralizing potency of the AstraZeneca and Brii Biosciences

mAbs in clinical trials are clearly dampened bymutations present

in the variants, such as the B.1.351 (Wang et al., 2021b). The

target of the antiviral activity of RDV is the viral RdRp. Impor-

tantly, hallmark mutations of current SARS-CoV-2 VOCs are

not found in regions of the RdRp known to affect the antiviral po-

tency of RDV; thus, antiviral resistance to RDV is not currently

anticipated with current VOCs (Martin et al., 2021). In the context

of emerging variants in the future, it will be critical to continue to

evaluate the prevention and therapy of currently approved small

molecule and mAb antivirals and those in clinical development

against newly emerging variants of interest. Our results reveal

that prophylaxis and therapy with the C144 + C135 mAb combi-

nation has high efficacy against the B.1.351 VOC spike in vivo

and can diminish the development of disease during an ongoing

SARS-CoV-2 infection in mice. These data support the further

evaluation of this mAb cocktail as therapy in human patients in-

fected with the B.1.351 variant.
Limitations of this study
Although mice are a robust pathogenesis small-animal model for

COVID-19, their infection time course and time to peak lung viral

replication are compressed relative to the infection time course

of humans. Although this study suggests that early treatment

with SARS-CoV-2 antivirals and mAbs is critical for best disease

outcomes, it does not inform which specific time points may be

targeted for interventions in humans. Moreover, the mice used in

our mAb studies did not have humanized Fc receptors, which

likely play a role in protection and/or pathogenesis in the context

of COVID-19. Additional animal models may be used to help

clarify these questions.
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Dinnon, K.H., 3rd, Leist, S.R., Schäfer, A., Edwards, C.E., Martinez, D.R.,

Montgomery, S.A., West, A., Yount, B.L., Jr., Hou, Y.J., Adams, L.E., et al.

(2020). A mouse-adapted model of SARS-CoV-2 to test COVID-19 counter-

measures. Nature 586, 560–566.

Gaebler, C., Wang, Z., Lorenzi, J.C.C., Muecksch, F., Finkin, S., Tokuyama,

M., Cho, A., Jankovic, M., Schaefer-Babajew, D., Oliveira, T.Y., et al. (2021).

Evolution of antibody immunity to SARS-CoV-2. Nature 591, 639–644.

Gottlieb, R.L., Nirula, A., Chen, P., Boscia, J., Heller, B., Morris, J., Huhn, G.,

Cardona, J., Mocherla, B., Stosor, V., et al. (2021). Effect of Bamlanivimab

as Monotherapy or in Combination With Etesevimab on Viral Load in Patients

With Mild to Moderate COVID-19: A Randomized Clinical Trial. JAMA 325,

632–644.

Hansen, J., Baum, A., Pascal, K.E., Russo, V., Giordano, S., Wloga, E., Fulton,

B.O., Yan, Y., Koon, K., Patel, K., et al. (2020). Studies in humanized mice and

convalescent humans yield a SARS-CoV-2 antibody cocktail. Science 369,

1010–1014.

Jones, B.E., Brown-Augsburger, P.L., Corbett, K.S., Westendorf, K., Davies,

J., Cujec, T.P., Wiethoff, C.M., Blackbourne, J.L., Heinz, B.A., Foster, D.,

et al. (2020). LY-CoV555, a rapidly isolated potent neutralizing antibody,

provides protection in a non-human primate model of SARS-CoV-2 infection.

bioRxiv. https://doi.org/10.1101/2020.09.30.318972.

Kalil, A.C., Patterson, T.F., Mehta, A.K., Tomashek, K.M., Wolfe, C.R., Gha-

zaryan, V.C., Marconi, V.C., Ruiz-Palacios, G.M., Hsieh, L., Kline, S., et al.

(2021). Baricitinib plus Remdesivir for Hospitalized Adults with Covid-19.

N. Engl. J. Med. 384, 795–807.
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d All data reported in this paper will be shared by the lead contact upon request.

d This paper does not contain original code.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals and virus infections
Twenty-week-old male and female Ces1c (�/�) on a B6 background (C57BL/6J: Jackson Laboratory # 014096) and twenty-week-old

female on a B6 background (C57BL6J: Jackson Laboratory # 000664) were purchased from Jackson Laboratory. Eleven-month-old

female BALB/c mice were purchased from Envigo (#047). A mouse-adapted SARS-CoV-2 virus (MA10) was used in all experiments

and this virus was previously described (Leist et al., 2020). Briefly, mutations predictive of increased affinity to mouse ACE2

were introduced into a SARS-CoV-2 virus plasmid system and the virus was recovered by reverse genetics (Dinnon et al., 2020).

This modified virus was then serially passaged in aged BALBc mice (Envigo #047) for ten passages which we refer to as the

mouse-adapted passage 10 (MA10) SARS-CoV-2 (Leist et al., 2020). A mouse-adapted (MA10) backbone expressing the SARS-

CoV-2 B.1.351 spike was generated for this study. All mice were anesthetized and infected with SARS-CoV-2 MA10 or B.1.351

spike/MA10 intranasally with 13 104 PFU/ml. Mice were weighed daily and weremonitored for signs of SARS-CoV-2 clinical disease

in all experiments.

Animal care
The study was carried out in accordance with the recommendations for care and use of animals by the Office of Laboratory Animal

Welfare (OLAW), National Institutes of Health and the Institutional Animal Care and Use Committee (IACUC) protocol number: 20-059

at University of North Carolina (UNC permit no. A-3410-01). Virus inoculations were performed under anesthesia and all efforts were

made to minimize animal suffering. Animals were housed in groups and fed standard chow diets.

METHOD DETAILS

Study design and treatment groups
For the RDV experiment, a total of n = 40, �20-week-old male and female mice were divided into four groups each with n = 10 mice

with equal numbers of females and males in each group. RDV was administered subcutaneously twice per day (BID) at 25 mg/kg.

Groups of n = 10 mice (n = 5 males and n = 5 females) were used in either the prophylaxis�12 hours before infection group, the early

therapeutic 12 hours post infection group, the mid-late therapeutic 24 hours post infection group, and the late therapeutic 48 hours

post infection group.

For the initial monoclonal antibody experiment, mice were infected as described above and weighed daily and were monitored for

signs of SARS-CoV-2 clinical disease. A total amount of 200 mg of C144 + C135, 200 mg of C144, 200 mg of C135, and 200 mg of HIV

mAbs 3BC117 + 10-1074 was administered intraperitonially once by injection for each intervention group. Groups of n = 20 female

mice (n = 5 mice treated with C144 + C135, n = 5 mice treated with C144, n = 5 mice treated with C135, and n = 5 mice treated with

3BNC117 + 10-1074) were administered antibody 12 hours before infection, n = 20 femalemice (n = 5mice treated with C144 +C135,

n = 5 mice treated with C144, n = 5 mice treated with C135, and n = 5 mice treated with 3BNC117 + 10-1074) were administered

antibody 12hpi (early therapeutic group), n = 20 female mice (n = 5 mice treated with C144 + C135, n = 5 mice treated with C144,

n = 5 mice treated with C135, and n = 5 mice treated with 3BNC117 + 10-1074) were administered antibody 24hpi (mid-late thera-

peutic group), and n = 20 female mice (n = 5 mice treated with C144 + C135, n = 5 mice treated with C144, n = 5 mice treated with

C135, and n = 5 mice treated with 3BNC117 + 10-1074) were administered antibody 48hpi (late therapeutic group).

For the 24hpi drug andmAbcombination intervention experiment, a total of n = 40,�20-week-oldmale and femalemicewere divided

into four groups eachwith n = 10micewith equal numbers of females andmales in each group. At 24hpi, RDV treatmentwas initiated by

subcutaneous injection twice per day (BID) at 25mg/kg, and a total amount of 200 mg of C144 +C135was administered intraperitonially

once by injection. n = 10mice (n = 5males and n= 5 females) were used in the vehicle +HIVmAbgroup. n = 10mice (n = 5males and n =

5 females) were used in the vehicle + C144 + C135mAb group. n = 10mice (n = 5males and n = 5 females) were used in the RDV + HIV

mAb group. n = 10 mice (n = 5 males and n = 5 females) were used in the RDV + C144 + C135 mAb group.

For the 36hpi drug +mAb combination intervention experiment, a total of n = 64,�20-week-oldmale and femalemice were divided

into four groups each with n = 16 mice with an equal number of females and males in each group. At 36hpi, RDV treatment was initi-

ated by subcutaneous injection twice per day (BID) at 25 mg/kg, and a total of 200 mg of each monoclonal antibody treatment was

administered intraperitonially once by injection. n = 32 mice were harvested at d3pi to evaluate early lung viral replication titers, and

remaining mice were harvested at d5pi. n = 16 mice (n = 8 males and n = 8 females) were used in the vehicle + HIV mAb group. n = 16

mice (n = 8 males and n = 8 females) were used in the vehicle + C144 + C135 mAb group. n = 16 mice (n = 8 males and n = 8 females)

were used in the RDV +HIVmAb group. n = 16mice (n = 8males and n = 8 females) were used in the RDV +C144 + C135mAb group.
e2 Cell Reports 36, 109450, July 27, 2021
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Finally, for the B.1.351 VOC experiment we used n = 10 aged BALB/c females in the HIV mAb control prophylaxis group, n = 10

aged BALB/c females in the C144 + C135mAb combination prophylaxis group, and n = 10 aged BALB/c females in the C144 + C135

combination therapeutic group.

Lung pathology scoring
Acute lung injury was quantified via two separate lung pathology scoring scales: Matute-Bello and Diffuse Alveolar Damage (DAD)

scoring systems. Analyses and scoring were performed by a Board Certified Veterinary Pathologist whowas blinded to the treatment

groups as described previously (Sheahan et al., 2020). Lung pathology slides were read and scored at 600X total magnification.

The lung injury scoring system used is from the American Thoracic Society (Matute-Bello) in order to help quantitate histological

features of ALI observed in mouse models to relate this injury to human settings. In a blinded manner, three random fields of lung

tissue were chosen and scored for the following: (A) neutrophils in the alveolar space (none = 0, 1–5 cells = 1, > 5 cells = 2), (B) neu-

trophils in the interstitial septae (none = 0, 1–5 cells = 1, > 5 cells = 2), (C) hyaline membranes (none = 0, one membrane = 1, > 1mem-

brane = 2), (D) Proteinaceous debris in air spaces (none = 0, one instance = 1, > 1 instance = 2), (E) alveolar septal thickening (< 2x

mock thickness = 0, 2–4x mock thickness = 1, > 4x mock thickness = 2). To obtain a lung injury score per field, A–E scores were put

into the following formula score = [(20x A) + (14 x B) + (7 x C) + (7 x D) + (2 x E)]/100. This formula contains multipliers that assign

varying levels of importance for each phenotype of the disease state. The scores for the three fields per mouse were averaged to

obtain a final score ranging from 0 to and including 1.

The second histology scoring scale to quantify acute lung injury was adopted from a lung pathology scoring system from lung RSV

infection in mice (Schmidt et al., 2018). This lung histology scoring scale measures diffuse alveolar damage (DAD). Similar to the imple-

mentation of the ATS histology scoring scale, three random fields of lung tissue were scored for the following in a blinded manner: 1 =

absence of cellular sloughing and necrosis, 2 = Uncommon solitary cell sloughing and necrosis (1–2 foci/field), 3 = multifocal (3+foci)

cellular sloughing and necrosiswith uncommon septal wall hyalinization, or 4 =multifocal (> 75%of field) cellular sloughing and necrosis

with common and/or prominent hyaline membranes. The scores for the three fields per mouse were averaged to get a final DAD score

per mouse. The microscope images were generated using an Olympus Bx43 light microscope and CellSense Entry v3.1 software.

Remdesivir (RDV)
RDV was synthesized at Gilead Inc., and its chemical composition and purity were analyzed by nuclear magnetic resonance, high

resolution mass spectrometry, and high-performance liquid chromatography. RDV was solubilized in 12% sulfobutylether-b-cyclo-

dextrin in water (with HCl/NaOH) at pH 5 for in vivo studies in mice. RDV was made available to UNC Chapel Hill under an existing

material transfer agreement with Gilead Sciences Inc.

RNA extraction and subgenomic RNA assay
Lung lobes were harvested and homogenized in 1ml of TRIzol reagent. RNA was extracted with phenol/chloroform/isoamyl alcohol

solution (25:24:1), precipitated with isopropyl alcohol, washed with 75% ethanol, and resuspended in RNAase-free water. SARS-

CoV-2 E gene and N gene sgRNA was measured by a one-step RT-qPCR adapted from previously described methods (Li et al.,

2021). RNA extracted from animal samples or RNA standards were then measured using TaqMan Fast Virus 1-Step Master Mix

(ThermoFisher, catalog # 4444432) and custom primers/probes targeting the E gene sgRNA (forward primer: 50 CGATCTCTTGTA

GATCTGTTCTCE 30; reverse primer: 50 ATATTGCAGCAGT ACGCACACA 30; probe: 50 FAM ACACTAGCCATCCTTACTGCGC

TTCG-BHQ1 30) or the N gene sgRNA (forward primer: 50 CGATCTCTTGTAGATCTGTTCTC 30; reverse primer: 50 GGTGAA CCAAGA

CGCAGTAT 30; probe: 50 FAM-TAACCAGAATGGAGAACGCAGTGGG-BHQ1 30). RT-QPCRreactions were carried out on a CFX Opus

384 machine (Bio-Rad) using a program below: reverse transcription at 50�C for 5 minutes, initial denaturation at 95�C for 20 s, then 40

cycles of denaturation-annealing-extension at 95�C for 15 s and 60�C for 30 s. Standard curveswere used to calculate E or N sgRNA in

copies per ml; the limit of detections (LOD) for both E and N sgRNA assays were 150 copies per lung lobe.

Biocontainment and biosafety
Studies were approved by the UNC Institutional Biosafety Committee approved by animal and experimental protocols in the Baric

laboratory. All work described here was performed with approved standard operating procedures for SARS-CoV-2 in a biosafety

level 3 (BSL-3) facility conforming to requirements recommended in the Microbiological and Biomedical Laboratories, by the U.S.

Department of Health and Human Service, the U.S. Public Health Service, and the U.S. Center for Disease Control and Prevention

(CDC), and the National Institutes of Health (NIH).

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analyses were performed usingGraphPad Prism 9. Statistical tests used in each figure are denoted in the corresponding

figure legend. A Sidak’s multiple comparisons test was used following 2-way ANOVAs and this is also denoted in the figure legends.
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Figure S1. The prophylactic efficacy of mAb monotherapy against SARS-CoV-2 in mice 

treated at 12 hours before infection. 

(A) % starting weight in therapeutically treated mice with C144, C135, or an HIV mAb at 12 hours 

before infection. 

(B) Lung viral titers in therapeutically treated mice at 12 hours before infection. 

(C) Lung discoloration score in therapeutically treated mice at 12 hours before infection. 

(D-E) Lung pathology in therapeutically treated mice at 12 hours before infection. P values are 

from a 2-way ANOVA after Sidak’s multiple comparisons test. Related to Figure 3.



Figure S2. The therapeutic efficacy of mAb monotherapy against SARS-CoV-2 in mice 

treated at 12 hours post infection. 

(A) % starting weight in therapeutically treated mice with C144, C135, or an HIV mAb at 12 

hours post infection. 

(B) Lung viral titers in therapeutically treated mice at 12 hours post infection. 

(C) Lung discoloration score in therapeutically treated mice at 12 hours post infection. 

(D-E) Lung pathology in therapeutically treated mice at 12 hours post infection. P values are 

from a 2-way ANOVA after Sidak’s multiple comparisons test. Related to Figure 3.



Figure S3. The therapeutic efficacy of mAb monotherapy against SARS-CoV-2 in 

mice treated at 24 hours post infection. 

(A) % starting weight in therapeutically treated mice with C144, C135, or an HIV mAb

at 24 hours post infection. 

(B) Lung viral titers in therapeutically treated mice at 24 hours post infection. 

(C) Lung discoloration score in therapeutically treated mice at 24 hours post infection. 

(D-E) Lung pathology in therapeutically treated mice at 24 hours post infection. P 

values are from a 2-way ANOVA after Sidak’s multiple comparisons test. Related to 

Figure 3.



Figure S4. The therapeutic efficacy of mAb monotherapy against SARS-CoV-2 in 

mice treated at 48 hours post infection. 

(A) % starting weight in therapeutically treated mice with C144, C135, or an HIV mAb

at 48 hours post infection. 

(B) Lung viral titers in therapeutically treated mice at 48 hours post infection. 

(C) Lung discoloration score in therapeutically treated mice at 48 hours post infection. 

(D-E) Lung pathology in therapeutically treated mice at 48 hours post infection. P 

values are from a 2-way ANOVA after Sidak’s multiple comparisons test. Related to 

Figure 3.



Figure S5. The therapeutic efficacy of RDV and mAbs as single agents and in combination at 24 hours 

post infection in SARS-CoV-2-infected mice. 

(A) % starting weight in therapeutically treated mice with vehicle + HIV mAb, vehicle + C144 + C135, RDV 

+ HIV mAb, and RDV + C144 + C135 at 24 hours post infection through day 12. From left to right, grey bars 

denote vehicle/control mAb treated mice, yellow bars denote vehicle/mAb therapeutic treatment, blue bars 

denote RDV/control mAb therapeutic treatment, and orange bars denote RDV/mAb therapeutic treatment.

(B) % mortality in therapeutically treated mice with single agents and combination therapy.

(C) Lung discoloration score in therapeutically treated mice with single agents and combination therapy. 

“Veh.” signifies vehicle treatment.

(D) Pulmonary function in therapeutically treated mice with vehicle + HIV mAb and RDV + C144 + C135. P 

values are from a 2-way ANOVA after Sidak’s multiple comparisons test. Related to Figure 5. 
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