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Supplementary Figure 1: Validation of FGFR expression by immunohistochemistry (IHC) and in independent
datasets. (a,b,c,d) FGFR1 and FGFR3 expression levels in Affymetrix gene expression data from the
Heidelberg dataset expressed as signal intensity and (¢) RNA sequencing data from Denver cohort expressed as
reads per kilobase million (RPKM) in the indicated samples: ependymoma, medulloblastoma (MB)
glioblastoma multiforme (GBM) or high-grade glioma (HGG), pilocytic astrocytoma (PA), astrocytoma (A),
oligodendroglioma (OD), diffuse intrinsic pontine glioma (DIPG) and atypical teratoid rhabdoid tumors
(ATRT). Significance differences were calculated by one-way ANOVA and with Tukey correction for multiple
comparison. (e) IHC scores (0-300) of primary ependymomas within the Vienna cohort (upper left panels) as
well as represantative images (40x) of FGFR1 and FGFR3 showing cytoplasmic and membranous staining
across ependymoma subgroups. (f) FGFR3 protein levels determined by Western blot in tissue extracts from
posterior fossa group A ependymoma (PF-A), myxopapillary ependymoma (SP-MPE), spinal ependymoma
WHO grade II (SP-EPN) and supratentorial ependymoma RelA fusion-positive (ST-RELA). **** p<0.0001,
*#% p<0.001, ** p<0.01, *p<0.05
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Supplementary Figure 2: Normalized expression levels of FGFR and FGF family genes visualized as heat
map. Expression levels are extracted from Affymetrix (a) or from RNA sequencing datasets (n=25 EPN, n=167
MB, n=30 GBM) (b) derived from the Heidelberg cohort and stratified for the respective EPN subtypes, or
compared to high-grade glioma and medulloblastoma. Posterior fossa or supratentorial subependymoma (PF-
SE, ST-SE), myxopapillary ependymoma (SP-MPE), spinal ependymoma WHO grade II (SP-EPN), posterior
fossa group A (PF-A) and B (PF-B), supratentorial RelA fusion-positive (ST-RELA), and Yap1 fusion-positive
(ST-YAP1) ependymomas, medulloblastoma wingless-activated (MB WNT), sonic hedgehog-activated (MB
SHH), group 3 (MB G3), and group 4 (MB G4) and glioblastoma multiforme (GBM)
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Supplementary Figure 3: FGF/FGFR expression in EPN bulk tumor extracts and single cell data. (a) Violin
plots of FGFRI and FGFR3 expression in EPN cell populations described in Gillen et al. Data were derived
from the Pediatric Neuro-oncology Cell Atlas (https://www.pneuroonccellatlas.org/). Black dots indicate
outliers. (b) Violin plots of FGFI, FGF2, and FGF9 in EPN cell populations described in Gojo et al. (right
panels) and Gillen et al. (left panels).
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Supplementary Figure 4: FGFRI and FGFR3 expression in EPN cell models. (a) Protein expression in cell
models (primo-cell cultures and cell lines) of the indicated EPN subgroups analyzed by Western blot. (b) Violin
plots depict expression levels of FGFRI and FGFR3 determined by scRNA-seq analyses from PF-A and ST-
RELA cell models derived directly from tissue extracts or patient-derived xenografts (PDX). Stars highlight
PDX models and hashtags the corresponding cell models. adh=adherent, sph=spheres
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Supplementary Figure 5: FGFR expression in cell subpopulations of the human cortex. (a) FGFRI and (b)
FGFR3 expression in scRNA-seq data of the human cortex 34. Data was derived and analyzed with UCSC cell
browser (https://cells.ucsc.edu/). Red indicates higher cellular expression levels. Nomenclature of cell
populations is depicted as published 34. Most important populations with respect to FGFR expression include
RG (radial glia cells) and U1/2 (unknown population 1/2).
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Supplementary Figure 6: FGFR1 and FGFR3 splicing and regulation. (a) Expression levels of exon 7 (both
variants), exon 8 (IlIb-specific), and exon 9 (Illc-specific) within the Heidelberg RNA-seq datasets, expressed
as RPKM values in the indicated EPN subtypes. (b) Expression levels of exon 7 (both variants), exon 8 (Illb-
specific), and exon 9 (Illc-specific) within human neural stem cell (NSC) cultures and derived astrocytic cell
cultures in either FBS (fetal bovine serum) or CTNF/BMP4 containing media derived from GSE76122. (c)
mRNA expression levels 72h post transfection of ependymoma cell models with siRELA or non-targeting
siRNA (siScr), depicted as bar graphs. Fold changes of the indicated genes (normalized to the housekeeping
gene P-actin) are given relative to respective siScr controls. Data are presented as mean + SD of two
independent experiments performed in triplicates. Significant differences between IIIb and Illc variants were
analyzed by two-tailed Student’s t-test. (d) Protein expression and phosphorylation levels 72h post transfection
with siRELA or non-targeting siRNA (siScr) of indicated ependymoma cell models depicted as immunoblots.
The left panel indicates the ZFTA-RELA fusion protein (fus) and RELA wild-type (wt) bands. Fold changes of
the indicated proteins (normalized to the housekeeping gene [-actin) are given relative to respective siScr
controls. *p < 0.05
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Supplementary Figure 7: Expression of dominant-negative (dn) FGFR1 and FGFR3 impacts clone formation
and stem cell characteristics of EPN cells. (a) Representative photographs of clonogenic cell growth upon
introduction of an adenovirus encoding empty vector (GFP), dnFGFR1 or dnFGFR3 in the indicated PF-A (blue)
and ST-RELA (pink) EPN cell models. (b) Spheroids grown in stem-cell medium are shown three days after
infection with the indicated adenoviral constructs in different EPN PF-A (blue) and ST-RELA (pink) cells. Green
fluorescent pictures confirm infection efficacy of cells expressing empty vector or dnFGFRI1. (¢) Stem cell
plasticity of manipulated spheres was investigated by testing the re-growth in medium containing 10% FCS.
Representative pictures of attached spheres from EPN cell models and FGFR-driven controls are depicted. In all
panels, Hep3B and NCI-H1703 served as positive controls for FGFR3 and FGFR1, respectively. (d) Western blot
analyses of the PF-A (VBT96) and ST-RELA (BT165), cell models upon expression of dnFGFR1 and dnFGFR3.
Total protein expression and phosphorylation levels of the indicated FGFRs (pFGFR, FGFR1/3), PLC-gamma
(PLCy, pPLCy), MAPK (ERK, pERK) and PI3K (Akt, pAkt, S6, pS6) pathway mediators are depicted. B-actin
served as loading control. Fold changes of the indicated proteins are given relative to respective GFP-transduced
controls., GFP=green fluorescent protein
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Supplementary Figure 8: Exposure of EPN cells to FGFRis impacts on clonogenic survival. Representative
pictures of clonogenic cell growth upon treatment with ponatinib, nintedanib and AZD-4547 (upper panels) as
well as with dovitinib and erdafitinib (lower panels) in the indicated PF-A (blue) and ST-RELA (pink) EPN cell

models.
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Supplementary Figure 9: Treatment with FGFRis reduces three-dimensional spheroid growth. Sphere diameters
(in um) of PF-A (blue) and ST-RELA (pink) cell models upon treatment with ponatinib, nintedanib, AZD-4547,
dovitinib and erdafitinib are shown as violin blots. Statistical differences between untreated and drug-exposed
samples were determined by one-way ANOV A with Tukey correction for multiple comparison. **** p<0.0001,
*#% p<0.001, ** p<0.01, * p<0.05
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Supplementary Figure 10: Exposure of EPN cell models to FGFRis impacts on stem cell characteristics.
Spheroids are shown three days after treatment with the indicated inhibitors in different EPN PF-A (blue) and ST-
RELA (pink) cells.
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Supplementary Figure 11: Exposure of EPN cell models to FGFRis impacts on stem cell characteristics.

(a) Re-attachment/differentiation of treated spheres was investigated by testing the re-growth in medium
containing 10% FCS. Representative pictures of attached spheres from EPN cell models are depicted. (b) Stem
cell/differentiation markers (CD44 and FOXJ1) in PF-A (BT214) and ST-RELA (VBT211) cells upon treatment
with ponatinib (Pon) and nintedanib (Nin) with the indicated concentrations for 24 hours was analyzed by

Western blot. B-actin served as loading control.
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Supplementary Figure 12: Ridge plots derived from gene set enrichment analyses with the indicated
ependymoma gene signatures. Positive values indicate enrichment in control, whereas negative values indicate
enrichment in treated cells. Original data are summarized in supplementary file 2. *, p<0.05
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Supplementary Figure 13: Immunofluorescence staining of FOXJ1 and RFX2 in ependymoma spheres and
upon redifferentiation as indicated. Spheres were treated with 0.5uM ponatinib, 2uM nintedanib or 2uM dovitinib
for 6 days (upper panels) followed by reseeding into FCS-containing media and culture for 3 days (lower panels).
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Supplementary Figure 14: Immunofluorescence staining of CD44 and GFAP in ependymoma spheres and upon
redifferentiation as indicated. Spheres were treated with 0.5uM ponatinib, 2uM nintedanib or 2uM dovitinib for 6
days (upper panels) followed by reseeding into FCS-containing media and culture for 3 days (lower panels).
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Supplementary Figure 15: Ponatinib treatment reduced the migratory potential of EPN cells. (a) Effects of
ponatinib (Pon, 0.5 and 2uM) inhibition on cell migration were determined by transwell-migration assays. Cells
were seeded in transwell cell culture inserts in serum-free growth media. The ability of the cells to migrate
through a porous filter attracted by serum gradient was tested after 18h (VBT211) or 72h (VBT96 and
VBT242). Representative photographs of cells at the bottom of filters stained with crystal violet are shown (left
panel). The respective quantification, giving the fold changed migratory potential in comparison to untreated
controls is depicted (right panel). Bars represent the means = SD of two independent experiments performed in
duplicates. (b and ¢) Wound healing assays were analyzed by live-cell-microscopy in PF-A (VBT96) and ST-
RELA (VBT211 and VBT242) cell models upon exposure to ponatinib at the indicated concentration (b) and
compared to FGFR-positive controls, NCI-H1703 and Hep3B (c). Quantification of scratch width is depicted as
means + SD of each time point investigated. (d) Ridge plots derived from gene set enrichment analyses with the
indicated migration-related gene sets. Arrows indicate enrichment in the respective control or treated
ependymoma cells. Original data are summarized in supplementary file 2. *, p<0.05
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Supplementary Figure 16: Effects of FGFR inhibition on FGFR downstream signaling cascades in FGFR-
driven control cells and on patient treaiment. (a) Effects of long-term treatment (24h) with the indicated
concentrations of ponatinib (Pon) and nintedanib (Nin) on FGFR1 and FGFR3, as well as on PLCy, MAPK and
PI3K signaling activation (indicated by changes in the phosphorylation status) in BT165, Hep3B and NCI-
H1703 cells was analyzed by Western blot. (b) Effects on FGFRs, MAPK, and PI3K signaling activation upon
stimulation of starved EPN cell models with FGF2 (20ng/ml) at indicated time points and additional ponatinib
(5uM) treatment (4 hours preincubation). 3-actin served as loading control.
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Supplementary Figure 17: Enrichment maps of REACTOME gene sets (top 30 enriched gene sets, p<0.05).
Original data are summarized in supplementary file 2.



after resection

Supplementary Figure 18: Axial contrast-enhanced T1-weighted magnetic resonance images (MRI) showing
periventricular residual tumor which could not be resected.



Table S1.: Primary cell models and stable cell lines investigated in course of this study

Molecular Subgroup Primary/recurrence Stable cell CNVs
line

VBT77 SP-EPN Recurrence n.a.

VBT78 PF-EPN-A Recurrence balanced

VBT96 PF-EPN-A Recurrence X 1q/4 /5 gain,
Chr 6 loss

VBT131 PF-EPN-A Recurrence Chr6/79/10 p loss

VBT160 PF-EPN-A Recurrence n.a.

BT214 PF-EPN-A Recurrence X balanced

VBT73 ST-EPN-RELA Recurrence X CDKN2A / 22p del.

VBT145 ST-EPN-RELA Recurrence X CDKN2A / 22p del.

VBT211 ST-EPN-RELA Recurrence X CDKN2A / 2q/ 14q
/22p del.

VBT242 ST-EPN-RELA Recurrence X 1q gain, CDKN2A
del.

VBT371 ST-EPN-RELA Recurrence X CDKN2A / 2q/ 14q
/22p del.

BT165 ST-EPN-RELA not known X CDKN1A del.




Table S2: List of primary and secondary antibodies

11032)

Antibody Company wB IF
Primary
PLC-gamma-1 (D9H10) Santa Cruz Biotechnology (Dallas, X

Texas, USA)
phospho-PLC-gamma-1 (Tyr783) Cell Signaling Technology X
FGFR-1 (D8E4) XP Cell Signaling Technology X
phospho-FGFR (Tyr653/654) Cell Signaling Technology X
FGFR-3 (E-7) Santa Cruz Biotechnology X
detecting: non-glycosylated FGFR-3: 97 kDa,
FGFR-3 precursor: 125 kDa
mature FGFR-3: 135 kDa.
ERK1/2; p44/42 Cell Signaling Technology X
phospho-ERK1/2; p-p44/42 (Thr202/Tyr204) |Cell Signaling Technology X
Akt (pan) (C67E7) Cell Signaling Technology X
phospho-Akt (Ser473) (D9E) Cell Signaling Technology X
S6; Ribosomal Protein (C-8) Santa Cruz Biotechnology X
Phospho-S6; Ribosomal Protein (Ser Cell Signaling Technology X
240/244)
B-actin (A5441) Sigma-Aldrich X X
B-actin (D6AS8) Cell Signaling Technology X
FOXJ1 (3-19) Santa Cruz Biotechnology X X
CD44 (156-3C11) Cell Signaling Technology X
GFAP ( G-A-5) Sigma-Aldrich X
RFX2 ( PA5-61850) Thermo Fisher Scientific X
Secondary
mouse-anti-rabbit IgG-HRP (sc-2357) Santa Cruz Biotechnology X
mouse IgG-HRP (GTX213111-01) GeneTex (Irvine, California, USA) X
goat anti-mouse IgG, Alexa Fluor 633 (A- Thermo Fisher Scientific X
21050)
goat anti-mouse IgG, Alexa Fluor 594 (A- Thermo Fisher Scientific X

goat anti-rabbit, Alexa Fluor 633 (A-21070)

Thermo Fisher Scientific

goat anti-Rabbit IgG, Alexa Fluor 594 (A-
11012)

Thermo Fisher Scientific




