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The supplementary information is presented in the following sections: 

(S1) Salinity monitoring data availability 

(S2) Driver variables processing 

(S3) Salinity patterns and significance to driver variables 

(S4) Random Forest variable selection and performance assessment 

  



 

 

S1. Salinity monitoring data availability  

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 1. Global monthly aggregated salinity observations. Map showing the number of monthly salinity 
observations at each river monitoring location of the global salinity dataset1, combined with data from GEMStat2 and Mekong 
River commission data portal3, over the 1980-2010 period. The lowest category represents the selection criteria of a minimum of 
15 years (180 months) of data availability.  

 

 

 

Supplementary Figure 2. Distribution of total salinity measurements within the studied regional river basins. Boxplots showing 

the distribution of salinity measurements available per station (sub-basin) within the selected seven regional river basins. Boxplot 

statistics include the median (thick vertical black lines), interquartile range (IQR: 25th percentile; Q1 and 75th percentile; Q3) and 

whiskers (confidence interval of Q1 - 1.5∗IQR to Q3 + 1.5∗IQR).     



 

 

S2. Driver variables processing   

Human drivers (agricultural-related) 

Irrigation and non-irrigation water withdrawals and return flows 

Sector specific water withdrawals and return flows over each sub-basin were computed using monthly 

outputs from the PCR-GLOBWB 2 model4, over the 1980-2010 period and at 5x5 arc-minute spatial 

resolution.  All water-use simulations follow the ISIMIP2a protocol; from the Inter-Sectoral Impact 

Model Intercomparison Project5 and are based on historical socio-economic scenarios (hist_varsoc), 

which have been computed by taking climate, population, GDP, land-use, and technological 

developments into account5. The water allocation data simulated by PCR-GLOBWB 2 has been validated 

to both reported values and to independent assessments on country, continent and global scales4,6. 

Specifically, we used monthly outputs of (i) actual irrigation water withdrawal (Irr. ww), as well as actual 

water withdrawals from domestic, industrial and livestock sectors, from which we computed (ii) total 

non-irrigation water withdrawals (Non-irr. ww).  We also gathered monthly timeseries of actual water 

consumption data, for the same sectors and used this data to calculate irrigation and non-irrigation 

return flows (Irr. Rf, Non-irr. rf), through subtracting model output data of withdrawal from 

consumption over each grid cell, and then summarizing all grid cells within each sub-basin polygon over 

each time-period (month).   

Cropland area (total- and irrigated) 

Two different data products were used to estimate annual total cropland (Tot. cropland), as well as the 

ratio of irrigated area to total sub-basin area (Norm. irr. area), over the 1980-2010 period. The MIRCA 

2000 dataset7 was used to get an estimate the ratio of irrigated cropland to total cropland area. This 

globally gridded dataset contains information on irrigated and rainfed crop areas, with 26 crop classes 

for each month around the year 2000. The ratio was estimated using an average of all 26 crop classes 

and associated grid areas, for both irrigated versus rainfed crops. Although reported uncertainties 

relating to crop seasonality do exist, information on the sum of harvested area for irrigated and rainfed 

crops, as well as the sum of irrigated area for all crops have shown to correlate well to other datasets7. 

Monthly data was summarized into an annual average, giving us a globally gridded ratio of irrigated 

cropland tot total cropland, at a 5 by 5 arc-minute grid cell resolution for the year 2000. We used this 

ratio (assuming the ratio in the year 2000 to be representative for all years) to estimate annual average 

total cropland, as well as total irrigated cropland over each sub-basin, over each year within the 1980-

2010 period. To do this, we combined the first ratio estimate from MIRCA, with the NOAA-HYDE dataset, 

which contains annual gridded cropland area, also at a global gridded spatial resolution of 5 by 5 arc-

minute8,9. This dataset was developed using widely accepted global reconstruction of cropland and 

pastureland, in combination with common wood harvest and urban land data sets. The NOAA-HYDE 

dataset contains estimates of the percentage of each grid cell area containing 28 different land-cover 

types, including the only two cropland-specific classes (named C3crop and C4crop). These cropland 

classes were added together, over each year of our study period. From this, we then extracted 

timeseries of annual total cropland over each sub-basin, by multiplying the cropland percentages from 

the NOAA-HYDE dataset with each sub-basin area. This total cropland area was then used to estimate 

total irrigated area, by multiplying it with the year 2000 irrigated crop ratio, developed from the MIRCA 

2000 dataset as described above.  



 

 

 

Fertilizer use  

Fertilizer use (Nitrogen and Phosphorous) over each sub-basin was calculated, using the gridded 

nitrogen and phosphorus fertilizer use for global agriculture production data set10,11. This global dataset 

contains time-series gridded data of annual N and P fertilizer use rate (g m-2), at a 0.5°x 0.5° resolution 

for the period of 1900-2013. This gridded dataset has been compared and matched with historical land 

use maps from HYDE 3.212, as well as country level crop-specific N and P fertilizer use rates from the 

IFA13. We extracted data for the years 1980-2010 and estimated average fertilizer use over each sub-

basin, and from this we calculated basin total fertilizer use for (i) Nitrogen (N. total) (ii) Phosphorous (P. 

total) and (iii) Total (sum of (i) and (ii); Tot. Fert.). 

Dams/reservoirs 

Reservoirs are an important water supply source for irrigation14 and could contribute to increasing 

freshwater salinity levels through evapo-concentrations effects caused by increased relative 

evapotranspiration from the open water surfaces of reservoirs15.  We quantify the presence and size of 

dams and associated reservoirs in each sub-basin, by using the Global Reservoir and Dam Database 

(GRanD) v.1.116. This dataset includes 6,862 records of reservoirs and dams, from which 1,276 were 

included within our study regions. The GRanD dataset has been validated through extensive cross-

validation, error checking, and identification of duplicate records and missing information has been 

completed, using a multitude of sources and statistical approaches16. We estimated for each sub-basin 

(i) total dam capacity (Dam storage), (ii) number (n_dams) (iii) ratio of total reservoir capacity to basin 

area (Norm. dam storage) and (iv) ratio of total dam area to basin area (Norm. dam area). Pre-

processing was first done in ArcMap, by pairing all dams to associated sub-basin, using “spatial join”, 

with the sub-basins layer as target feature and the dam layer as the join feature, and the “join one to 

many” option, using the “contains” join operation. After this join was done, the data was exported to R, 

where further sub-basin calculations were done.  

Hydro-climatic drivers 

Temperature, precipitation and evapotranspiration 

We used the CRU TS (Version 4) high-resolution gridded climate dataset17 to calculate monthly 

timeseries, as well as long-term annual average temperature (T) over each derived sub-basin. This 

dataset covers a global 0.5°x 0.5° grid and is based on interpolation of monthly climate anomalies from 

widespread networks of weather station observations. Temperature data was extracted from monthly 

average values, over the 1980 – 2010 period and spatially averaged over each sub-basin, using the R 

function “exact_extract” of the raster package.  

Additionally, monthly timeseries of Precipitation (P), actual- and potential evapotranspiration (AET and 

PET), as well as Evaporative ratios; (PET/P and AET/P) were extracted and computed over each sub-

basin, using model output data from the global hydrological model PCR-GLOBWB 24. These model runs 

were produced using historical simulations following the ISIMIP2a protocol5. The ISIMIP framework 

includes bias-corrected global climate model output data sets on a 0.5°x 0.5° global grid. This climate 

data is based on the reanalysis data sets ERA-40 (for WATCH) and ERA-Interim (for WFDEI). The data set 



 

 

covers the period 1901‐2012, where the data for 1901-1978 are taken from WATCH, and from 1979 

onwards from WFDEI18,19. 

Discharge 

Monthly as well as long-term annual average discharge (Q) over each sub-basin were quantified, using 

model outputs of the PCR-GLOBWB 24, with runs made under the ISIMIP2a protocol5 for WATCH forcing 

data Era Interim (WFDEI)18. Monthly gridded (5x5 arc-minute resolution) discharge over the 1980-2010 

period was produced through accounting for the historical evolution of irrigated areas, dams and 

reservoirs, to obtain a more realistic estimate of the historical evolution of runoff and discharge. The 

PCR-GLOBWB 2 model has been shown to realistically predict river discharge, through comparisons with 

in-situ discharge observations from the Global Runoff Data Centre4. We aggregated the values of each 

grid-cell within each sub-basin polygon, over each month, to get total sub-basin specific monthly 

discharge timeseries over the considered time period of 1980-2010.    

Geographic drivers 

Soil salinity  

Data on soil salinity was extracted for each sub-basin, using the WISE30sec dataset20. The WISE contains 

soil properties for the world, at a 30 by 30 arc-second resolution and was developed from soil profile 

observational data21 in combination with an overlay of the Harmonized World Soil Database22 and the 

Köppen–Geiger climate zones map as categorical co-variate. The WISE30sec dataset contains soil 

information at different depths, up to a depth of 2 m, for 20 different soil properties. For this study, we 

used electrical conductivity (EC) information, for the top two soil layers; (i) layer D1 (0-20 cm from the 

surface; EC top soil) and (ii) layer D2 (20-40 cm from the surface; EC sub soil). EC information was 

extracted for these layers from the main Microsoft access database and joined to the raster data, using 

the “join” data attribute tables (the join was based on the NEWSUID column). The “lookup” function of 

the spatial analyst package was used to create a new raster for each soil layer, based on the value in the 

attribute table corresponding to the EC values (dS m-1). These two new rasters were then further 

processed in R and EC values were extracted for each of the topsoil and subsoil layers, and a weighted 

average of the two layers was used to determine (iii) the mean soil salinity at each pixel (EC soil aver.). 

Sub-basin scale soil salinity was then obtained as the spatially averaged values over each sub-basin.  

Elevation 

The absolute elevation (Elevation) of each EC river measurement location (i.e. the outlet of each sub-

basin) was extracted in ArcMap, using the 15 Arc-Seconds Hydrologically Conditioned DEM raster 

dataset, from Hydrosheds23, to allow for consistency with the basin delineation procedure. We extracted 

the values using the “extract values to points” of the spatial analyst toolbox. 

Distance from coast (absolute and relative) 

The absolute distance to the coast (Dist. coast) from each river salinity monitoring location was 

estimated in ArcMap, using the vector map from Natural Earth 

(https://www.naturalearthdata.com/downloads/110m-physical-vectors/110m-coastline/), a 1:110 m 

scale resolution of the coastline. We used the “near table” function to pair the EC stations to the vector 

https://www.naturalearthdata.com/downloads/110m-physical-vectors/110m-coastline/


 

 

layer. In addition to this variable, we also calculated a composite variable of relative distance from coast 

(Rel. dist. coast), which was estimated according to equation (1);  

Reldist coast =
1

distance to coast 
 ∙  

1

absolute elevation
       (1) 

This variable represents a relative elevation compared to sea level and was created with the purpose of 

highlighting potential tidal effects, and/or stronger surface- and groundwater interactions. The 

underlying assumption of this variable is of higher groundwater-surface water interactions (i.e. 

seepage)24 for lower elevation locations close to the ocean, compared to locations at higher elevation, 

further upstream locations. 



 

 

S3. Salinity patterns and significance to driver variables  

 

 

Supplementary Figure 3. Distribution of sub-basin salinity threshold exceedance level within each regional basin. Boxplot 

showing exceedance level (% of months compared to total that each sub-basin exceeds the salinity threshold) within each 

regional river basin, as well as for all sub-basins together (panel a), and (panel b) grouped over sub-basins within the Low 

salinity impact class (i.e. sub-basins with long term annual average salinity values below 700 µS cm-1), and sub-basins within the 

Moderate-High salinity impact class (i.e. long-term salinity levels above this threshold). Boxplot statistics include the median 

(thick vertical lines), interquartile range (IQR: 25th percentile; Q1 and 75th percentile; Q3) and whiskers (confidence interval of 

Q1 - 1.5∗IQR to Q3 + 1.5∗IQR).     



 

 

 



 

 

 

Supplementary Figure 4. Regional contributions of hydroclimatic, geographic and human drivers across sub-basin salinity 
impact classes. The figures show a selection of 17 out of the total 26 considered driver variables, over all sub-basins within each 
regional river basin. The selection includes all driver categories (as listed in Table 1), but where multiple variables within the same 
category exists (e.g. for dams), only the variable showing statistically significant results was included (all summary statistics are 
included in Supplementary Table 1).The salinity impact classes are based on groups of sub-basins with Low (EC < 700 µS cm-1; 
green boxplots), Moderate (EC = 700 – 1500 µS cm-1; orange boxplots) and High (EC > 1500 µS cm-1; red boxplots) salinity levels, 
classified from long-term annual average values. The selected drivers are plotted along groups of (i) hydroclimatic, (ii) geographic 
and (iii) human drivers on the x-axis, and their normalized long-term annual average levels on the y-axis. Note that each driver 
level is to be compared across the salinity impact classes (green-yellow-orange boxplots). Boxplot statistics include the median 
(vertical thick black lines), interquartile range (IQR: 25th percentile; Q1 and 75th percentile; Q3) and whiskers (confidence interval 
of Q1 - 1.5∗IQR to Q3 + 1.5∗IQR).    



 

 

 

Supplementary Figure 5. Relationships between sub-basin irrigation specific variables and aridity. Boxplots showing the 

distribution of sub-basin irrigated area (Norm. Irr. area) irrigation water use (irrigation water withdrawals; Irr. ww and irrigation 

consumption; Irr. cons), grouped over sub-basin aridity index (PET/P). The sub-basin aridity index classes are divided into three 

groups of similar sub-basin group sizes (N) and range from lower (<0.5) to higher (0.5-1 and >1) aridity, classified from long-term 

annual average values over the 1980-2010 period. Boxplot statistics include the median (vertical thick black lines), interquartile 

range (IQR: 25th percentile; Q1 and 75th percentile; Q3) and whiskers (confidence interval of Q1 - 1.5∗IQR to Q3 + 1.5∗IQR). The 

stars (*) over the boxplots indicate where there are statistically significant differences in the irrigation related driver levels 

between low-high aridity groups (for <0.5 and > 1 groups; statistics based on Wilcoxon rank sum tests with a significance 

difference identified the 95% significance level, p<0.05). 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

Supplementary Figure 6. Contributions of mining and road salt drivers across sub-basin salinity impact levels. Boxplots showing 
the distribution of sub-basin mining area (Norm. Mining area and Tot. Mining area)25 and road salt application (in pounds; annual 
average application over the years 1992-2010)26 grouped over sub-basin salinity impact classes. The mining area drivers are 
quantified for all sub-basins (N=401), whereas the road salt driver is quantified over the Mississippi sub-basins as a case study 
example (N=167). Boxplot statistics include the median (thick vertical black lines), interquartile range (IQR: 25th percentile; Q1 
and 75th percentile; Q3) and whiskers (confidence interval of Q1 - 1.5∗IQR to Q3 + 1.5∗IQR).  

 

  



 

 

Supplementary Table 1. Significance between driver mean levels and salinity. Results of the Wilcoxon rank sum test for mean 
levels of each driver variable between salinity impact classes. The table shows the p-values for the Wilcoxon test applied to 
each driver, over all possible salinity impact class combinations. Statistically significant differences (p<0.05) are shown in bold.  

 
 
Driver/ Salinity impact class  Low-High Low-Moderate 

 
 

Moderate-High 
 
  

T 0.007* 0.657 0.031 
P 0.429 0.353 0.615 
PET 0.218 0.176 0.396 
AET 0.236 0.207 0.385 
PET/P 0.003 0.024 0.182 
AET/P 0.0003 0.092 0.002 
Q 0.806 0.203 0.643 
Irr. ww 0.004 0.0003 0.330 
Non-irr. ww 0.328 0.037 0.099 
Irr. rf 0.005 0.0005 0.320 
Non-irr. rf 0.373 0.036 0.107 
Dam. storage 0.772 0.678 0.560 
Nr. dams 0.587 0.490 0.373 
Norm. dam storage 0.991 0.751 0.849 
Norm. dam area 0.965 0.872 0.903 
Tot. cropland 0.223 0.0008 0.003 
Norm. irr. area 0.006 0.00002 0.842 
N. total 0.064 0.015 0.380 
P. total 0.158 0.013 0.721 
Tot. fert. 0.076 0.015 0.434 
EC top soil 0.258 0.033 0.733 
EC sub soil 0.517 0.251 0.157 
EC soil aver. 0.897 0.178 0.277 
Elevation 0.200 0.224 0.024 
Dist. coast 0.0001 0.746 0.0003 
Rel. dist. coast 0.063 0.771 0.109 

*For interpretation of the direction of the significant differences between each driver and the salinity 

impact class, the reader is referred to Fig. 4. For description of the driver variable definitions, the reader is 

referred to Table 1. 

 

  



 

 

Supplementary Table 2. Results of the Wilcoxon rank sum test for mean levels of each driver variable between two new salinity 

impact classes, representing groups of sub-basins below and above the threshold of 700 µS cm-1. The table shows p-values for 

the Wilcoxon rank sum test applied to the two impact classes. Significant differences (p<0.05) are shown in bold.  

Driver/ Salinity impact class 

 
 
Below-Above* 
 
  

T 0.140 
P 0.268 
PET 0.100 
AET 0.121 
PET/P 0.001 
AET/P 0.004 
Q 0.239 
Irr. ww 0.00002 
Non-irr. ww 0.170 
Irr. rf 0.00004 
Non-irr. rf 0.170 
Dam. storage 0.816 
Nr. dams 0.724 
Norm. dam storage 0.785 
Norm. dam area 0.906 
Tot. cropland 0.020 
Norm. irr. area 0.000002 
N. total 0.005 
P. total 0.008 
Tot. fert. 0.006 
EC top soil 0.023 
EC sub soil 0.478 
EC soil aver. 0.277 
Elevation 0.608 
Dist. coast 0.059 
Rel. dist. coast 0.318 

* The salinity classes are here divided into two new impact classes; “below” (N=262) and 

“above” (N=139), based on threshold levels of 700 µS cm-1 (representing the lowest 

threshold level for irrigation water use). 

 



 

 

S4. Random Forest variable selection and performance assessment  

 

 

Supplementary Figure 7. Matrix display of the Pearson correlation between all driver variables, based on long-term annual 
average values.  Each cell of the matrix shows the correlation between two driver variables; positive correlations are displayed 
in red-orange colours and negative correlations in blue-purple colours. 

  



 

 

Supplementary Table 3. Random Forest model final driver variable selection. For explanation of driver variable abbreviations, 
the reader is referred to Table 1. The variables with “trend” included after the abbreviated name represent the trend 
magnitude (Sen’s slope value) of that variable.  

Random forest model   
 
Driver variables  
 

1) All sub-basins with increasing salinity trends 
(N=128)  

Norm. irr. area; Dist. coast; EC top soil; Rel. dist. 
coast; Elevation; EC soil av.; Q trend; EC sub soil; 
Irr. ww; T trend; PET/P; AET/P; Irr. rf.; T; Irr. rf 
trend 

2) All sub-basins with decreasing salinity trends 
(N=96) 

Dist. coast; Non-irr. rf; Non-irr. ww; AET/P trend; 
PET/P trend; Q trend  
 

 

 

Supplementary Table 4. Random Forest model accuracy. Accuracy parameters include the squared correlation coefficient (R2), 
the Root Mean Squared Error (RMSE), the Mean Absolute Error (MAE) and normalized MAE (NMAE).  

Random forest model   R2 RMSE (µS cm-1)   MAE (µS cm-1)    NMAE 

1) All sub-basins with increasing 

salinity trends (N=128)  

0.61 224 165 0.27 

2) All sub-basins with decreasing 

salinity trends (N=96)  

0.51 466 351 0.46 

 

  



 

 

 

 

 

Supplementary Figure 8. Relative driver contributions, including mining and road salt drivers, for predicting salinity levels in 

sub-basins with increasing salinisation. Results from the CPI analysis when including mining (sub-basin normalized mining area 

and total mining area) and road (sub-basin total annual application) salt as predictor variables in the RF model to predict salinity 

levels in sub-basins experiencing salinisation. Bar charts show the relative importance of driver variables in (a) all sub-basins 

and (b) for sub-basins within the Mississippi river basin (a relevant case study for road salt application), using the conditional 

permutation importance method within the Random Forest approach. For illustration purposes, only the top 10 drivers, as well 

as the relative importance of mining and road salt are shown. The accuracy importance score (y-axis; unitless) represent the 

relative importance of each predictor variable in achieving the prediction capacity of the Random Forest model (note the 

different y-axes in panel a and b and that the absolute values of the scores should not be interpreted, only the relative scores 

between drivers).   
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