

PACS numbers: 32.80.Fb, 42.50.Hz, 32.80.Rm

[∗] weicao@hust.edu.cn

[†] yunquan.liu@pku.edu.cn

[‡] zheng.li@pku.edu.cn

[§] lupeixiang@hust.edu.cn

1 I. COULOMB MOMENTUM MAPPING

 T_2 To calculate the momentum distribution of three-body breakup channel $\left(\text{CH}_2^+ + \text{H}^+ + \text{H}^+ \right)$ ³ from different configurations, the Coulomb explosion is simulated by the classical Hamilto-⁴ nian of three point charged particles [\[1\]](#page-9-0)

$$
H = T + V_{\text{Coul}}(r_1, r_2, r_C) \tag{1}
$$

$$
V_{\text{Coul}}(r_1, r_2, r_C) = \frac{1}{r_{12}} + \frac{1}{r_{1C}} + \frac{1}{r_{2C}},\tag{2}
$$

⁵ where T is the kinetic energy, r_1 , r_2 and r_C are coordinates of two ionized H⁺ and the mass of CH_2^+ , respectively. Molecular dynamics is carried out for 2500 fs, with the initial ⁷ positions set to equilibrium geometry of C_{3v} , C_{2v} , D_{2d} and initial momentum set to zero.

⁸ The configuration evolution of CH_4^+ can be revealed by momentum distribution of CH_2^+ - μ H⁺-H⁺ three-body explosion result. Each event can be classified into one of these symmetry 10 configurations according to the distance in momentum space. The *i*-th event is described by the four coordinates in Newton plot $p_{\alpha}^{(i)}$ $_{x,{\rm CH}_2^+}^{(i)},p_{y,{\rm C}}^{(i)}$ $y_{y, \text{CH}_2^+}^{(i)}, p_{x, \text{H}^+}^{(i)}, p_{y, \text{H}^+}^{(i)}$ and the momentum of 11 ¹² another H⁺ ion is set to be (1,0). The distance between the *i*-th event and one of the C_{3v} ¹³ configurations is defined by

$$
d_{i,C_{3v}}^2 = (p_{x,\text{CH}_2^+}^{(i)} - p_{x,\text{CH}_2^+}^{(C_{3v})})^2 + (p_{y,\text{CH}_2^+}^{(i)} - p_{y,\text{CH}_2^+}^{(C_{3v})})^2 + (p_{x,\text{H}^+}^{(i)} - p_{x,\text{H}^+}^{(C_{3v})})^2 + (p_{y,\text{H}^+}^{(i)} - p_{y,\text{H}^+}^{(C_{3v})})^2.
$$
\n(3)

¹⁴ The distance between event i and C_{3v} is defined by the minimum value of its distance to ¹⁵ each different C_{3v} configuration and so do C_{2v} and D_{2d} . Each exploded CH⁺₄ is classified ¹⁶ to the symmetry of minimal distance. The configuration evolution of CH_4^+ and comparison ¹⁷ with MD simulation of two-body explosion channels is shown in Fig. [S1.](#page-2-0)

18 II. MOLECULAR DYNAMICS SIMULATION DETAILS

¹⁹ MCSCF method and DZV basis are used for CH⁺ configuration evolution including an 20 active space of 7 orbitals. Only 1s orbital of C atom is regarded as core orbital and doubly 21 occupied. For each time point in the CH_4^+ trajectory, dication occurs at the instant of the probe pulse. MCSCF method and DZV basis are used for the propagation of CH_4^{2+} 22 ²⁴³ trajetories.

FIG. S1. Temporal evolution in symmetry space. Comparison between a simulated two-body explosion result and **b** configuration evolution of CH_4^+ from three-body measurement data. The error bars in b represent the mean absolute deviation of the statistical errors. The 15 fs time difference from $\text{CH}_3^+ + \text{H}^+$ channel to $\text{CH}_2^+ + \text{H}_2^+$ channel is consistent with the 20 fs experimental time delay, which corresponds to the 20 fs time difference between C_{3v} peak and C_{2v} peak.

FIG. S2. Breakup path optimized for the ground state $(^1A_1)$ of CH_4^{2+} dication. The minimal energy geometric parameters for the methane cation with stretched $C-H_{c/d}$ bonds. The purple line is for the H_c-H_d distance and the thick green line is for the H_c-C-H_d angle.

 1 To demonstrate the fragmentation channel from the C_{2v} geometry of methane cation to $2 \text{CH}_2^+ + \text{H}_2^+$, we calculate the pathway of the Coulomb explosion after double ionization in the 3 $1A_1$ ground state of C_{2v} symmetry. The structures along the path were determined for each 4 given C-H_c and C-H_d distances of the leaving hydrogen atoms. As shown in Fig. [S2](#page-2-1), the H_c- H_d distance stays short and the H_c -C- H_d angle stays small in the lowest 1A_1 state for a very • long C-H bond, which indicates the $\text{CH}_2^+ + \text{H}_2^+$ fragmentation for the C_{2v} geometry. Besides, a τ schematic dephasing and revival process of three vibrational modes leading to C_{2v} geometry

FIG. S3. Multi-mode dynamics of Jahn-Teller distortion. Revival and dephasing processes of e bending mode, f_2 stretching mode and f_2 bending mode of equal amplitude. The peaks at ∼5 fs and \sim 25 fs are in good agreement with $\rm CH_2^+ + H_2^+$ channel of Fig. 4a in the main text. The harmonic frequencies and corresponding vibrational periods are adapted from Ref. [\[2\]](#page-9-1), $\nu(a_1) = 3077 \text{cm}^{-1}$ (10.8fs), $\nu(e) = 1534 \text{cm}^{-1}$ (21.0fs), $\nu(f_2) = 3212 \text{cm}^{-1}$ (10.4fs), and $\nu'(f_2) = 1349 \text{cm}^{-1}$ (24.7fs), where the a_1 mode cannot change symmetry and hence does not participate in the JT distortion.

¹ is shown in Fig. [S3.](#page-3-0) The total amplitude fluctuates due to their commensurate frequencies.

² The peaks of total vibration means CH_4^+ approaches C_{2v} configuration, which indicates more 3 contribution to $\text{CH}_2^+ + \text{H}_2^+$ channel.

⁴ The initial condition of the classical MD simulation is taken for the geometries in the 5 vicinity of the T_d symmetric configurations, and thermal velocities at experimental temper-⁶ ature. It means that to a good approximation mostly the DOFs of ground vibrational state ⁷ of the system are populated, and is a good approximation of the quantum mechanical distri-⁸ bution sampling, e.g. Wigner sampling, in which for each normal mode the trajectories are ⁹ set on the corresponding Bohr orbit. The error originated from variation of initial velocity ¹⁰ should be minor, because the thermal energy of CH₄ molecule at 300K is ∼0.1eV, it is order ¹¹ of magnitude smaller than the stabilization energy of 1.5eV, which dominates dynamical JT ¹² process.

FIG. S4. Symmetry elements conserved under Q_1, Q_2, Q_3 distortion. a The distortion Q_1 is invariant under symmetry operation C_3 , and Q_2 is invariant under C_2 . **b** The distortions Q_1, Q_2, Q_3 remain invariant under symmetry operation $\sigma_{\rm v}$.

¹ III. THE CORRESPONDENCE OF VIBRATIONAL MODES AND SYMMETRY ² DISTORTIONS

³ Here we analyse the distorted geometry of Jahn-Teller molecules under specified vibra-⁴ tional coordinates [\[3,](#page-9-2) [4\]](#page-9-3). Although the molecule under JT effect is forced to distort, the ⁵ nuclear configuration with maximum symmetry must be preferentially produced.

6 For the methane cation of T_d point group, from the character table, one typical basis of f_2 ⁷ vibration is (x, y, z) . The space spanned by basis (x, y, z) is called distortion space, because a 8 set of f_2 vibrational coordinates have identical transformation properties to f_2 representation basis (x, y, z) . For any element in the distortion space, there are some conserved symmetry ¹⁰ operations, which correspond to the operations of the same character to the identity operator. ¹¹ These operations form a group denoted $K(T_d, f_2)$. From the character table

$$
K(T_d, f_2) = C_1 \tag{4}
$$

¹² If there exists some special distortions, such that more symmetry operations of the original 13 point group are conserved, these symmetry operations form a group belonging to $E(T_d, f_2)$, ¹⁴ which is a set of subgroups of T_d .

¹⁵ A symmetry element will remain symmetric under a distortion if and only if this symmetry 16 operation leaves the distortion invariant. For example, under distortion $Q_1 = x + y + z$, 17 some symmetry operations (besides identity element E) will conserve, such as C_3 and $\sigma_{\rm v}$ in ¹ Fig. [S4](#page-4-0)

$$
C_3Q_1 = C_3x + C_3y + C_3z = y + z + x = Q_1
$$
\n(5)

$$
\sigma_{\rm v} Q_1 = \sigma_{\rm v} x + \sigma_{\rm v} y + \sigma_{\rm v} z = y + x + z = Q_1. \tag{6}
$$

² All these symmetry operations form a group C_{3v} . Similarly, under distortion $Q_2 = z$, 3 symmetry operations such as C_2 and σ_v will conserve

$$
C_2 Q_2 = C_2 z = z = Q_2 \tag{7}
$$

$$
\sigma_{\rm v} Q_2 = \sigma_{\rm v} z = z = Q_2, \qquad (8)
$$

⁴ they form a group C_{2v} . And under $Q_3 = -(x+y)$, only σ_v will conserve

$$
\sigma_{\rm v} Q_3 = \sigma_{\rm v}(-x) + \sigma_{\rm v}(-y) = -(y+x) = Q_3 \,, \tag{9}
$$

which corresponds to point group C_s . In conclusion,

$$
E(T_d, f_2) = \{C_{3v}, C_{2v}, C_s\}.
$$
\n(10)

⁵ So there exist some special distortions, such that the distorted geometry can remain in

⁶ higher symmetry. Thus we know that f_2 mode leads to C_{3v} and C_{2v} distorted geometry and

- ⁷ the maximal symmetric C_{3v} is preferred.
- ⁸ Similarly, for e representation

$$
K(T_d, e) = D_2 \tag{11}
$$

$$
E(T_d, e) = D_{2d} \tag{12}
$$

A typical basis for e representation of T_d point group is $(2z^2 - x^2 - y^2, x^2 - y^2)$. Obviously, there exists a distortion $Q_4 = 2z^2 - x^2 - y^2$ which remains unchanged under the symmetry 11 operations in D_{2d} subgroup.

Hence, CH_4^+ is distorted to D_{2d} geometry due to e bending mode, and f_2 mode leads ¹³ to C_{3v} and C_{2v} distorted geometry, as shown in Fig.4 in the main text. See Ref.[\[3\]](#page-9-2) for ¹⁴ the expression for each vibrational coordinate. Both f_2 mode and e mode contribute to ¹⁵ $CH_2^+ + H_2^+$ channel, whose dephasing and revival process correspond to the second peak of ¹⁶ simulation results as well as ∼20fs delay from experiment. However, only the f_2 stretching ¹⁷ mode will lead to $\text{CH}_3^+ + \text{H}^+$ channel.

1 IV. WAVE PACKET DYNAMICS SIMULATION

² To understand the dynamics of the JT distortion, we carried out wave packet dynamics ³ simulation using the multi-configuration time-dependent Hartree (MCTDH) method [\[5\]](#page-10-0), ⁴ based on an effective Hamiltonian by considering molecular symmetry. In the Hamiltonian, the potential of the corresponding $F \otimes (f \oplus e)$ JT effect of CH_4^+ is mapped onto the surface of 6 a sphere [\[6,](#page-10-1) [7\]](#page-10-2), where the e and f_2 vibrational modes are parametrized by spherical harmonics τ of order $l = 2$ (Atomic units (a.u.) are used throughout unless specified otherwise),

$$
Q_{e'} = d \left[3(\cos \theta)^2 - 1 \right]
$$

\n
$$
Q_{e''} = d\sqrt{3}(\sin \theta)^2 \cos(2\phi)
$$

\n
$$
Q_{f'} = d\sqrt{3} \sin(2\theta) \sin \phi
$$

\n
$$
Q_{f'} = d\sqrt{3} \sin(2\theta) \cos \phi
$$

\n
$$
Q_{f'''} = d\sqrt{3}(\sin \theta)^2 \sin(2\phi),
$$
\n(13)

8 where θ and ϕ are the parameterized coordinates and $d = 0.373 \text{ Å}$ is a parametrized distor-⁹ tion parameter [\[7\]](#page-10-2).

¹⁰ The linear JT effect of f_2 vibration produces methane cation in C_{3v} , which contributes $_{11}$ to the fragmatation into $CH_3^+ + H^+$. Because of the degenerate ground state, this struc-¹² ture undergoes a JT effect to C_{2v} geometry[\[8\]](#page-10-3), which dissociates to $CH_2^+ + H_2^+$. The JT ¹³ deformation dynamics is governed by the parametric model Hamiltonian [\[7\]](#page-10-2),

$$
\hat{H} = \hat{T} + \hat{V}(\theta, \phi)
$$
\n
$$
\hat{T} = -t \left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \phi^2} \right]
$$
\n
$$
\hat{V}(\theta, \phi) = V_0 + \sqrt{\frac{7}{12}} \left[Y_{4,0} + \sqrt{\frac{5}{14}} \left(Y_{4,4} + Y_{4,-4} \right) \right] V_4
$$
\n
$$
+ \frac{1}{\sqrt{8}} \left[Y_{6,0} - \sqrt{\frac{7}{2}} \left(Y_{6,4} + Y_{6,-4} \right) \right] V_6 , \qquad (14)
$$

¹⁴ where $t = 10$ cm⁻¹ is the pseudo-rotation parameter, the potential parameters are chosen ¹⁵ to be $V_0 = 0$, $V_4 = -2260$ cm⁻¹, $V_6 = 3100$ cm⁻¹, which approximately reproduce the 16 JT stablization energy and the *ab initio* energy values of the methane cation [\[7\]](#page-10-2). The ¹⁷ initial wavepacket is prepared in vicinity of the symmetric points on the surface of the 18 sphere, which represents the C_{3v} configurations with a contracted C-H bond, and favors

¹ the $CH_3^+ + H^+$ breakup channel in the laser-induced Coulomb explosion. Following the 2 Franck-Condon principle, the FWHM width of the initial wavepacket $\Psi(\theta, \phi)$ is set such that the corresponding E vibrational coordinates $Q_{e'}$ and $Q_{e''}$ have the width of the ground 4 state wave function [\[7\]](#page-10-2). To analyse the population of C_{2v} configurations in the final state 5 wavepacket, the wavepacket densities in the vicinity $(\Delta \theta, \Delta \phi)$ of the C_{2v} points on the 6 sphere are integrated, where $(\Delta \theta, \Delta \phi)$ is phenomenologically taken as the width of the ⁷ initial wavepacket. The potential energy surface and the time dependence of the population 8 is shown in Figs. 5a and 5b of the main text. One can see that the population in the D_{2d} 9 configuration is much smaller than that in the C_{2v} configuration. Moreover, the population 10 of the C_{2v} configurations peaks at ∼18.7 fs, which is almost consistent with the measurement. ¹¹ Using this time delay between the two breakup channels, we can reproduce the experimental ¹² data shown in Fig. 2 of the main text. The KER of the fragments from the Coulomb explosion is related to the distance R between the centers of mass for the $\text{CH}_2^+ + \text{H}_2^+$ and $\text{CH}_3^+ + \text{H}^+$ 13 ¹⁴ fragments at the moment of separation by KER $\approx 1/R$. We assume that the reduced mass 15 of the nuclei starts moving with constant velocity, thus the distance R can be expressed as ¹⁶ $R \approx R_0 + v_0 t$, where R_0 is the initial distance and v_0 is the velocity adjusted to best fit with ¹⁷ the experiment. With a time delay of 18.7 fs between the two breakup channels, we achieve ¹⁸ a good agreement between the simulation and the measurement, as shown in Fig. 2 of the ¹⁹ main text.

²⁰ V. LASER POWER DEPENDENCY CHECK OF THE THREE-BODY BREAKUP ²¹ CHANNELS

 Under condition that the pump and probe pulses are of identical wavelength and intensity, it could thus well be that the results of the three-body breakup contain a superposition of two pathways, (i) pump from neutral to cation, probe from cation to dication, and (ii) pump from neutral to dication, probe from dication to trication.

²⁶ In order to clarify that the three-body breakup yields are dominantly contributed by ²⁷ the cation before the probe pulse, we have carried out the laser power dependency check ²⁸ experimentally for the three-body Coulomb explosion channel by reducing the intensity of ²⁹ pump pulse to $1/4$ (~ 0.7×10^{14} W/cm²) and keeping the intensity of probe pulse invariant ³⁰ (~ 3×10¹⁴W/cm²). Under this condition, the probability of double ionization by the pump

FIG. S5. Three-body Coulomb explosion probe at various pump intensities. Temporal evolution of C_{3v} like and C_{2v} like symmetry configurations of $a \sim 3 \times 10^{14} \text{W/cm}^2$ pump pulse intensity and **b** reduced pump pulse of intensity $\sim 0.7 \times 10^{14} \text{W/cm}^2$ with mean absolute error, the delays between C_{3v} to C_{2v} peaks are 20 fs $(3 \times 10^{14} \text{W/cm}^2$ pump) and 22 fs $(0.7 \times 10^{14} \text{W/cm}^2$ pump), respectively. The configuration evolution from C_{3v} to C_{2v} as well as the delay between these two peaks are both insensitive to the change of pump pulse intensity.

¹ pulse must be substantially reduced. As a result, the relative portion of dication after the ² pump pulse should become smaller, i.e., the pathway (ii) is suppressed under this condition. ³ We present the result of the temporal evolution for configurations of specific symmetries $\frac{1}{2}$ C_{3v} and C_{2v} under reduced pump pulse intensity. The qualitative consistency of the power ⁵ dependency check reflects the fact that the pathway (ii) can be removed when understanding \bullet the temporal evolution of configurations shown in the Fig. [S5.](#page-8-0) We further measured the mass ϵ to charge ratio (m/q) spectra of ionic species for the pump laser pulse alone with various intensities, from which the yields of CH_4^{2+} and CH_4^+ can be directly determined. Because part ¹⁰ of the CH²⁺ dication could dissociate to CH₂⁺+H⁺ and CH₂⁺+H₂⁺, we extract the number ¹¹ of the two dissociation events in the photoion-photoion coincidence spectra (PIPICO) for ¹² various pump intensities. Subtracting the number of $\text{CH}_3^+ + \text{H}^+$ events from the counts of ¹³ CH₃⁺ in the m/q spectra gives us the yield of the CH₃⁺+H⁺ channel. The final results of ¹⁴ dication to cation ratio analysis are presented in Fig. [S6.](#page-9-4) Even at highest pump intensity ¹⁵ of 3×10^{14} W/cm², the ratio of dication (sum yield of three channels of CH₄²⁺, CH₃⁺+H⁺, ¹⁶ and $\text{CH}_2^+\text{+H}_2^+$) to cation (sum yield of two channels of CH_4^+ and $\text{CH}_3^+\text{+H}^+$) is $\sim 3.5 \times 10^{-2}$,

FIG. S6. The ratio of dication to cation of methane molecules at various pump intensities. The ratios are determined from mass to charge spectra and photoion-photoion coincidence spectra (PIPICO). The error bars show the standard deviation of the statistical errors.

₁ and is of 5×10^{-3} at lower pump intensities used for the power dependency check. The signals at the mass to charge ratios for CH^{2+} and CH^{3+} species do not exhibit peaks above background level. The small ratio of dication species could be resulted from its relatively high double ionization potentials, the lowest of which is calculated to be 23.43 eV on the SA-CASSCF(7,7)//aug-cc-pVTZ (cation) and SA-CASSCF(6,7)//aug-cc-pVTZ (dication) level by the complete active space self-consistent field method. It explains the negligible contribution of dication to the JT dynamics of methane cation initiated by the pump pulses 8 of 0.7 − 3 × 10¹⁴W/cm² intensity.

- ¹¹ [2] Mondal, T. & Varandas, A. J. C. Structural evolution of the methane cation in subfemtosecond ¹² photodynamics. J. Chem. Phys. 143, 014304 (2015).
- ¹³ [3] B.Bersuker, I. The Jahn-Teller Effect. (Cambridge University Press, 2006).
- ¹⁴ [4] Ceulemans, A. & Vanquickenborne, L. G. The epikernel principle. Structure and Bonding 66,

⁹ [1] Li, Z. et al. Ultrafast isomerization in acetylene dication after carbon K-shell ionization. Nature 10 Comm. 8, 453 (2017).

- $125-158$ (1989).
- ² [5] Beck, M. H., J¨ackle, A., Worth, G. A. & Meyer, H.-D. The multiconfiguration time-dependent ³ Hartree method: A highly efficient algorithm for propagating wavepackets. *Phys. Rep.* **324**, $4 \qquad 1-105 \ (2000).$
- 5 [6] Chancey, C., O'Brien, M. & O'Brien, M. The Jahn-Teller effect in C₆₀ and other icosahedral ⁶ complexes. (Princeton University Press, 1997).
- ⁷ [7] Jacovella, U., W¨orner, H. J. & Merkt, F. Jahn-teller effect and large-amplitude motion in
- ⁸ CH₄⁺ studied by high-resolution photoelectron spectroscopy of CH₄. *J. Mol. Struct.* **343**, 62–75 $9 (2018).$
- $_{10}$ [8] Frey, R. F. & Davidson, E. R. Potential energy surfaces of CH $_4^+$. J. Chem. Phys. 88, 1775–1785 $11 \t(1988)$.