Supplementary file: High-throughput multivariable Mendelian randomization analysis prioritizes apolipoprotein B as key lipid risk factor for coronary artery disease

Verena Zuber^{1,2}, Dipender Gill¹, Mika Ala-Korpela^{3,4}, Claudia Langenberg⁵, Adam Butterworth^{6,7,8,9,10,11}, Leonardo Bottolo^{12,13,2}, and Stephen Burgess^{2,6,*}

¹Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK

²MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK

- ³Computational Medicine, Faculty of Medicine, University of Oulu & Biocenter Oulu, Oulu, Finland
- ⁴NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio, Finland

⁵MRC Epidemiology Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK

⁶British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK ⁷British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK

⁸National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK ⁹National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals,

Cambridge, UK

¹⁰Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK

¹¹Department of Human Genetics, Wellcome Sanger Institute, Hinxton, UK
¹²Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge, UK

¹³The Alan Turing Institute, London, UK

*Corresponding author: Stephen Burgess sb452@medschl.cam.ac.uk; MRC

Biostatistics Unit, University of Cambridge, Cambridge CB2 0SR, UK

September 24, 2020

List of Tables

S1	List of lipoprotein and metabolite measurements included in the analyses	S2
S2	Study summary table	S3
S3	Cook's distance to detect influential genetic variants	S4
S4	q -statistic to detect outlying genetic variants $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	S5
S5	Analysis including all genetic variants	S6
S6	Supplementary analysis 1	S7
S7	Supplementary analysis 2	S8
S8	Supplementary analysis 3	S9
S9	Sensitivity analysis	S10
S10	Parameter check: Prior variance	S11
S11	Parameter check: Prior probability	S12

List of Figures

S1	Genetic correlation between lipoprotein measures and metabolites	S13
S2	Diagnostic plots with Cooks distance	S14
S3	Diagnostic plots with q-statistic	S15

Supplementary Tables

Abbreviation	Lipoprotein and metabolite measurements included
XXL.VLDL.TG	Triglyceride content in chylomicrons and extra-extra large VLDL
XL.VLDL.TG	Triglyceride content in extra-large VLDL
L.VLDL.TG	Triglyceride content in large VLDL
M.VLDL.TG	Triglyceride content in medium VLDL
S.VLDL.TG	Triglyceride content in small VLDL
XS.VLDL.TG	Triglyceride content in extra-small VLDL
IDL.TG	Triglyceride content in IDL
XL.HDL.TG	Triglyceride content in extra-large HDL
S.HDL.TG	Triglyceride content in small HDL
Serum.TG	Serum total triglycerides
L.VLDL.C	Cholesterol content in large VLDL
M.VLDL.C	Cholesterol content in medium VLDL
S.VLDL.C	Cholesterol content in small VLDL
LDL.C	Cholesterol content in LDL
S.LDL.C	Cholesterol content in small LDL
IDL.C	Cholesterol content in IDL
XL.HDL.C	Cholesterol content in extra-large HDL
L.HDL.C	Cholesterol content in large HDL
M.HDL.C	Cholesterol content in medium HDL
HDL.C	Cholesterol content in HDL
Est.C	Esterified cholesterol
Serum.C	Serum total cholesterol
VLDL.D	VLDL diameter
LDL.D	LDL diameter
HDL.D	HDL diameter
ApoA1	Apolipoprotein A1
ApoB	Apolipoprotein B
SM	Sphingomyelins
Tot.FA	Total fatty acids
Tot.PG	Total phosphoglycerides

Table S1: List of lipoprotein and metabolite measurements included in the analyses.

	First author	Year	Pubmed	n	Cases	Controls	Study names (population)
Risk factor							
	Kettunen	2016	27005778	24,925			NMR GWAS
							(European, predominantly Finnish)
Outcome							
Main	Nelson	2017	28714975	453,595	$113,\!937$	$339,\!658$	CARDIoGRAMplusC4D
							(European, South&East Asian)
							and UK Biobank (European)
Sensitivity	Nikpay	2015	26343387	184,305	60,801	123,504	CARDIoGRAMplusC4D
							(European, South&East Asian)
	UK Biobank (European)	2019	31756303	367,703	29,278	$338,\!425$	UK Biobank (European)

Table S2: Study summary table

		CARDIOGRAM	ipius041	J and U	K DIODA	liik	
	rs	gene region	Cd1	Cd2	Cd3	$\max Cd$	
1	rs10903129	TMEM57	0.108	0.054	0.018	0.108	
2	rs2923084	AMPD3	0.049	0.069	0.068	0.069	
3	rs6489818	MAPKAPK5	0.051	0.029	0.004	0.051	
4	rs1515110	\mathbf{NR}	0.013	0.042	0.027	0.042	
5	rs515135	APOB	0.013	0.003	0.041	0.041	
6	rs6859	APOE	0.035	0.018	0.039	0.039	
7	rs2326077	intergenic	0.039	0.027	0.015	0.039	
8	rs5880	CETP	0.001	0.038	0.023	0.038	
9	rs799160	intergenic	0.004	0.002	0.037	0.037	
10	rs4465830	ZNF335	0.005	0.037	0.037	0.037	
		threshold	0.457	0.696	0.457		

CARDIoGRAMplusC4D and UK Biobank

		CARDIo	GRAMp	lusC4D	only		
	rs	region	Cd1	Cd2	Cd3	$\max Cd$	
1	rs261342	LIPC	0.008	0.024	0.911	0.911	
2	rs5880	CETP	0.006	0.164	0.057	0.164	
3	rs515135	APOB	0.116	0.129	0.125	0.129	
4	rs2923084	AMPD3	0.081	0.109	0.096	0.109	
5	rs10903129	TMEM57	0.078	0.012	0.025	0.078	
6	rs4530754	CSNK1G3	0.076	0.001	0.001	0.076	
$\overline{7}$	rs6489818	MAPKAPK5	0.062	0.005	0.009	0.062	
8	rs2326077	intergenic	0.039	0.016	0.015	0.039	
9	rs12133576	DR1	0.036	0.006	0.004	0.036	
10	rs4465830	ZNF335	0.005	0.036	0.000	0.036	
		threshold	0.457	0.457	0.457		

UK Biobank only

		•		J			
	rs	region	Cd1	Cd2	Cd3	Cd4	$\max Cd$
1	rs10401969	SUGP1	0.302	0.224	0.248	0.096	0.302
2	rs2923084	AMPD3	0.124	0.064	0.026	0.079	0.124
3	rs5880	CETP	0.107	0.033	0.025	0	0.107
4	rs2297374	SLC22A1	0.024	0.054	0.091	0.057	0.091
5	rs10903129	TMEM57	0.012	0.051	0.005	0.071	0.071
6	rs7703051	HMGCR	0.006	0.053	0.009	0.065	0.065
7	rs6489818	MAPKAPK5	0.005	0.032	0.001	0.055	0.055
8	rs894210	intergenic	0.05	0.051	0.019	0.039	0.051
9	rs687339	intergenic	0.038	0.044	0.039	0.045	0.045
10	rs998584	VEGFA	0.041	0.039	0.037	0.036	0.041
		threshold	0.457	0.457	0.696	0.457	

Table S3: Influential genetic variants: This table displays for each study the 10 variants with the largest Cook's distance (Cd) and the annotated genomic region based on the best individual models (model posterior probability > 0.02). The maximum Cd of each variant in all models is used for diagnostics. The final row gives the suggested cut-off for Cook's distance and genetic variants with Cd above the threshold are marked in bold.

	rs	gene region	q1	q2	q3	$\max q$	
1	rs1250229	FN1	55.077	54.867	57.211	57.211	
2	rs6489818	MAPKAPK5	19.308	20.150	12.288	20.150	
3	rs12801636	PCNX3	15.124	14.625	15.845	15.845	
4	rs1515110	NR	14.697	10.106	11.196	14.697	
5	rs2290547	SETD2	13.361	14.316	8.53	14.316	
6	rs2297374	SLC22A1	11.075	11.676	14.204	14.204	
7	rs10903129	TMEM57	13.910	12.503	7.369	13.910	
8	rs2925979	CMIP	13.787	11.646	10.338	13.787	
9	rs2240327	RBM6	13.213	11.505	11.223	13.213	
10	rs4465830	ZNF335	8.194	2.964	12.962	12.962	
11	rs6450176	ARL15	8.271	6.936	12.705	12.705	
12	rs731839	PEPD	12.596	10.504	10.14	12.596	
13	rs4148218	ABCG8	11.789	12.03	12.032	12.032	
14	rs2247056	HLA	8.710	9.897	11.563	11.563	
15	rs9930333	FTO	7.213	6.599	11.191	11.191	
		threshold				12.84801	
		CARD	IoGRAM	plusC4D	only		
	rs	gene region	q1	q2	q3	\maxq	
1	rs4530754	CSNK1G3	24.505	15.468	15.292	24.505	
2	rs6489818	MAPKAPK5	19.513	14.598	13.255	19.513	
3	rs12801636	PCNX3	16.290	16.800	16.810	16.810	
4	rs4148218	ABCG8	14.936	14.107	15.098	15.098	
5	rs1250229	FN1	9.932	12.776	10.769	12.776	
6	rs952044	AC090771.2	10.333	12.468	11.714	12.468	
7	rs2297374	SLC22A1	9.125	9.187	11.492	11.492	
8	rs4465830	ZNF335	7.196	5.401	11.390	11.390	
9	rs998584	VEGFA	8.781	11.195	7.745	11.195	
10	rs2923084	AMPD3	8.404	10.802	9.845	10.802	
		threshold				12.84801	
		J	JK Bioba	nk only			
	rs	gene region	q1	q2	q3	q4	$\max q$
1	rs2297374	SLC22A1	38.863	34.587	27.820	34.345	38.863
2	rs1250229	FN1	25.528	22.807	31.310	24.057	31.310
3	rs6489818	MAPKAPK5	14.222	18.563	12.616	20.625	20.625
4	rs2240327	RBM6	15.063	16.844	16.278	17.034	17.034
5	rs687339	intergenic	16.284	15.452	7.003	15.328	16.284
6	rs2925979	CMIP	10.424	15.160	9.803	13.903	15.160
7	rs4148218	ABCG8	14.250	14.512	11.681	14.137	14.512
8	rs4921914	NAT2	13.259	10.640	10.262	11.642	13.259
9	rs1186380	HNF1A-AS1	9.758	12.067	11.982	13.168	13.168
10	rs2241210	UBE3B	12.630	11.045	10.759	9.015	12.630
		threshold					12.87313

CARDIoGRAMplusC4D and UK Biobank

Table S4: Outlying genetic variants: This table displays for each study the 10 variants with the largest maximum q and the annotated genomic region based on the best individual models (model posterior probability > 0.02). The maximum q of each variant in all models is used for diagnostics. The final row gives the suggested threshold for the q-statistic and variants with q above this threshold are given in bold.

		CARD	DIoGRAMplus(C4D and UK Bioba	ank	
		Posterior	Causal		Marginal inclusion	Model-averaged
	Model	probability	effect	Risk factor	probability	causal effect
1	ApoB	0.347	0.432	ApoB	0.706	0.298
2	ApoB,M.HDL.C	0.048	0.392, -0.17	M.HDL.C	0.124	-0.024
3	XS.VLDL.TG	0.039	0.411	XS.VLDL.TG	0.103	0.032
4	ApoB,S.LDL.C	0.015	0.613, -0.208	IDL.TG	0.079	0.021
5	ApoB,SM	0.014	0.501, -0.139	XXL.VLDL.TG	0.076	0.02
6	IDL.TG	0.014	0.38	IDL.C	0.074	0.018
7	ApoB,S.HDL.TG	0.014	0.334, 0.151	LDL.C	0.052	0.005
8	ApoB,XS.VLDL.TG	0.014	0.287, 0.163	Serum.TG	0.049	0.014
9	ApoB,XXL.VLDL.TG	0.013	0.37, 0.156	Serum.C	0.048	0.009
			CARDIoGRAM	MplusC4D only		
		Posterior	Causal		Marginal inclusion	Model-averaged
	Model	probability	effect	Risk factor	probability	causal effect
1	ApoB	0.24	0.438	ApoB	0.488	0.197
2	XS.VLDL.TG	0.058	0.42	IDL.TG	0.159	0.048
3	IDL.TG	0.033	0.395	XS.VLDL.TG	0.153	0.05
4	S.VLDL.C	0.015	0.447	Serum.TG	0.095	0.036
5	ApoB,XS.VLDL.TG	0.014	0.272, 0.186	Tot.FA	0.088	0.026
6	ApoB,S.HDL.TG	0.012	0.331, 0.163	IDL.C	0.076	0.016
7	ApoB,IDL.TG	0.012	0.283, 0.167	S.HDL.TG	0.07	0.016
8	IDL.TG,XXL.VLDL.	0.012	0.319, 0.256	XXL.VLDL.TG	0.067	0.016
9	ApoB,M.HDL.C	0.01	0.407, -0.127	Serum.C	0.065	0.016
10	ApoB,Serum.TG	0.01	0.318, 0.16	S.LDL.C	0.064	0.011
			UK Biob	pank only		
		Posterior	Causal		Marginal inclusion	Model-averaged
	Model	probability	effect	Risk factor	probability	causal effect
1	XS.VLDL.TG	0.205	0.459	XS.VLDL.TG	0.388	0.161
2	S.VLDL.C	0.032	0.488	Tot.FA	0.321	0.139
3	HDL.C,Tot.FA	0.03	-0.255, 0.475	ApoB	0.147	0.047
4	ApoB	0.023	0.452	IDL.TG	0.145	0.045
5	IDL.TG	0.019	0.425	HDL.C	0.103	-0.023
6	ApoB,XS.VLDL.TG	0.014	0.191, 0.294	S.VLDL.C	0.099	0.033
7	L.HDL.C,Tot.FA	0.013	-0.221, 0.448	S.HDL.TG	0.097	0.026
8	S.HDL.TG,Tot.FA	0.011	0.329, 0.259	TotPG	0.089	-0.032
9	Tot.FA, TotPG	0.01	0.883, -0.504	IDL.C	0.073	0.015
10	LDL.C,XS.VLDL.TG	0.009	0.129, 0.369	Serum.TG	0.072	0.026

Table S5: Analysis including all genetic variants: Top 10 models ranked by the model posterior probability and top 10 risk factors ranked by the marginal inclusion probability including all genetic variants before removing influential genetic variants and outliers. Causal effects are log odds ratios for coronary artery disease per 1 standard deviation increase in the risk factor.

		CARD	IoGRAMplus	C4D and UK Bioba	unk	
		Posterior	Causal		Marginal inclusion	Model-averaged
	Model	probability	effect	Risk factor	probability	causal effect
1	ApoB	0.472	0.46	ApoB	0.862	0.385
2	ApoB,S.HDL.TG	0.043	0.343, 0.177	S.HDL.TG	0.136	0.033
3	LDL.C,S.HDL.TG	0.02	0.272, 0.301	LDL.C	0.076	0.015
4	ApoB,M.HDL.C	0.019	0.435, -0.11	XXL.VLDL.TG	0.05	0.011
5	ApoB,XXL.VLDL.TG	0.015	0.408, 0.123	Serum.C	0.045	0.01
6	ApoB,S.LDL.C	0.015	0.571, -0.127	IDL.C	0.043	0.008
7	ApoB,XS.VLDL.TG	0.012	0.367, 0.102	S.LDL.C	0.041	0.001
8	ApoB,Serum.TG	0.011	0.385, 0.098	Serum.TG	0.038	0.007
9	ApoB,LDL.C	0.011	0.525, -0.071	M.HDL.C	0.037	-0.004
10	ApoB,S.VLDL.C	0.011	0.474, -0.015	HDL.C	0.035	-0.005

Table S6: Supplementary analysis 1: After excluding the genetic variant in the APOB gene region, these are the top 10 models judged by posterior probability and top 10 risk factors judged by marginal inclusion probability in the primary analysis based on n = 137 genetic variants. Causal effects are log odds ratios for coronary artery disease per 1 standard deviation increase in the risk factor.

	CA	RDIoGRAMp	lusC4D and U	K Biobank includii	ng all genetic variants	(n = 148)		
		Posterior	Causal		Marginal inclusion	Model-averaged		
	Model	probability	effect	Risk factor	probability	causal effect		
1	XS.VLDL.TG	0.127	0.411	XS.VLDL.TG	0.263	0.094		
2	IDL.TG	0.046	0.38	IDL.C	0.213	0.059		
3	S.VLDL.C	0.041	0.44	IDL.TG	0.204	0.063		
4	IDL.C,XXL.VLDL.TG	0.03	0.299, 0.347	XXL.VLDL.TG	0.168	0.05		
5	IDL.TG,XXL.VLDL.TG	0.022	0.304, 0.267	M.HDL.C	0.162	-0.037		
6	M.HDL.C,Serum.C	0.015	-0.317, 0.367	Serum.C	0.116	0.034		
7	LDL.C,XS.VLDL.TG	0.015	0.178, 0.286	LDL.C	0.114	0.026		
8	IDL.C,S.HDL.TG	0.012	0.241, 0.282	Serum.TG	0.107	0.038		
9	IDL.C,Serum.TG	0.011	0.219, 0.287	S.VLDL.C	0.096	0.031		
10	S.LDL.C,XS.VLDL.TG	0.011	0.175, 0.294	S.HDL.TG	0.079	0.019		
	(CARDIoGRAI	MplusC4D and	UK Biobank after	model diagnostics (n	n = 138)		
			1		0	/		
		Posterior	Causal		Marginal inclusion	Model-averaged	Empirical	
	Model	Posterior probability	Causal effect	Risk factor	Marginal inclusion probability	Model-averaged causal effect	Empirical $p-value$	FDR
1	Model LDL.C,S.HDL.TG	Posterior probability 0.156	Causal effect 0.261,0.3	Risk factor S.HDL.TG	Marginal inclusion probability 0.461	Model-averaged causal effect 0.144	Empirical $p-value$ 0.0021	FDR 0.025
$\frac{1}{2}$	Model LDL.C,S.HDL.TG IDL.TG	Posterior probability 0.156 0.063	Causal effect 0.261,0.3 0.436	Risk factor S.HDL.TG LDL.C	Marginal inclusion probability 0.461 0.417	Model-averaged causal effect 0.144 0.119	Empirical p-value 0.0021 0.0013	FDR 0.025 0.025
$\begin{array}{c} 1 \\ 2 \\ 3 \end{array}$	Model LDL.C,S.HDL.TG IDL.TG S.HDL.TG,S.LDL.C	Posterior probability 0.156 0.063 0.049	Causal effect 0.261,0.3 0.436 0.294,0.266	Risk factor S.HDL.TG LDL.C Serum.C	Marginal inclusion probability 0.461 0.417 0.17	Model-averaged causal effect 0.144 0.119 0.056	Empirical p-value 0.0021 0.0013 0.0143	FDR 0.025 0.025 0.087
$\begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \end{array}$	Model LDL.C,S.HDL.TG IDL.TG S.HDL.TG,S.LDL.C IDL.C,S.HDL.TG	Posterior probability 0.156 0.063 0.049 0.048	Causal effect 0.261,0.3 0.436 0.294,0.266 0.237,0.325	Risk factor S.HDL.TG LDL.C Serum.C IDL.TG	Marginal inclusion probability 0.461 0.417 0.17 0.159	Model-averaged causal effect 0.144 0.119 0.056 0.055	$\begin{array}{c} \text{Empirical} \\ p-\text{value} \\ 0.0021 \\ 0.0013 \\ 0.0143 \\ 0.0151 \end{array}$	FDR 0.025 0.025 0.087 0.087
$\begin{array}{c}1\\2\\3\\4\\5\end{array}$	Model LDL.C,S.HDL.TG IDL.TG S.HDL.TG,S.LDL.C IDL.C,S.HDL.TG L.HDL.C,Serum.C	Posterior probability 0.156 0.063 0.049 0.048 0.032	$\begin{array}{c} \text{Causal} \\ \text{effect} \\ \hline 0.261, 0.3 \\ 0.436 \\ 0.294, 0.266 \\ 0.237, 0.325 \\ -0.272, 0.381 \end{array}$	Risk factor S.HDL.TG LDL.C Serum.C IDL.TG S.LDL.C	Marginal inclusion probability 0.461 0.417 0.17 0.159 0.156	Model-averaged causal effect 0.144 0.119 0.056 0.055 0.038	$\begin{array}{c} \text{Empirical} \\ p-\text{value} \\ 0.0021 \\ 0.0013 \\ 0.0143 \\ 0.0151 \\ 0.0274 \end{array}$	FDR 0.025 0.025 0.087 0.087 0.101
$\begin{array}{c}1\\2\\3\\4\\5\\6\end{array}$	Model LDL.C,S.HDL.TG IDL.TG S.HDL.TG,S.LDL.C IDL.C,S.HDL.TG L.HDL.C,Serum.C HDL.C,Serum.C	Posterior probability 0.156 0.063 0.049 0.048 0.032 0.027	$\begin{array}{c} \text{Causal} \\ \text{effect} \\ \hline 0.261, 0.3 \\ 0.436 \\ 0.294, 0.266 \\ 0.237, 0.325 \\ -0.272, 0.381 \\ -0.277, 0.441 \end{array}$	Risk factor S.HDL.TG LDL.C Serum.C IDL.TG S.LDL.C IDL.C	Marginal inclusion probability 0.461 0.417 0.17 0.159 0.156 0.128	Model-averaged causal effect 0.144 0.119 0.056 0.055 0.038 0.029	$\begin{array}{c} \text{Empirical} \\ p-\text{value} \\ 0.0021 \\ 0.0013 \\ 0.0143 \\ 0.0151 \\ 0.0274 \\ 0.0296 \end{array}$	FDR 0.025 0.025 0.087 0.087 0.101 0.101
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \end{array} $	Model LDL.C,S.HDL.TG IDL.TG S.HDL.TG,S.LDL.C IDL.C,S.HDL.TG L.HDL.C,Serum.C HDL.C,Serum.C S.HDL.TG,Serum.C	Posterior probability 0.156 0.063 0.049 0.048 0.032 0.027 0.021	$\begin{array}{c} \text{Causal} \\ \text{effect} \\ \hline 0.261, 0.3 \\ 0.436 \\ 0.294, 0.266 \\ 0.237, 0.325 \\ -0.272, 0.381 \\ -0.277, 0.441 \\ 0.354, 0.23 \end{array}$	Risk factor S.HDL.TG LDL.C Serum.C IDL.TG S.LDL.C IDL.C L.HDL.C	Marginal inclusion probability 0.461 0.417 0.17 0.159 0.156 0.128 0.118	Model-averaged causal effect 0.144 0.119 0.056 0.055 0.038 0.029 -0.026	$\begin{array}{c} \text{Empirical} \\ p-\text{value} \\ 0.0021 \\ 0.0013 \\ 0.0143 \\ 0.0151 \\ 0.0274 \\ 0.0296 \\ 0.0181 \end{array}$	FDR 0.025 0.025 0.087 0.087 0.101 0.101 0.087
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \end{array} $	Model LDL.C,S.HDL.TG IDL.TG S.HDL.TG,S.LDL.C IDL.C,S.HDL.TG L.HDL.C,Serum.C HDL.C,Serum.C S.HDL.TG,Serum.C LDL.C,XS.VLDL.TG	Posterior probability 0.156 0.063 0.049 0.048 0.032 0.027 0.021 0.021 0.016	$\begin{array}{c} \text{Causal} \\ \text{effect} \\ \hline 0.261, 0.3 \\ 0.436 \\ 0.294, 0.266 \\ 0.237, 0.325 \\ -0.272, 0.381 \\ -0.277, 0.441 \\ 0.354, 0.23 \\ 0.233, 0.249 \end{array}$	Risk factor S.HDL.TG LDL.C Serum.C IDL.TG S.LDL.C IDL.C L.HDL.C HDL.C	Marginal inclusion probability 0.461 0.417 0.17 0.159 0.156 0.128 0.118 0.095	Model-averaged causal effect 0.144 0.119 0.056 0.055 0.038 0.029 -0.026 -0.019	$\begin{array}{c} \text{Empirical} \\ p-\text{value} \\ 0.0021 \\ 0.0013 \\ 0.0143 \\ 0.0151 \\ 0.0274 \\ 0.0296 \\ 0.0181 \\ 0.0384 \end{array}$	FDR 0.025 0.025 0.087 0.087 0.101 0.101 0.087 0.115
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \end{array} $	Model LDL.C,S.HDL.TG IDL.TG S.HDL.TG,S.LDL.C IDL.C,S.HDL.TG L.HDL.C,Serum.C HDL.C,Serum.C S.HDL.TG,Serum.C LDL.C,XS.VLDL.TG Est.C,S.HDL.TG	Posterior probability 0.156 0.063 0.049 0.048 0.032 0.027 0.021 0.016 0.014	$\begin{array}{c} \text{Causal} \\ \text{effect} \\ \hline 0.261, 0.3 \\ 0.436 \\ 0.294, 0.266 \\ 0.237, 0.325 \\ -0.272, 0.381 \\ -0.277, 0.441 \\ 0.354, 0.23 \\ 0.233, 0.249 \\ 0.197, 0.393 \end{array}$	Risk factor S.HDL.TG LDL.C Serum.C IDL.TG S.LDL.C IDL.C L.HDL.C HDL.C XS.VLDL.TG	Marginal inclusion probability 0.461 0.417 0.17 0.159 0.156 0.128 0.118 0.095 0.076	Model-averaged causal effect 0.144 0.119 0.056 0.055 0.038 0.029 -0.026 -0.019 0.017	$\begin{array}{c} \text{Empirical} \\ p-\text{value} \\ 0.0021 \\ 0.0013 \\ 0.0143 \\ 0.0151 \\ 0.0274 \\ 0.0296 \\ 0.0181 \\ 0.0384 \\ 0.0682 \end{array}$	FDR 0.025 0.025 0.087 0.087 0.101 0.101 0.087 0.115 0.182

Table S7: Supplementary analysis 2: After excluding the ApoB measurement as risk factor from the set of candidate risk factors these are the top 10 models ranked by the posterior probability and top 10 risk factors ranked by the marginal inclusion probability in the primary analysis based on all available genetic variants (n = 148) and after model diagnostics (n = 138). Causal effects are log odds ratios for coronary artery disease per 1 standard deviation increase in the risk factor.

	CARDIoGE	RAMplusC4D	and UK Bioba	nk including all N	MR GWAS genetic va	ariants $(n = 55)$		
		Posterior	Causal		Marginal inclusion	Model-averaged		
	Model	probability	effect	Risk factor	probability	causal effect		
1	M.VLDL.C,XXL.VLDL.TG	0.063	0.957, -1.018	M.VLDL.C	0.325	0.312		
2	IDL.TG	0.061	0.397	XXL.VLDL.TG	0.32	-0.267		
3	Serum.TG,XXL.VLDL.TG	0.046	0.974, -1.025	Serum.TG	0.214	0.19		
4	L.VLDL.C,M.VLDL.C	0.038	-1.113, 1.224	XL.VLDL.TG	0.173	-0.13		
5	M.VLDL.C,XL.VLDL.TG	0.036	0.966, -0.961	IDL.TG	0.149	0.057		
6	IDL.C	0.036	0.348	L.VLDL.C	0.134	-0.107		
7	ApoB	0.023	0.369	L.VLDL.TG	0.115	-0.083		
8	Serum.TG, XL.VLDL.TG	0.02	0.974, -0.954	IDL.C	0.1	0.033		
9	L.VLDL.TG,Serum.TG	0.016	-0.998, 1.065	S.VLDL.C	0.095	0.044		
10	S.VLDL.C,XXL.VLDL.TG	0.013	0.565, -0.385	XS.VLDL.TG	0.068	0.029		
	С	ARDIoGRAM	IplusC4D and	UK Biobank after	model diagnostics $(n$	= 45)		
	С	ARDIoGRAM Posterior	fplusC4D and Causal	UK Biobank after	model diagnostics (n) Marginal inclusion	= 45) Model-averaged	Empirical	
	C Model	ARDIoGRAM Posterior probability	fplusC4D and Causal effect	UK Biobank after Risk factor	model diagnostics (<i>n</i> Marginal inclusion probability	= 45) Model-averaged causal effect	Empirical <i>p</i> -value	FDR
	C Model ApoB	ARDIoGRAM Posterior probability 0.155	IplusC4D and Causal effect 0.3	UK Biobank after Risk factor ApoB	model diagnostics (<i>n</i> Marginal inclusion probability 0.492	= 45) Model-averaged causal effect 0.153	Empirical <i>p</i> -value 1.0E-04	FDR 0.004
 	C Model ApoB S.VLDL.C	ARDIoGRAM Posterior probability 0.155 0.077	IplusC4D and Causal effect 0.3 0.269	UK Biobank after Risk factor ApoB S.VLDL.C	model diagnostics (<i>n</i> Marginal inclusion probability 0.492 0.246	= 45) Model-averaged causal effect 0.153 0.068	Empirical <i>p</i> -value 1.0E-04 4.0E-04	FDR 0.004 0.009
$\boxed{\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	C Model ApoB S.VLDL.C ApoB,Crea	ARDIoGRAM Posterior probability 0.155 0.077 0.047	IplusC4D and Causal effect 0.3 0.269 0.318,-0.196	UK Biobank after Risk factor ApoB S.VLDL.C Crea	model diagnostics (<i>n</i> Marginal inclusion probability 0.492 0.246 0.241	= 45) Model-averaged causal effect 0.153 0.068 -0.049	Empirical <i>p</i> -value 1.0E-04 4.0E-04 0.026	FDR 0.004 0.009 0.247
$\begin{array}{c} \hline 1 \\ 2 \\ 3 \\ 4 \end{array}$	C Model ApoB S.VLDL.C ApoB,Crea Crea,S.VLDL.C	ARDIoGRAM Posterior probability 0.155 0.077 0.047 0.025	IplusC4D and Causal effect 0.3 0.269 0.318,-0.196 -0.201,0.287	UK Biobank after Risk factor ApoB S.VLDL.C Crea M.VLDL.C	model diagnostics (<i>n</i> Marginal inclusion probability 0.492 0.246 0.241 0.07	= 45) Model-averaged causal effect 0.153 0.068 -0.049 0.022	Empirical p-value 1.0E-04 4.0E-04 0.026 0.013	FDR 0.004 0.009 0.247 0.201
$\begin{array}{c} \hline 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{array}$	C Model ApoB S.VLDL.C ApoB,Crea Crea,S.VLDL.C XS.VLDL.TG	ARDIoGRAM Posterior probability 0.155 0.077 0.047 0.025 0.015	IplusC4D and Causal effect 0.3 0.269 0.318,-0.196 -0.201,0.287 0.227	UK Biobank after Risk factor ApoB S.VLDL.C Crea M.VLDL.C S.LDL.C	model diagnostics (<i>n</i> Marginal inclusion probability 0.492 0.246 0.241 0.07 0.069	= 45) Model-averaged causal effect 0.153 0.068 -0.049 0.022 0.014	Empirical p-value 1.0E-04 4.0E-04 0.026 0.013 0.030	FDR 0.004 0.247 0.201 0.247
$\begin{array}{c} \hline 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{array}$	C Model S.VLDL.C ApoB,Crea Crea,S.VLDL.C XS.VLDL.TG ApoB,Gly	ARDIoGRAM Posterior probability 0.155 0.077 0.047 0.025 0.015 0.014	IplusC4D and Causal effect 0.3 0.269 0.318,-0.196 -0.201,0.287 0.227 0.303,-0.064	UK Biobank after Risk factor ApoB S.VLDL.C Crea M.VLDL.C S.LDL.C Phe	model diagnostics (n Marginal inclusion probability 0.492 0.246 0.241 0.07 0.069 0.067	= 45) Model-averaged causal effect 0.153 0.068 -0.049 0.022 0.014 -0.011	Empirical p-value 1.0E-04 4.0E-04 0.026 0.013 0.030 0.137	FDR 0.004 0.247 0.201 0.247 0.247 0.441
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \end{array} $	C Model S.VLDL.C ApoB,Crea Crea,S.VLDL.C XS.VLDL.TG ApoB,Gly ApoB,Phe	ARDIoGRAM Posterior probability 0.155 0.077 0.047 0.025 0.015 0.014 0.011	IplusC4D and Causal effect 0.3 0.269 0.318,-0.196 -0.201,0.287 0.227 0.303,-0.064 0.306,-0.157	UK Biobank after Risk factor ApoB S.VLDL.C Crea M.VLDL.C S.LDL.C Phe Gly	model diagnostics (n Marginal inclusion probability 0.492 0.246 0.241 0.07 0.069 0.067 0.067	= 45) Model-averaged causal effect 0.153 0.068 -0.049 0.022 0.014 -0.011 -0.004	$\begin{array}{c} \text{Empirical} \\ p-\text{value} \\ \hline 1.0\text{E-}04 \\ 4.0\text{E-}04 \\ 0.026 \\ 0.013 \\ 0.030 \\ 0.137 \\ 0.043 \end{array}$	FDR 0.004 0.009 0.247 0.201 0.247 0.441 0.276
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \end{array} $	C Model S.VLDL.C ApoB,Crea Crea,S.VLDL.C XS.VLDL.TG ApoB,Gly ApoB,Phe S.LDL.C	ARDIoGRAM Posterior probability 0.155 0.077 0.047 0.025 0.015 0.014 0.011 0.01	$\begin{array}{c} \mbox{IplusC4D and} \\ \hline \mbox{Causal} \\ \mbox{effect} \\ \hline \mbox{0.3} \\ \mbox{0.269} \\ \mbox{0.318,-0.196} \\ \mbox{-0.201,0.287} \\ \mbox{0.227} \\ \mbox{0.303,-0.064} \\ \mbox{0.306,-0.157} \\ \mbox{0.329} \\ \end{array}$	UK Biobank after Risk factor ApoB S.VLDL.C Crea M.VLDL.C S.LDL.C Phe Gly XS.VLDL.TG	model diagnostics (n Marginal inclusion probability 0.492 0.246 0.241 0.07 0.069 0.067 0.062	= 45) Model-averaged causal effect 0.153 0.068 -0.049 0.022 0.014 -0.011 -0.004 0.01	Empirical p-value 1.0E-04 4.0E-04 0.026 0.013 0.030 0.137 0.043 0.033	FDR 0.004 0.009 0.247 0.201 0.247 0.247 0.247 0.276 0.247
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 9 \end{array} $	C Model ApoB S.VLDL.C ApoB,Crea Crea,S.VLDL.C XS.VLDL.TG ApoB,Gly ApoB,Phe S.LDL.C M.VLDL.C	ARDIoGRAM Posterior probability 0.155 0.077 0.047 0.025 0.015 0.014 0.011 0.01 0.008	$\begin{array}{c} \mbox{IplusC4D and} \\ \hline \mbox{Causal} \\ \mbox{effect} \\ \hline \mbox{0.3} \\ \mbox{0.269} \\ \mbox{0.318,-0.196} \\ \mbox{-0.201,0.287} \\ \mbox{0.227} \\ \mbox{0.303,-0.064} \\ \mbox{0.306,-0.157} \\ \mbox{0.329} \\ \mbox{0.225} \\ \end{array}$	UK Biobank after Risk factor ApoB S.VLDL.C Crea M.VLDL.C S.LDL.C Phe Gly XS.VLDL.TG S.HDL.TG	$\begin{array}{c} \mbox{model diagnostics } (n) \\ \mbox{Marginal inclusion} \\ \mbox{probability} \\ \hline 0.492 \\ 0.246 \\ 0.241 \\ 0.07 \\ 0.069 \\ 0.067 \\ 0.067 \\ 0.062 \\ 0.06 \\ \end{array}$	= 45) Model-averaged causal effect 0.153 0.068 -0.049 0.022 0.014 -0.011 -0.004 0.01 0.011	Empirical p-value 1.0E-04 4.0E-04 0.026 0.013 0.030 0.137 0.043 0.033 0.033 0.072	FDR 0.004 0.009 0.247 0.201 0.247 0.441 0.276 0.247 0.404

Table S8: Supplementary analysis 3: We additionally varied our set of instruments and performed an analysis based on genetic variants associated with any of the measures in the metabolomics genome-wide association study by Kettunen et al. These are the top 10 models ranked by the posterior probability and top 10 risk factors ranked by the marginal inclusion probability in the primary analysis based on all available genetic variants (n = 55) and after model diagnostics (n = 45). Causal effects are log odds ratios for coronary artery disease per 1 standard deviation increase in the risk factor.

	CARDIoGRAMplusC4D only								
		Posterior	Causal		Marginal inclusion	Model-averaged	Empirical		
	Model	probability	effect	Risk factor	probability	causal effect	p-value	FDR	
1	ApoB	0.394	0.455	ApoB	0.673	0.293	0.0001	0.003	
2	ApoB,M.HDL.C	0.018	0.425, -0.121	LDL.C	0.107	0.027	0.0544	0.461	
3	S.VLDL.C	0.018	0.464	S.LDL.C	0.097	0.027	0.0709	0.461	
4	IDL.TG	0.014	0.444	Serum.TG	0.084	0.028	0.0599	0.461	
5	HDL.C,Serum.C	0.014	-0.263, 0.464	Serum.C	0.072	0.021	0.1176	0.510	
6	LDL.C,Serum.TG	0.012	0.276, 0.263	HDL.C	0.062	-0.012	0.0974	0.506	
7	ApoB,Serum.TG	0.011	0.369, 0.115	S.VLDL.C	0.059	0.015	0.1667	0.542	
8	ApoB,IDL.TG	0.011	0.358, 0.109	IDL.TG	0.056	0.015	0.1539	0.542	
9	S.LDL.C	0.010	0.461	M.HDL.C	0.055	-0.008	0.1889	0.546	
10	ApoB,S.VLDL.C	0.010	0.402, 0.06	IDL.C	0.052	0.010	0.2423	0.630	
UK Biobank only									
		Posterior	Causal		Marginal inclusion	Model-averaged	Empirical		
	Model	probability	effect	Risk factor	probability	causal effect	p-value	FDR	
1	XS.VLDL.TG	0.195	0.435	XS.VLDL.TG	0.456	0.169	0.0002	0.006	
2	ApoB,S.HDL.TG	0.056	0.281, 0.233	ApoB	0.325	0.102	0.0010	0.015	
3	ApoB, XS. VLDL. TG	0.043	0.207, 0.258	S.HDL.TG	0.222	0.060	0.0061	0.061	
4	ApoB	0.039	0.437	IDL.TG	0.109	0.027	0.0157	0.103	
5	LDL.C,XS.VLDL.TG	0.024	0.14, 0.338	LDL.C	0.108	0.018	0.0446	0.191	
6	S.VLDL.C	0.024	0.467	Serum.TG	0.104	0.032	0.0171	0.103	
7	LDL.C,S.HDL.TG	0.015	0.216, 0.334	S.VLDL.C	0.086	0.024	0.0444	0.191	
8	S.LDL.C,XS.VLDL.TG	0.015	0.133, 0.346	Tot.FA	0.079	0.018	0.0677	0.254	
9	IDL.C,S.HDL.TG	0.012	0.201, 0.345	IDL.C	0.063	0.009	0.0994	0.331	
10	ApoB.Serum.TG	0.012	0.273.0.218	S.LDL.C	0.059	0.003	0.1739	0.522	

Table S9: Sensitivity analysis: Top 10 models ranked by the posterior probability and top 10 risk factors ranked by the marginal inclusion probability after model diagnostics (including n = 144 genetic variants for CARDIoGRAMplusC4D and n = 141 for UK Biobank). Causal effects are log odds ratios for coronary artery disease per 1 standard deviation increase in the risk factor.

$\sigma = 0.1$			
#	risk factor	MIP	$\hat{\theta}_{ ext{MACE}}$
1	ApoB	0.638	0.193
2	S.HDL.TG	0.365	0.073
3	LDL.C	0.253	0.05
4	IDL.C	0.165	0.029
5	IDL.TG	0.14	0.019
6	XXL.VLDL.TG	0.134	0.019
7	XS.VLDL.TG	0.127	0.018
8	Serum.TG	0.117	0.016
9	Serum.C	0.115	0.019
10	M.HDL.C	0.11	-0.013
$\sigma = 0.2$			
#	risk factor	MIP	$\hat{\theta}_{\mathrm{MACE}}$
1	ApoB	0.759	0.307
2	S.HDL.TG	0.261	0.061
3	LDL.C	0.144	0.031
4	XXL.VLDL.TG	0.099	0.018
5	IDL.C	0.091	0.018
6	Serum.C	0.076	0.016
7	M.HDL.C	0.075	-0.009
8	Serum.TG	0.071	0.011
9	S.LDL.C	0.064	0.007
10	XS.VLDL.TG	0.064	0.008
$\sigma = 0.3$			
#	risk factor	MIP	ÂMACE
1	ApoB	0.818	0.355
2	S HDL TG	0.201	0.048
3	LDL C	0.105	0.022
4	XXL VLDL TG	0.100 0.072	0.022
5	IDL C	0.012	0.014
6	Serum C	0.004	0.012
7	M HDL C	0.001	-0.007
8	Serum TG	0.051	0.008
0	HDL C	0.001	0.003
9 10	SLDL C	0.048	0.007
- 05	0.101.0	0.040	0.000
$\sigma = 0.5$	rick factor	MIP	Âuran
<u>#</u>	ApoP	0.969	0 202
1	SUDI TC	0.000	0.392
2	JDL C	0.130	0.033
3	VVI VI DI TC	0.075	0.015
4	AAL. VLDL. I G	0.047	0.01
Э С	Serum.C	0.045	0.011
0 7		0.042	0.008
1	S.LDL.C	0.04	0.001
ð	M.HDL.C	0.038	-0.005
9	HDL.C	0.036	-0.006
10	Serum.TG	0.035	0.006
$\sigma = 0.7$	risk factor	MID	Â
<u>#</u> 1	ApoP	0.007	0 41F
1	APOB SUDI TO	0.907	0.410
∠ 2		0.101	0.020
3 4	LDL.U	0.055	0.011
4	AAL.VLDL.TG	0.03	0.006
5 C	S.LDL.C	0.029	0
0	Serum.C	0.029	0.006
7	IDL.C	0.028	0.005
8	M.HDL.C	0.026	-0.003
9	Serum.TG	0.023	0.004
10	HDL.C	0.023	-0.003

Table S10: Parameter check for the prior variance σ^2 , ranging from $\sigma = 0.1$ to $\sigma = 0.7$. The main analysis used $\sigma = 0.5$. Abbreviations: *MIP*=marginal inclusion probability, MACE=model-averaged causal effect.

p = 0.01			
#	risk factor	MIP	$\hat{\theta}_{ ext{MACE}}$
1	ApoB	0.979	0.454
2	S.HDL.TG	0.015	0.004
3	LDLC	0.009	0.002
4	S VLDL C	0.007	0.002
5	SLDL C	0.001	0.002
5	S.LDL.C	0.004	0.001
0 7		0.004	0.001
1	AS.VLDL.IG	0.004	0.001
0	IDL.C	0.004	0.001
9	M.HDL.C	0.004	0
10	XXL.VLDL.TG	0.004	0.001
p = 0.05			
#	risk factor	MIP	θ_{MACE}
1	ApoB	0.929	0.426
2	S.HDL.TG	0.071	0.017
3	LDL.C	0.039	0.008
4	Serum.C	0.022	0.005
5	S.LDL.C	0.02	0.001
6	XXL.VLDL.TG	0.02	0.004
7	IDL.C	0.02	0.004
8	M.HDL.C	0.019	-0.002
9	HDL.C	0.017	-0.003
10	S.VLDL.C	0.016	0.001
p = 0.1			
#	risk factor	MIP	$\hat{\theta}_{MACE}$
1	ApoB	0.868	0.392
2	S.HDL.TG	0.136	0.033
3	LDL.C	0.075	0.015
4	XXL.VLDL.TG	0.047	0.01
5	Serum C	0.045	0.011
6	IDL C	0.042	0.008
7	SLDLC	0.04	0.001
8	M.HDL.C	0.038	-0.005
9	HDL C	0.036	-0.006
10	Serum TG	0.035	0.006
	borum.r o	0.000	0.000
p = 0.2	rick factor	MID	Â
<u></u>	AnoP	0.701	0 247
1	S UDI TC	0.791	0.347
2	S.HDL.IG	0.238	0.059
3	LDL.U	0.127	0.025
4	AAL.VLDL.TG	0.099	0.022
0 6	Serum.C	0.083	0.019
0	IDL.U	0.076	0.013
1	Serum.TG	0.071	0.014
8	S.LDL.C	0.07	0.001
9	M.HDL.C	0.068	-0.008
10	HDL.C	0.068	-0.01
p = 0.3			
#	risk factor	MIP	$\hat{\theta}_{MACE}$
1	ApoB	0.744	0.318
2	S.HDL.TG	0.32	0.081
3	XXL.VLDL.TG	0.18	0.046
4	LDL.C	0.164	0.032
5	Serum.TG	0.117	0.025
6	Serum.C	0.11	0.023
7	IDL.C	0.106	0.018
8	S.VLDL.C	0.103	-0.014
9	M.HDL.C	0.092	-0.011
10	S.LDL.C	0.092	0.001

Table S11: Parameter check for the prior probability p, ranging from p = 0.01 to p = 0.3. This reflects 0.3 to 9 expected causal risk factors. The main analysis used p = 0.1 reflecting an a priori expected number of 3 causal risk factors. Abbreviations: MIP=marginal inclusion probability, MACE=model-averaged causal effect.

Supplementary Figures

Figure S1: Genetic correlation between lipoprotein measures and metabolites based on the n = 148 lipid-associated genetic variants as used in the main analysis. Colorcode indicates correlation strength (darkblue=strong positive correlation to darkred=strong negative correlation). The size of the square is proportional to the absolute correlation.

Figure S2: Diagnostic plots with Cooks distance: Estimates of genetic associations with the outcome against predicted genetic associations with the outcome from the primary analysis based on n = 138 genetic variants after exclusion of outliers. Here we show the diagnostics for all four top models with posterior probability > 0.02 as given in Main Table 1.Colour code of points indicates influence, as measured by the variant's Cook's distance.

Figure S3: Diagnostic plots with q-statistic: Estimates of genetic associations with the outcome against predicted genetic associations with the outcome from the primary analysis based on n = 138 genetic variants after exclusion of outliers. Here we show the diagnostics for all four top models with posterior probability > 0.02 as given in Main Table 1. Colour code of points indicates heterogeneity, as measured by the variant's q-statistic.

Supplementary Methods

Mendelian randomization using summarized data

A genetic variant can be used to make causal inferences about the effect of a risk factor on an outcome if it satisfies the three instrumental variable assumptions:

IV1 The variant is associated with the risk factor;

- IV2 The variant is not confounded in its associations with the outcome;
- IV3 The variant does not influence the outcome directly, only potentially indirectly via its association with the risk factor.

These assumptions imply that a genetic variant behaves analogously to random assignment to a treatment group in a randomized controlled trial, in that it divides the population into subgroups that differ only with respect to their average level of the risk factor [1]. Any difference in the outcome between these groups implies a causal effect of the risk factor on the outcome, analogous to an intention-to-treat effect in a randomized trial [2].

We consider an extension of the Mendelian randomization paradigm known as multivariable Mendelian randomization, in which genetic variants are allowed to influence multiple risk factors, provided that any causal pathway from the genetic variants to the outcome passes via one or more of the measured risk factors [3]. The assumptions for genetic variants to be valid instruments in multivariable Mendelian randomization are:

MV-IV1 Each variant is associated with at least one of the risk factors;

- MV-IV2 Variants are not confounded in their associations with the outcome;
- MV-IV3 Variants are not associated with the outcome conditional on the risk factors and confounders.

In turn, the assumptions for a risk factor to be included in a multivariable Mendelian randomization model are:

RF1 No risk factor can be linearly explained by any other included risk factor or a combination of multiple risk factors.

RF2 Each risk factor is associated with at least one of the genetic variants.

Assumption RF1 is needed to distinguish between correlated risk factors [4]. RF2 ensures that each risk factor is adequately predicted by the genetic variants selected as instrumental variables in the analysis.

For a particular set of risk factors, causal effects are estimated by weighted linear regression of the genetic associations with the outcome on the genetic associations with the risk factors

$$\beta_Y = \theta_1 \beta_{X1} + \theta_2 \beta_{X2} + \ldots + \theta_d \beta_{Xd} + \varepsilon, \quad \varepsilon \sim N(0, \operatorname{diag}(\operatorname{se}(\beta_Y)^2)),$$

where β_Y is the vector of genetic associations with the outcome of length n, with n the number of genetic variants used as instrumental variables, se(β_Y) is the vector of standard errors of these associations of length n and diag the diagonal operator. $\beta_{X1}, \beta_{X2}, \ldots, \beta_{Xd}$ are the genetic associations with the d risk factors, and $\theta_1, \theta_2, \ldots, \theta_d$ are the causal effects of the d risk factors on the outcome. If there are causal relationships between the risk factors, then these parameters represent the direct effects of the risk factors, i.e. the effect of changing the target risk factor keeping all other risk factors constant [4, 5].

Variable selection and Bayesian model averaging

The model averaging approach is implemented by considering different sets of risk factors in turn [6]. For each risk factor set, MR-BMA fits the relevant multivariable Mendelian randomization model and assigns a score to the set of risk factors considered that captures the posterior probability that this particular model represents the true causal risk factors for the outcome given the observed genetic association data [6]. As prior parameters MR-BMA requires to set an a priori probability for a risk factors. Additionally, the prior variance is set to 0.25. Sensitivity analysis with respect to the prior parameters is important and we can show that ranking is not impacted by the choice of the prior. Results for a wide range of prior specifications are given in Supplementary Table S10 (prior variance) and Supplementary Table S11 (prior probability).

When considering many candidate risk factors, the model space (including all possible combinations of risk factors) may be prohibitively large to consider all possible combinations of risk factors. To alleviate this we have implemented a stochastic search algorithm [7] to explore the relevant model space (all models with a non-negligible posterior probability) in an efficient way.

When the number of risk factors considered is large, the evidence for each particular model may be small. Hence, we average over the models visited and for each risk factor compute its marginal inclusion probability, which is the sum of the posterior probabilities for all models visited that include this particular risk factor. Further, we provide the modelaveraged causal effect estimate, representing the average causal effect estimate for the given risk factor across models in which it is included. As is common for variable-selection methods, this is a conservative estimates of the true causal effect and underestimates its magnitude, but may be used for the interpretation of effect direction and for comparison among the risk factors.

Resampling to compute empirical *p*-values

Empirical *p*-values for the marginal inclusion probability of each risk factor are obtained using a permutation procedure, where the risk factor association data are held constant and the outcome associations of the genetic variants are randomly perturbed [8]. The empirical *p*-value for risk factor *j* quantifies how extreme the actual observed marginal inclusion probability is with respect to all permuted marginal inclusion probabilities for that particular risk factor. Formally, the empirical *p*-value is computed by the rank (r_j) of the actual observed marginal inclusion probability for risk factor *j* among all permuted marginal inclusion probabilities for risk factor *j* over the total number of permutations $(n_{perm} = 1,000)$. Following [9] we add one to the computation to obtain the probability that under the null hypothesis the observed marginal inclusion probability has the observed or a higher rank

$$p_j = (r_j + 1)/(n_{perm} + 1).$$

Multiple testing adjustment is done using the Benjamini and Hochberg false discovery rate (FDR) procedure [10].

Model diagnostics

Two approaches are considered for model diagnostics. Firstly, to identify influential variants for each visited model with a model posterior probability larger than 0.02, we calculated Cook's distance for each genetic variant [11] and excluded all variants that have in any selected model a Cook's distance which exceeds the median of a central F-distribution with d and n-d degrees of freedom, where d is the number of risk factors and n the number of genetic variants used as instrumental variables.

Secondly, to identify outlying variants, we consider for each visited model with a model posterior probability larger than 0.02 a version of Cochran's Q statistic used to detect heterogeneity in meta-analysis [12]

$$Q = \sum_{i=1}^{n} q_i = \sum_{i=1}^{n} \operatorname{se}(\beta_{Y_i})^{-2} (\beta_{Y_i} - \hat{\beta}_{Y_i})^2,$$

where *i* indexes the genetic variants and $\hat{\beta}_{Y_i}$ is the predicted value of the genetic association with the outcome β_{Y_i} based on the relevant multivariable Mendelian randomization model. A genetic variant with a high value of q_i (compared to the 0.05/*n*th upper tail of a χ^2 distribution with one degree of freedom representing Bonferroni multiple testing adjustment by the number of variants included) in any of the models visited (with a model posterior probability larger than 0.02) was considered to be an outlying variant.

We then repeated the analyses excluding such variants. The reason for excluding outliers and influential variants is that a single genetic variant can have a strong impact on the models visited and subsequently on variable selection. However, in this case for both main and sensitivity analyses, excluding these variants did not change the headline results.

References

- [1] Thanassoulis G, O'Donnell CJ. Mendelian randomization: nature's randomized trial in the post-genome era. JAMA. 2009;301(22):2386–2388.
- [2] Burgess S, Foley CN, Zuber V. Inferring causal relationships between risk factors and outcomes from genome-wide association study data. Annu Rev Genomics Hum Genet. 2018;.
- [3] Burgess S, Thompson SG. Multivariable Mendelian randomization: the use of pleiotropic genetic variants to estimate causal effects. Am. J. Epidemiol. 2015;181(4):251–260.
- [4] Sanderson E, Davey Smith G, Windmeijer F, Bowden J. An examination of multivariable Mendelian Randomization in the single-sample and two-sample summary data settings. Int J Epidemiol. 2018 12;p. dyy262–dyy262.
- [5] Burgess S, Thompson DJ, Rees JM, Day FR, Perry JR, Ong KK. Dissecting causal pathways using Mendelian randomization with summarized genetic data: application to age at menarche and risk of breast cancer. Genetics. 2017;.
- [6] Zuber V, Colijn JM, Klaver C, Burgess S. Selecting likely causal risk factors from highthroughput experiments using multivariable Mendelian randomization. Nat Commun. 2020;11(1):29.

- [7] Hans C, Dobra A, West M. Shotgun stochastic search for "large p" regression. J Am Stat Assoc. 2007;102(478):507-516.
- [8] Stephens M, Balding DJ. Bayesian statistical methods for genetic association studies. Nat Rev Genet. 2009 Oct;10(10):681–690.
- [9] North BV, Curtis D, Sham PC. A note on the calculation of empirical P values from Monte Carlo procedures. Am. J. Hum. Genet. 2002 08;71(2):439–441.
- [10] Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J R Stat Soc Series B Stat Methodol. 1995;57(1):289– 300.
- [11] Corbin LJ, Richmond RC, Wade KH, et al. Body mass index as a modifiable risk factor for type 2 diabetes: Refining and understanding causal estimates using Mendelian randomisation. Diabetes. 2016;.
- [12] Greco M, Minelli C, Sheehan NA, Thompson JR. Detecting pleiotropy in Mendelian randomisation studies with summary data and a continuous outcome. Stat Med. 2015;34(21):2926–2940.