Supplementary material

Cell lines

MC38 cells and 4T1 cells were provided by Carlotta Tacconi and Michael Detmar (Institute of Pharmaceutical Sciences, ETH, Zurich, Switzerland), respectively. Lewis Lung carcinoma (LLC) and CT26 colon carcinoma cells were purchased from ATCC. LLC cells were lentivirally transduced to express firefly luciferase or cGAS to generate LLC-LUC or LLC-cGAS (Schadt et al., 2019) cells, respectively. Viral particles were a gift from Christian Münz (University of Zurich). All cancer cells were cultured in Dulbecco's modified Eagle's medium (DMEM, GIBCO) supplemented with 10% fetal calf serum (FCS, ThermoFisher Scientific), 30 U/ml Penicillin, 30 µg/ml Streptomycin (antibiotics, ThermoFisher Scientific) and 2mM L-Glutamine (ThermoFisher Scientific). All cancer cell lines were used between passages 2 and 10. Cell lines were confirmed to be free of *Mycoplasma* ssp. by PCR and various viruses by Charles River Research Animal Diagnostic Services.

Antibody list

CD115-Biotin (AFS98; BioLegend), CD19-Biotin (6D5; BioLegend), CD3e-Biotin (145-2C11; BioLegend), CD5-Biotin (53-7.3; BioLegend), Ly6G-Biotin (1A8; BioLegend), NK1.1-FITC (PK136; BioLegend), NK1.1-BV711 (PK136; BioLegend), NK1.1-BV785 (PK136; BioLegend), NKp46-PerCP-eFluor710 (29A1.4; eBioscience), NKp46-FITC (29A1.4; eBioscience), CD4-BV785 (104 (SJL); BioLegend), CD45-APC-Cy7 (30-F11, BioLegend), CD49a-BV510 (Ha31/8; BD Biosciences), CD49a-BUV395 (Ha31/8; BD Biosciences), CD49b-PB (DX5; BioLegend), CD27-PE (LG.3A10; BioLegend), CD27-PE-Cy7 (LG.3A10; BioLegend), CD62L-BUV737 (MEL-14; BD Biosciences), CD69-BV605 (H1.2F3; BioLegend), Thy1.2-BV785 (30-H12; BioLegend), Thy1.2-AF700 (30-H12; BioLegend), KLRG1-BV510 (2F1/KLRG1; BioLegend), CD11b-BV711 (M1/70; BioLegend), CD11b-BUV737 (M1/70; BioLegend), Ly49G2-PerCP-eFluor710 (4D11; eBioscience), EOMES-PEtexRed (Dan11mag; eBioscience), GrzB-AF647 (GB11; BioLegend), Ki67-PerCP-eFluor710 (SoIA15; eBioscience), Tbet-PE-Cy7 (4B10; BioLegend), IFN-y-PE-Cy7 (XMG1.2; BioLegend), CD107a-APC (1D4B; BioLegend), CD8a-BV605 (53-6.7; Biolegend), Ly6G-BUV563 (1A8, BD Biosciences), Ly6C-BV711 (HK1.4, Biolegend), XCR-1-BV650 (ZET, Biolegend), CD64-BV421 (10.1, Biolegend), I-A/I-E-AF488 (M5/114.15.2, Biolegend), F4/80-PECy5 (BM8, Biolegend), CD103-PE (2E7, Biolegend), CD206-AF700 (MR6F3, eBioscience), Streptavidin-APC (BD Biosciences), Streptavidin-BUV563 (BD Biosciences), Zombie NIR[™] Fixable Viability Kit (BioLegend), Zombie UV[™] Fixable Viability Kit (BioLegend).

Primer list

5'-CTTCCGGGGCCATGTATCTT-3' Pol2 5'-GCTCGATACCCTGCAGGGTCA-3'; II15 5'-GTGACTTTCATCCCAGTTGC-3' 5'-TCACATTCCTTGCAGCCAGA-3'; ll15ra 5'-5'-AGCAAGGACCATGAAGAGGC-3'; GAGGTCAGGAAAGAATCCACCT-3' 5'-GAGGACTTGAAGATGTACCAG-3' 5'-112 TTCTATCTGTGTGAGGAGGGC-3': //18 5'-CAAACCTTCCAAATCACTTCCT-3' 5'-TCCTTGAAGTTGACGCAAGA-3'; 5'lfng GCATTCATGAGTATTGCCAAG-3' 5'-GGTGGACCACTCGGATGA-3'; Tgfbr2 5'-AACGACTTGACCTGTTGCCTGT-3' 5'-CTTCCGGGGCCATGTATCTT-3'; Gzmb 5'-ACACCTCCTTCCTCCCCTTC-3' 5'-TAGGGACGGGAATGTGGACT-3'; Tgfb1 5'-ATGCTAAAGAGGTCACCCGC-3' 5'-TGCTTCCCGAATGTCTGACG-3'; 5'-Runx3 TACCTACCACCGAGCCATCA-3' 5'-TTCTATCTTCTGCCGGTGCC-3': Smad7 5'-TCAAACCAACTGCAGGCTGTC-3' 5'-TCTTCTCCCCAGTATGCCA-3': Itga1 5'-CCACCAAGATGAACGAGCCT-3' 5'-GGCTGCCCAGCGATATAGAG-3'; 5'-Xcl1 TGAACTTACAAACCCAGCGG-3' 5'-TCGCTGCTTTCACCCATTTG-3'; Cdk6 5'-TCCTGCTCCAGTCCAGCTAT-3' 5'-CCACGTCTGAACTTCCACGA-3'; Cotl1 5'-ATCACATGGATCGGGGAGGA-3' 5'-TCCGGTCGCTGATCACAAAT-3'; Car2 5'-ACTGGGGGATACAGCAAGCAC-3' 5'-TGCTCTTGGACGCAGCTTTA-3'; 5'-Pmepa1 TCCTTCATCAGCCGACACAG-3' 5'-CCACCTGACACCGTACTCTC-3'.

Single-cell RNA sequencing using 10x Genomics platform

NKp46⁺ cells (live CD45⁺CD3⁻CD5⁻Ly6G⁻CD19⁻CD115⁻NK1.1⁺NKp46⁺) were sorted from naïve, LLC and MC38 metastatic livers. For each sample, cells were pooled from 6 biological replicates. The quality and concentration of the single cell preparations were evaluated using an hemocytometer in a Leica MD IL LED microscope and adjusted to 1'000 cells/ml. 10'000 cells per sample were loaded in to the 10X Chromium controller and library preparation

was performed according to the manufacturer's indications (Chromium Next GEM Single Cell 3' Reagent Kits v3 protocol). The resulting libraries were sequenced in an Illumina NovaSeq6000 sequencer according to 10X Genomics recommendations (paired-end reads, R1=28, i7=8, R2=91) to a depth of around 50,000 reads per cell. FASTQ files were created with the Cell Ranger demux pipeline. Reads were pseudo-aligned to a mouse reference 97) with kallisto/bus (ensemble release the pipeline (https://www.kallistobus.tools/velocity_tutorial.html), using kallisto v0.46.0 (ref PMID: 27043002) and bustools v0.39.3 (ref PMID: 31073610). The resulting count matrix was analyzed with Seurat v3 (ref PMID: 31178118). Data were scaled and transformed using SCTransform v0.2.0 (ref PMID: 31870423) for variance stabilization. The experiment resulted in the following number of obtained cells: 9164 cells from naïve livers (median of 1543 unique genes detected per cell), 8910 cells from LLC metastatic livers (median of 1681 unique genes detected per cell), and 9565 cells from MC38 metastatic livers (median of 1606 unique genes detected per cell). Contaminating cell clusters that were NKp46 negative and did not consist of NK cells were excluded from further analyses. Principle Component Analysis was performed on the expression of the detected variable genes. The first 50 principal components were included for further downstream analyses based on visual inspection of Seurat's PCElbowPlot. All cells were clustered based on the principal component analysis with the Louvain algorithm using the following granularity parameters: resolution = 0.5. Differential marker expression analyses were conducted with the Seurat FindMarkers and FindAllMarkers functions. 10x libraries were prepared and sequenced at the Functional Genomics Center (University of Zürich).

Gene ontology analysis

Gene Ontology (GO) analysis was performed with EnrichR (Chen et al., 2013). Venn diagrams were created using the jvenn online tool (Bardou et al., 2014).

Supplementary Figure 1. Absence of NKp46⁺ cells, CD8⁺ T cells, cNKs or trILC1s in different experimental systems, and resulting effect on hepatic metastatic load.

Supplementary Figure 1. Absence of NKp46⁺ cells, CD8⁺ T cells, cNKs or trlLC1s in different experimental systems, and resulting effect on hepatic metastatic load.

(A) NKp46⁺ cells were depleted by injection of 250 ng diphtheria toxin intraperitoneally as indicated in Figure 1A. Representative detection of NKp46⁺ cells in livers of control mice (Ncr1^{iCre/wt}R26R^{wt/wt}) and Ncr1^{DTR} (Ncr1^{iiCre/wt}. R26R^{iDTR/wt}) at the endpoint. (B) NKp46⁺ cells were depleted by injection of 250 ng diphtheria toxin intraperitoneally 48 hours before, 24 hours after or 7 days after tumor injection. Depletion was maintained until the endpoint. Ncr1^{DTR} = Ncr1^{iCre/wt}.R26R^{iDTR/wt}; Ctrl = undepleted control mice (Ncr1^{iCre/wt}.R26R^{wt/wt}, group injected at time point -48h). Panels: Quantification of LLC macroscopic liver nodules and their area at the endpoint. The bar represents the mean ± SD, symbols represent livers from individual mice. Each dot in the nodule area represents an individual metastatic nodule. Oneway analysis of variance (ANOVA), with Tukey's multiple comparisons test. The experiment was performed twice with similar results. (C) CD8⁺ T cells were depleted by i.p. injection of 100 µg anti-CD8 (anti-CD8) or isotype control (Ctrl) antibody at -48 h relatively to tumor cell injection. Dot plots: Representative detection of CD8⁺ T cells depletion in blood of C57BL/6 mice. Bar graphs: Quantification of LLC liver nodules by ex vivo IVIS imaging or MC38 macroscopic liver nodules at the endpoint. The bar represents the mean ± SD, symbols represent livers from individual mice, groups consisted of 5-6 mice. One-way analysis of variance (ANOVA), with Tukey's multiple comparisons test. The experiment was performed twice with similar results. (D) Representative dot plots and quantification of NKp46⁺ cell in naive livers of Ncr1^{WT} = Ncr1^{iCre/wt}.R26R^{wt/wt}; Ncr1^{tdTomato} = Ncr1^{iCre/wt}.R26R^{Ai14/wt} mice. The bar represents the mean ± SD, symbols represent livers from individual mice. Unpaired Student's t-test. Pooled data from two experiments are shown. (E) Representative dot plots and quantification of cNKs and trILC1s in naïve livers of Nfi/3^{WT} and Nfi/3^{-/-} mice. Samples were pre-gated on single live CD45⁺lineage⁻ cells and subsequently gated on NK1.1⁺NKp46⁺ cells. cNK = conventional NK cells, CD49a CD49b⁺; trILC1 = tissue-resident ILC1s, CD49a⁺CD49b⁻. The bar represents the mean ± SD, symbols represent livers from individual mice, groups consisted of 4-6 mice. Student's unpaired t test. The experiment was performed twice with similar results. (F) Quantification of the LLC- and MC38-derived metastatic burden in livers of *Nfil3^{WT}* and *Nfil3^{-/-}* mice as described under (C). The bar represents the mean \pm SD, symbols represent livers from individual mice, groups consisted of 4-7 mice. Unpaired Student's t-test. The experiment was performed twice with similar results. (G) trILC1s were depleted by injection of 250 ng diphtheria toxin intraperitoneally 48 hours before, 24 hours after or 7 days after tumor injection. Depletion was maintained until the endpoint (day 18). *Eomes^{WT}* Ctrl = *Ncr1^{iCre/wt}*.*Eomes^{tl/tt}*.*R26R^{wt/wt}*; *Eomes^{tl}* Ctrl = *Ncr1^{iCre/wt}*.*Eomes^{tl/tt}*.*R26R^{wt/wt}*; *Eomes^{tl}* NKp46⁺depleted = Ncr1^{iCre/wt}.Eomes^{#/#}.R26R^{iDTR/wt}. Panels: Quantification of liver nodules and their area at endpoint. The bar represents the mean ± SD, symbols represent livers from individual mice. Each dot in the nodule area represents an individual metastatic nodule. One-way analysis of variance (ANOVA), with Tukey's multiple comparisons test. The experiment was performed twice with similar results. (H) Depletion of cNK cells in Hobit^{WT} and Hobit^{-/-} mice using anti-Asialo-GM1. Depletion was started 48 hours before, 24 hours after or 7 days after tumor injection, and maintained until the endpoint (day 18). Panels: Quantification of liver nodules and their area at endpoint. The bar represents the mean ± SD, symbols represent livers from individual mice. Each dot in the nodule area represents an individual metastatic nodule. One-way analysis of variance (ANOVA), with Tukey's multiple comparisons test. The experiment was performed twice with similar results. (I) Left two panels: Representative immunofluorescence images of a naïve and a MC38-metastatic liver from Ncr1^{iCre/wt}.R26R^{Ai14/wt} wt mice. Right panel: quantification of the localization of cNKs and trILC1s in naïve livers, adjacent tissue to the nodule and metastatic nodules. Four naïve and four MC38-metastatic livers were analyzed and the results are expressed in % of trILC1s or cNKs versus total. One-way analysis of variance (ANOVA), with Tukey's multiple comparisons test. (J) Quantification of the vascular localization of trILC1s and cNK cells using Ncr1^{iCre/wt}. Eomes^{fl/fl}. R26R^{Ai14/wt} mice and Ncr1^{iCre/wt}. Hobit^{/-}. R26R^{Ai14/wt} mice in naïve liver or in the adjacent tissue of MC38-metastatic liver. Three livers per experimental condition were analyzed, each symbol represents an individual section. The distribution of trILC1s and cNK cells was determined based on their positioning relative to liver vasculature (associated to the sinusoids or large vessels, or interstitial).

Supplementary Figure 2. Multi-parameter single-cell mapping of cNKs and trlLC1s cells in blood and livers from naïve and metastatic mice.

Supplementary Figure 2. Multi-parameter single-cell mapping of cNKs and trILC1s cells in blood and livers from naïve and metastatic mice.

Naïve and metastatic livers were collected. Metastatic livers (day 21) were manually dissected to separate the nodules from the adjacent tissue, and tissues were enzymatically processed into a single-cell suspension. NKp46⁺ cells were analyzed by multi-parameter single-cell mapping using flow cytometry. UMAP visualization of markers after gating on single, live, CD45⁺lin⁻NK1.1⁺NKp46⁺cells. (A) LLC-metastatic livers. (B) MC38-metastatic livers. (C) Expression of Tbet by cNKs (blue) and trILC1s (red) in metastatic livers. The bar represents the mean ± SD, symbols represent livers from individual mice, groups consisted of 3-5 mice. One-way analysis of variance (ANOVA), with Tukey's multiple comparisons test. The experiment was performed twice with similar results. (D) Flow cytometry analysis of CD49a⁻Eomes⁻ population from blood of mice with naïve or LLC-metastatic livers. Left panels: Highlighted in vellow is the CD49a Eomes population. Right panels: Quantification of CD49a Eomes⁻ population, CD11b⁺, Thy1.2⁺ and Ki67⁺ cells in cNKs (blue). The bar represents the mean ± SD, symbols represent livers from individual mice, groups consisted of 4-5 mice. Unpaired Student's t-test. The experiment was performed twice with similar results. (E) Flow cytometry analysis of CD49a⁺Eomes⁺ population from blood of mice with naïve or MC38metastatic livers. Left panels: Highlighted in green is the CD49a⁺Eomes⁺ population. Right panels: Quantification of Eomes expression, CD11b⁺, Thy1.2⁺ and Ki67⁺ cells in cNKs. The bar represents the mean ± SD, symbols represent livers from individual mice, groups consisted of 3 mice. Unpaired Student's t-test. The experiment was performed twice with similar results.

Supplementary Figure 3. Metastasis drives the emergence of unique cNK cell populations.

Supplementary Figure 3. Metastasis drives the emergence of unique cNK cell populations.

Naïve and metastatic livers were collected. Metastatic livers (day 21) were manually dissected to separate the nodules from the adjacent tissue, and tissues were enzymatically processed into a single-cell suspension. NKp46⁺ cells were analyzed by multi-parameter single-cell mapping using flow cytometry. Samples were pre-gated on single live CD45⁺lineage⁻ cells and subsequently gated on NK1.1⁺NKp46⁺ cells. cNK = conventional NK cells, CD49a⁻CD49b⁺; trILC1 = tissue-resident ILC1s, CD49a⁺CD49b⁻. (A-F) 4T1-metastatic and control livers. (G-L) CT26-metastatic and control livers. (A. G) UMAP maps overlaid with FlowSOM-guided manual metaclusters displaying cNKs and trILC1s from all samples. (B, H) UMAP maps overlaid with FlowSOM-quided manual metaclusters separated by sample category (naïve, adjacent, nodules). (C, I) Relative frequency of each cluster in the different sample categories (naïve, adjacent, nodules). (D, J) Heatmap summary of median marker expression values of the different markers analyzed for each cluster. (E) Highlighted in yellow is the CD49a⁻Eomes⁻ population observed in 4T1 adjacent tissue and nodules. (F) UMAP visualization of markers after gating on single, live, CD45⁺lin⁻NK1.1⁺NKp46⁺cells. (K) Highlighted in green is the CD49a⁺Eomes⁺ population observed in CT26 nodules. (L) UMAP visualization of markers after gating on single, live, CD45⁺lin NK1.1⁺NKp46⁺ cells in mice. Experimental groups consisted of 4-5 mice. The experiment was performed twice with similar results. (M) Left panel: Macroscopic quantification of LLC-WT and LLC-cGAS metastatic nodules in the liver of C57BL/6 mice 21 days after tumor cell injection. Bars show the mean ± SD. Each symbol represents an individual mouse. One-way analysis of variance (ANOVA), with Tukey's multiple comparisons test. The experiment was performed twice with similar results. Right panels: Representative images of metastatic livers from each group at the endpoint. LLC-WT = control LLC cells; LLC-cGAS = LLC cells overexpressing cGAS (Mb21d1). (N) Left panel: Percentage of CD49a Eomes NKp46⁺ cells in LLC-WT and LLCcGAS nodules. Bars show the mean ± SD. Each symbol represents an individual mouse. One-way analysis of variance (ANOVA), with Tukey's multiple comparisons test. The experiment was performed twice with similar results. Right panel: Representative dot plots of cNKs and trILC1s in LLC-WT and LLC-cGAS nodules, with the CD49a⁻Eomes⁻ population highlighted in yellow.

Supplementary Figure 4. Analysis of the myeloid compartment in MC38 and LLC-derived metastatic nodules. Effector functions of cNKs and trILC1s in naïve and metastatic livers after stimulation with PMA + ionomycin.

Supplementary Figure 4. Analysis of the hepatic myeloid compartment in MC38 and LLC-derived metastatic nodules. Effector functions of cNKs and trlLC1s in naïve and metastatic livers after stimulation with PMA + ionomycin.

Livers from naïve mice or MC38 and LLC-derived metastases were analyzed 21 days after tumor inoculation followed by splenectomy using flow cytometry. Naïve liver was analyzed in parallel to adjacent and metastatic nodules. Livers cells were pre-gated on single cells, live cells and lineage- (lin⁻) cells (CD3, B220 and NK1.1). (**A**) Representative gating strategy of the different myeloid populations for an LLC-derived metastatic nodule. (**B**) Quantification of CD11b⁺Ly6G⁺ granulocytes, CD11b⁺Ly6C^{high} monocytes, CD11b⁻CD103⁺ cDC1s, CD11b⁺CD103⁻ cDC2s, CD64⁺F4/80⁺ macrophages and CD206⁺ macrophages. Statistical analysis was performed with One-way analysis of variance (ANOVA), with Tukey's multiple comparisons test.

Naïve and LLC- or MC38-derived metastatic livers were manually dissected to separate the nodules from the adjacent tissue. Tissues were enzymatically processed into a single-cell suspension. Suspensions were stimulated for 4 hours with 100 ng/ml PMA + 1 μ g/ml ionomycin and the expression of effector molecules was measured by flow cytometry. Samples were pre-gated on single live CD45⁺lineage⁻ cells and subsequently gated on NK1.1⁺NKp46⁺ cells. cNK cells (CD49a⁻ cells) were divided into CD49b⁺Eomes^{high/int} cells (named here cNKs and present in naïve and both LLC and MC38 metastatic livers), CD49b⁻ Eomes⁻ cells (present in LLC-derived metastatic livers) and CD49b⁺Eomes⁺ cells (present in MC38-metastatic nodules). trILC1s were gated as CD49a⁺CD49b⁻ cells. **(C)** Surface expression of IFN- γ after 4-h stimulation with PMA + ionomycin. Unst. = unstimulated. The bar represents the mean ± SD, symbols represent livers from individual mice, groups consisted of 5-8 mice. One-way analysis of variance (ANOVA), with Tukey's multiple comparisons test. The experiment was performed twice with similar results.

Supplementary Figure 5. Effector functions of cNKs and trlLC1s in naïve and metastatic livers after stimulation with IL-15 or IL-12 + IL-18.

Naïve and metastatic livers were collected. Metastatic livers were manually dissected to separate the nodules from the adjacent tissue. Tissues were enzymatically processed into a single-cell suspension. Suspensions were stimulated for 4 hours with 10 ng/ml IL-15 (**A**, **B**) or 10 ng/ml IL-12 + 100 ng/ml IL-18 (**C**, **D**), and the expression of effector molecules were measured by flow cytometry. Samples were pre-gated on single live CD45⁺lineage⁻ cells and subsequently gated on NK1.1⁺NKp46⁺ cells. cNK cells (CD49a⁻ cells) were divided into CD49b⁺Eomes^{high/int} cells (named here cNKs and present in naïve and both LLC and MC38 metastatic livers), CD49b⁻Eomes⁻ cells (present in LLC-derived metastatic livers) and CD49b⁺Eomes⁺ cells (present in MC38 nodules). trILC1s were gated as CD49a⁺CD49b⁻ cells. **(A)** Surface expression of CD107a after 4-h stimulation with IL-15. **(B)** Intracellular expression of IFN- γ after 4-h stimulation with IL-12 + II-18. **(D)** Intracellular expression of IFN- γ after 4-h stimulated. The bar represents the mean ± SD, symbols represent livers from individual mice, groups consisted of 5-8 mice. One-way analysis of variance (ANOVA), with Tukey's multiple comparisons test. The experiment was performed once.

Supplementary Figure 6. Single-cell RNA-sequencing reveals novel transcriptional signatures of cNKs in the hepatic metastatic niche.

Supplementary Figure 6. Single-cell RNA-sequencing reveals novel transcriptional signatures of cNKs in the hepatic metastatic niche.

Single-cell RNA-sequencing was performed on NKp46⁺ cells sorted from naïve, LLCmetastatic and MC38-metastatic livers (6 mice per condition, pooled into 1 sample for droplet encapsulation and library preparation). (A) UMAP analysis of all NKp46⁺ cells with overlaid expression of key lineage markers: NKp46 (Ncr1), CD49a (Itga1) and Eomes (Eomes). (B) Heatmap showing the expression of the top-10 genes for each cluster. Cells are plotted in columns and grouped by cluster, and the genes are plotted in rows. (C, D) Naïve and metastatic livers were collected. Metastatic livers (day 21) were manually dissected to separate the nodules from the adjacent tissue, and tissues were enzymatically processed into a single-cell suspension. NKp46⁺ cells were analyzed by flow cytometry. Expression of CD62L⁺, Thy1.2⁺ and Ly49G2⁺ by hepatic cNKs. (C) LLC-metastatic liver. (D) MC38metastatic liver. The bar represents the mean ± SD, symbols represent livers from individual mice, groups consisted of 2-6 mice. One-way analysis of variance (ANOVA), with Tukey's multiple comparisons test. The experiment was performed twice with similar results. (E) Venn diagram showing differentially expressed genes (DEG) in clusters cNK_3 and cNK_5. The box shows the list of genes exclusive to cNK_5. (F) UMAP analysis of cNKs from MC38metastatic livers with overlaid expression of CD49a (*Itga1*) and Thy1.2 (*Thy1*). The dotted line marks cluster cNK 6. (G) Venn diagram showing the differentially expressed genes in clusters cNK 4 and cNK 6. The box shows the list of genes shared by both clusters.

Supplementary Figure 7. TGF- β modulates the fate of CD49a⁺Eomes⁺ cNKs in metastatic nodules.

Supplementary Figure 7. TGF- β modulates the fate of CD49a⁺Eomes⁺ cNKs in metastatic nodules.

(A) Expression of Tgfbr2 transcripts by T and NKp46⁺ cells sorted from naïve livers. Tgfbr2^{WT} = $Ncr1^{iCre/wt}$. Tgfbr2^{wt/wt}; Tgfbr2^{fl} = $Ncr1^{iCre/wt}$. Tgfbr2^{fl/fl}. (B) Representative dot plots and quantification of cNKs and trILC1s in naïve livers of Tgfbr2^{WT} and Tgfbr2^{ff} mice. Samples were gated on single, live, CD45⁺lin NK1.1⁺NKp46⁺cells. cNK = conventional NK cells, CD49a⁻CD49b⁺; trILC1 = tissue-resident ILC1s, CD49a⁺CD49b⁻. The bar represents the mean ± SD. symbols represent livers from individual mice, groups consisted of 8-10 mice. Unpaired Student's t-test. **(C)** Expression of CD69, Thy1.2, KLRG1 and Eomes by cNKs (blue) and trILC1s (red) from naïve livers. *Tgfbr2^{WT}* = *Ncr1^{iCre/wt}*. *Tgfbr2^{fl/fl}* = *Ncr1^{iCre/wt}*. *Tgfbr2^{fl/fl}*. The bar represents the mean ± SD, symbols represent livers from individual mice, groups consisted of 8-9 mice. One-way analysis of variance (ANOVA), with Tukey's multiple comparisons test. (D) LLC-metastatic livers. Upper panels: Proportion of cells expressing Thy1.2⁺, Ki67⁺, CD11b⁺ or KLRG1⁺. Lower panels: Expression of Eomes, CD69, GrzB or Tbet expression in cNKs (blue) and trlLC1s (red) from metastatic livers. $Tgfbr2^{WT} = Ncr1^{iCre/wt} Tgfbr2^{wt/wt}$; $Tgfbr2^{fl} = Ncr1^{iCre/wt} Tgfbr2^{fl/fl}$. The bar represents the mean \pm SD, symbols represent livers from individual mice, groups consisted of 8-12 mice. One-way analysis of variance (ANOVA), with Tukey's multiple comparisons test. (E) Quantification of macroscopic LLC liver nodules (number and area) from $Tgfbr2^{WT}$ and $Tgfbr2^{ff}$ mice 21 days after tumor cell injection. Bars show the mean ± SD. Each symbol represents an individual mouse. One-way analysis of variance (ANOVA), with Tukey's multiple comparisons test. The experiment was performed twice with similar results. (F) MC38-metastatic livers. Upper panels: Proportion of cells expressing Thy1.2⁺, Ki67⁺, CD11b⁺ or KLRG1⁺. Lower panels: Expression of Eomes, CD69, GrzB or Tbet expression in cNKs (blue) and trILC1s (red) from metastatic livers. $Tafbr2^{WT} = Ncr1^{iCre/wt} Tafbr2^{wt/wt}$; $Tafbr2^{fl} = Ncr1^{iCre/wt} Tafbr2^{fl/fl}$. The bar represents the mean ± SD, symbols represent livers from individual mice, groups consisted of 4-5 mice. One-way analysis of variance (ANOVA), with Tukey's multiple comparisons test.

Supplementary Table 1

	trILC1_1			trILC1_2			cNK_1			cNK_2			cNK_3			cNK_4			cNK_5			cNK_6		
gene	p_val	avg_logFC	gene	p_val	avg_logFC	gene	p_val	avg_logFC	gene	p_val	avg_logFC	gene	p_val	avg_logFC	gene	p_val	avg_logFC	gene	p_val	avg_logFC	gene	p_val	avg_logFC	
Cd3a	0	1.6244	Hspa1b	0	1.3944	Prf1	0	0.6108	Ccl3	0	1.1094	Hspala	0	1.9683	Emb	1.4E-250	0.5349	KIf2	0	1.1708	Ctla2a	0	0.9929	
Rqs1	0	1.4893	Hspa1a	0	1.2469	Serpinb9	0	0.6096	Ccl4	0	1.0389	Hspa1b	0	1.7944	Fosb	7.4E-179	0.5275	Fos	0	0.7854	Emb	0	0.8557	
Gzmc	0	1.0602	Ras1	0	1.0219	Ubald2	0	0.5878	Nfkbia	0	0.6404	Klf2	0	0.8897	Ctla2a	2.0E-170	0.5273	Irf1	0	0.6834	Plac8	0	0.8522	
\$100a4	0	1.0595	Dnajb1	2.1E-257	1.0105	lfngr1	0	0.5402	Prf1	0	0.5645	Fos	0	0.8117	Fos	8.8E-157	0.4433	Zeb2	0	0.6442	Gzmc	1.8E-23	0.7968	
Cd160	0	1.0065	Jun	1.0E-277	0.9694	Kdm6b	0	0.5225	Ly6c2	1.5E-161	0.4780	Dnajb1	0	0.7946	Cd28	1.5E-141	0.4272	Fosb	0	0.6208	Tafb1	0	0.5893	
Cd7	0	0.9202	Cd160	0	0.9236	Dennd4a	0	0.5012	Sgk1	1.1E-156	0.4383	Jun	0	0.7026	Ccr2	3.2E-152	0.4218	Atf3	1.1E-156	0.5998	Ccr2	0	0.5689	
Gm36723	0	0.8701	Cd3g	6.7E-267	0.8895	Vegfa	0	0.4724	Cma1	5.7E-209	0.4364	Atf3	2.7E-210	0.6629	Rack1	1.2E-194	0.3314	Zfp36	0	0.5331	Cotl1	0	0.5369	
Xcl1	0	0.8672	Fos	2.7E-215	0.8593	Nfkbid	2.6E-292	0.4300	Nr4a1	3.5E-161	0.4173	Zeb2	0	0.5890	Sh2d1a	4.1E-136	0.3279	Dusp1	5.8E-303	0.5207	Bst2	2.8E-218	0.5318	
Ltb	0	0.8355	\$100a4	0	0.7820	Nfkb1	3.2E-246	0.3860	Pim1	1.2E-252	0.4168	Hsp90aa1	0	0.5376	Kira7	1.1E-32	0.3151	Sgk1	1.0E-129	0.4821	Car2	0	0.5229	
Trbc2	0	0.8266	Ltb	0	0.7586	Lубс2	1.2E-146	0.3750	Hist1h1c	5.7E-81	0.3780	Кlfб	0	0.5173	Klf4	7.6E-97	0.3086	Кlfб	3.9E-292	0.4659	Prdx6	0	0.5204	
Osgin1	0	0.7474	Cd7	0	0.7302	ld2	8.1E-251	0.3707	Klra9	2.3E-100	0.3776	Dusp1	2.8E-277	0.4947	Npm1	1.2E-75	0.2939	Cma1	7.1E-286	0.4608	Pmepa1	0	0.4944	
Gzmb	0	0.7443	Gm36723	0	0.7164	Gzma	1.8E-296	0.3673	Dusp2	1.2E-95	0.3748	Dnaja1	1.9E-196	0.4771	Naca	8.6E-107	0.2742	Ly6c2	5.9E-123	0.4373	Vegfa	0	0.4826	
ltga1	0	0.7070	Rgs2	4.1E-160	0.6949	Serpinb6b	3.9E-152	0.3672	lcam1	1.4E-117	0.3633	Fosb	5.8E-203	0.4648	Limd2	4.6E-80	0.2688	Hist1h1c	2.1E-94	0.4182	Smad7	0	0.4807	
Lyбe	0	0.6577	Cited4	3.2E-243	0.6761	Nfkbia	2.4E-254	0.3482	Gzma	1.7E-207	0.3557	lrf1	7.2E-205	0.4509	Vim	3.2E-37	0.2627	Jun	1.2E-233	0.4177	Socs3	0	0.4636	
1121r	0	0.6394	Trbc2	1.3E-188	0.6401	Bci2a1b	1.8E-101	0.3477	Nfkbid	8.0E-118	0.3517	lfng	4.1E-96	0.4436	Pycard	1.5E-55	0.2487	Btg2	1.6E-257	0.4002	Cxcr4	0	0.4593	
Ckb	0	0.5931	Cxcr3	0	0.6230	Dusp2	9.0E-178	0.3445	Lgals1	5.8E-162	0.3265	Hspa8	1.8E-269	0.4392	Hspe1	1.2E-55	0.2484	Rhob	8.1E-174	0.3897	Runx3	6.6E-272	0.4538	
Rgs2	0	0.5789	Dnaja1	6.6E-113	0.5712	Orai1	1.5E-183	0.3442	Gadd45b	4.3E-44	0.3157	Ly6c2	1.2E-162	0.4166	Gas5	7.7E-71	0.2441	ler2	1.1E-227	0.3756	Cmtm7	0	0.4293	
Trbc1	0	0.5779	Hsph1	1.8E-196	0.5519	Btg1	3.7E-288	0.3373	Emp3	6.7E-170	0.3030	Zfp36	5.3E-186	0.4040	Sell	8.4E-63	0.2433	Egr1	3.1E-106	0.3690	Gramd3	0	0.4274	
Nedd9	0	0.5756	Cd226	0	0.5454	Ccl5	1.5E-276	0.3328	Nfkbiz	3.0E-98	0.3029	Rhob	4.6E-166	0.3793	Cmtm7	6.0E-66	0.2344	lcam1	2.2E-86	0.3601	Npm1	1.6E-251	0.4256	
Cd226	0	0.5738	Lубе	9.9E-229	0.5333	Sh2d2a	6.1E-210	0.3306	Ubald2	3.6E-122	0.2946	Kira4	2.8E-128	0.3755	Actb	1.2E-40	0.2290	Ifng	7.0E-67	0.3595	Rack1	0	0.4255	
Kirc1	0	0.5694	Hsp90aa1	3.4E-136	0.5254	Rap1b	1.2E-270	0.3256	Bhlhe40	1.9E-131	0.2915	Ubc	3.5E-215	0.3644	Ms4a4b	7.1E-63	0.2251	Ccl3	2.6E-107	0.3517	Ms4a4b	3.7E-253	0.4230	
Ccl4	1.3E-257	0.5503	Klf6	5.9E-148	0.5235	Cma1	1.0E-215	0.3180	Kirg1	1.1E-138	0.2792	Hsp90ab1	2.8E-258	0.3522	lrf1	7.0E-34	0.2217	Rgcc	6.4E-72	0.3459	Stat3	7.6E-242	0.4084	
\$100a6	0	0.5479	Kirc1	1.0E-148	0.5086	lrf8	0	0.3146	Serpinb9	2.4E-90	0.2699	Cma1	1.9E-201	0.3360	Hsp90ab1	4.3E-53	0.2199	Vim	1.6E-170	0.3383	Shisa5	0	0.4059	
Cxcr3	0	0.5165	Dusp1	7.1E-93	0.5074	Cd9	5.3E-189	0.3116	Klra8	1.5E-49	0.2653	Egr1	4.1E-83	0.3295	Egr1	9.4E-34	0.2163	Gm26532	2.1E-147	0.3317	Gas5	2.7E-270	0.3943	
Stk17b	0	0.5001	Ckb	0	0.5072	Ppig	3.5E-133	0.3084	Rap1b	2.5E-122	0.2569	ler5	5.1E-170	0.3184	Hspa8	1.8E-53	0.2157	Neat1	2.3E-102	0.3144	Aldoa	1.0E-119	0.3850	
Irf1	5.4E-209	-0.5458	Emp3	7.6E-113	-0.4676	S100a4	1.9E-114	-0.5067	Cxcr3	3.2E-138	-0.3255	Osgin1	1.2E-162	-0.3622	1121r	2.1E-53	-0.2789	Mpp7	4.9E-110	-0.3370	Emp3	1.2E-240	-0.4158	
Ctla2a	9.4E-162	-0.5505	Vim	1.6E-89	-0.4709	Dusp1	5.9E-149	-0.5192	Serpina3g	6.9E-96	-0.3486	Srgn	1.6E-268	-0.3671	Btg1	1.9E-76	-0.2797	Smad7	6.6E-111	-0.3463	Sgk1	3.8E-81	-0.4389	
Eomes	0	-0.5524	Ctla2a	1.0E-53	-0.4902	Btg2	0	-0.5248	Klf6	2.3E-63	-0.3626	Serpinb9	9.8E-99	-0.3673	Ubald2	1.2E-32	-0.2893	Tgfb1	4.1E-100	-0.3497	Klra9	2.1E-117	-0.4677	
Cd2	0	-0.5751	Sell	4.5E-139	-0.5024	Ccl4	3.4E-30	-0.5383	Trbc1	4.6E-123	-0.3770	Ccl4	9.5E-43	-0.3674	Hist1h1c	2.2E-16	-0.2966	Osgin1	8.4E-140	-0.3575	Zeb2	3.9E-150	-0.4781	
Anxa2	0	-0.5789	Anxa2	1.2E-171	-0.5237	Xcl1	1.2E-163	-0.5419	Rgs2	1.3E-74	-0.3880	Litaf	4.1E-206	-0.3679	Srgn	2.2E-99	-0.2970	Litaf	1.9E-157	-0.3614	Dnaja1	6.4E-166	-0.4800	
Sell	0	-0.5861	Pim1	7.0E-144	-0.5822	Zfp36	2.0E-301	-0.5741	Xcl1	5.9E-77	-0.4070	Tgfb1	5.3E-141	-0.3726	Osgin1	6.4E-64	-0.3035	Gzmb	1.2E-20	-0.3652	S100a6	6.2E-193	-0.4903	
Emp3	0	-0.5972	Itga4	1.8E-148	-0.5974	Ly6e	0	-0.5769	Gm36723	1.6E-136	-0.4309	Neurl3	7.5E-139	-0.3745	Kira9	5.7E-33	-0.3312	Hspalb	1.8E-17	-0.3687	Ccl5	0	-0.5124	
Ms4a4b	0	-0.6070	Kdm6b	8.9E-132	-0.6119	Cd69	5.9E-281	-0.6065	Ctla2a	4.5E-64	-0.4401	Smad7	9.3E-153	-0.3848	Cma1	8.5E-45	-0.3348	Trbc1	1.9E-127	-0.3707	Gzma	2.3E-290	-0.5321	
Vim	0	-0.6409	Serpinb9	2.8E-126	-0.6149	KJf2	1.3E-41	-0.6281	Emb	1.0E-102	-0.4489	Dusp5	5.4E-207	-0.3990	Dennd4a	1.7E-104	-0.3838	Emb	1.1E-61	-0.3729	S100a4	6.8E-137	-0.5401	
itga4	0	-0.7057	Sgk1	4.4E-90	-0.6165	Cd160	6.0E-254	-0.6446	Trbc2	6.4E-92	-0.4890	Irbc1	6.2E-171	-0.3998	5100a4	3.9E-40	-0.3872	Ppp1r16b	1.1E-164	-0.3798	КІЈБ	5.7E-251	-0.5619	
Lgals1	0	-0.7561	Klf2	1.8E-47	-0.6212	lfng Cul2	1.4E-154	-0.6457	Cd7	1.7E-165	-0.5035	Dennd4a	1.2E-204	-0.4063	Xcl1	4.8E-16	-0.4006	Gm36723	4.0E-149	-0.4366	Cma1	2.1E-241	-0.5886	
Kira13-ps	0	-0.7580	Kira13-ps	1.2E-121	-0.6315	0.03	1.5E-44	-0.7037	510004	1.26-85	-0.5073	BCIZOID	0.2E-110	-0.4329	Serpinb9	7.3E-04	-0.4076	Praxo	1.26-180	-0.4464	BIGZ		-0.5891	
Sgk1	0	-0.7668	Gzma	6.1E-148	-0.6332	KJf6	0	-0.7241	Fosb	7.3E-121	-0.5273	Trbc2	7.5E-87	-0.4436	Bcl2a1b	7.5E-70	-0.4348	Trbc2	6.0E-79	-0.4477	Dusp1	6.9E-284	-0.6394	
Kira/	0	-0.7740	Kira/	5.1E-91	-0.6437	Ltb Oneih1	0.45.103	-0.7453	Dnajb1	1.2E-79	-0.5483	Ca/	2.8E-146	-0.4456	Gzma	7.3E-125	-0.4483	BCIZO1D	6.8E-117	-0.4627	Lybc2	8.4E-183	-0.6950	
Zebz	0	-0.8120	Ubald2	1.10-150	-0.0465	Dhajbi	9.40-103	-0.7537	Lybe	4.20-228	-0.5667	0m36723	3.76-179	-0.4477	PIJI	4.5E-70	-0.4466	(100-1	0.96-140	-0.4000	Jun	1.96-195	-0.7015	
Hength	6 55 (0	-0.8313	Leoz	3.6E-151	-0.6502	Fach	1.5E-1/0	-0.7668	110	2.05.222	-0.6115	INCO	1.2E-266	-0.4920	Cel2	2./E-111	-0.4535	1460	1.35.101	-0.5067	rigs1	4.6E-94	-0.7928	
HSpallo	0.52-09	-0.9005	Caral	2.00-192	-0.0955	roso	0.45.103	-0.8091	LUD	2.96-233	-0.0992	Lybe Cloord	0.56-229	-0.5094	10002	9.96-55	-0.4705	cyaco	1.20-191	-0.5116	Casy	7.86-05	-0.7928	
Lybc2	0	-0.9357	lfoor1	2.25.254	-0.7088	Cd2a	9.4E-103	-0.8812	Grand	1.9E-107	-0.7451	Cd160	5.1E.1F0	-0.5329	Durp2	1.2E-49	-0.4/25	144	1.4E-164	-0.6089	Cold	1.2E-230	-0.7980	
Hspala	4.8F-94	-0.9376	lyfic2	1.5E-77	-0.7337	Ras1	3.7F-220	-1.0074	Cd3a	1.8E-107	-0.85/9	1th	3.7E-261	-0.5788	Cd3a	5.0F-22	-0.5391	Ras1	4 35-59	-0.0932	Fos	2 (JE-199	-0.9348	
Kiral	7.02-34	-1.0333	Viral.	7.95-122	.0.9495	lun	3.72-220	-1.0057	Ror1	2 25-152	-1.0460	Velt	2 65-206	-0.6622	Gime	2 55-20	-0.0383	Vel1	9 45.225	-0.9050	V1F2	4 25-299	-1.0461	
Prf1	0	-1 1552	Nfkhia	5.5E-252	-0.9858	Fas	0	-1.4534	Fos	1 1E-170	-1.0618	Rast	3.0F-60	-0.6642	Ras1	1.9E-75	-0.8272	Hspala	1 1E-13	-0.8050	Cd3	7.20-200	-1 1192	
Kira4		-1 3725	Prf1	2.9E-292	-1 1014	Hsnala	8 9F-266	-1.6612	Hspala	9.05-129	-1.0018	Grmc	1.05,97	0.8657	Cel4	6.4E-126	-0.85273	Grmc	9.05-66	-0.8491	Hspala	8 0F=209	-1 4512	
Klf2	0	-1.5987	Kira4	5.6E-175	-1.1675	Hspa1b	0.02 200	-1.9922	Hspa1b	8.2E-167	-1.5368	Cd3q	6.9E-135	-0.9767	Gzmb	1.9E-266	-0.9324	Cd3q	3.6E-124	-0.9860	Hspa1b	0.02 200	-1.6418	

Supplementary Table 1: Top 25 upregulated genes and downregulated genes for each trILC1 and cNK cluster identified from scRNA. p_val = p value, avg_logFC = average log2 (Fold Change).