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Supplementary Information Text 

Artificial Intelligence Studies 

Augmented Reality.  The acquisition assistance system ingests data in the reference frame of the probe 
(the B-mode ultrasound data) and produces output in the reference frame of the operator’s phone for the 
augmented reality overlay. The frame of the probe is estimated in reference to the subject.  We assume 
that the operator and phone reference frames are the same. In order to calculate the transformation from 
the probe reference frame to the phone reference frame, we use the camera on the phone and an ArUco 
marker (1) attached at a known location and orientation to the probe.  Research shows that the ArUco 
marker pose accuracy achieved an average max jitter of under 1-degree rotation error. (2).   We use 
OpenCV (https://docs.opencv.org/3.1.0/d5/dae/tutorial_aruco_detection.html) to perform the calculations. 
The location and orientation data are merged with the instruction produced by the acquisition assistance 
and then the directions are rendered on screen using SceneKit 
(https://developer.apple.com/documentation/scenekit).   

Acquisition Assistance – Experimental data collection, algorithm training and evaluation.  In order 
to train the acquisition assistance (AA) model, multiple operators acquire sequences of 2D ultrasound data 
from a number of subjects. The operator follows an on-screen guided acquisition protocol. 

We employ a hierarchy of techniques in order to evaluate the performance of the acquisition assistance 
system. Some of these techniques have a lower fidelity score relative to the real system but allow for easy 
to calculate metrics. We refer to these techniques as in silico scan simulations. Otherwise, in vivo 
techniques are employed to replicate the system in clinical settings. We can measure success in the in vivo 
experiments as either successfully measuring the target anatomy, or more simply as successfully reaching 
a target point (as determined by a human expert). We employed other techniques for improving the fidelity 
of the simulation through hard example mining (3) and data augmentation (4). 

In our in silico scans, we observe an overall per frame classification accuracy of 59%, where the 
classification is the direction that the probe should be moved.  Note that this includes frames that are not 
categorized with any direction (not meeting threshold value) and those frames that need to move in two 
direction categories with different magnitudes, e.g. a mixture of down and right for a diagonal movement.  
A “flicker” is a case in which in the stream of instructions for the operator there is a transition from a correct 
instruction to an incorrect one. A multi-frame voting scheme helps to reduce or remove the errant flickers, 
thus providing a stream of positioning commands to the operator with higher fidelity having on average only 
2.4 flicker frames per cine (each on average having 110 frames). 

In order to evaluate the acquisition assistance model, we recruited 58 volunteer scanners with no clinical 
experience. Using a time limit of 60 seconds, 54 of 58 scanners were able to use AA to navigate to a PLAX 
view as defined by agreement between the model and the clinician, see Figure 5A for an example. Based 
on this pilot study as proof-of-concept, further studies are now being conducted for full clinical validation 
with more volunteer scanners; a large group of subjects with a range of size, weight, and heart health 
assessments; in both PLAX and apical 4 chamber views. 

Interpretation Assistance – Experimental data collection, algorithm training and evaluation.  The 
training data sets for interpretation assistance were collected from expert sonographers imaging the heart 
from an apical four-chamber view and a parasternal long axis view from a variety of subjects.  Interpretation 
experts reviewed and segmented the ultrasound images by hand from the collected data sets.  The CNN 
model is trained and validated on 4-5 cines per view of 200 subjects with 8 operators with 5 labelling experts 
in total.  The training and validation sets had completely disjoint sets of labelers, subjects, and operators.  
In this pilot study, the labelling experts are chosen from a different set of people than the operators collecting 
the data.  All of the scanning subjects are also independent participants.  This helps diversify the data 
collection and measurements.  Additional clinical validation studies are in progress with a broader group of 
subjects having characteristics diverse in age, sex, weight, and heart health.   



Expert sonographers have experience finding the proper scan plane of the heart where the chambers align 
with the apical view for clarity of the four chambers.  The anatomy of the heart as seen in the scan plane 
provides clear boundaries for correct image plane placement.  That being said, even between experts there 
may be slight deviations in placement.  We mitigate any slight scanning plane deviations between scans 
by having multiple operators image the same subjects and comparing for concordance among operators 
and subjects (5).  The degree of acceptable metric accuracy is built into the acquisition assistance model. 
The traditional methods of ejection fraction (EF) are calculated with either an area measurement or a linear 
measurement.   The area measurements use the ultrasound of an apical 2- or 4-chamber view in 
conjunction with the Monoplane Simpson’s method of calculation.  Similarly, the linear measurement of the 
left ventricle diameter is performed using the ultrasound of a parasternal long-axis view (PLAX) in 
conjunction with the Teichholz method of calculation.  Table S1 compares agreement of EF measurements 
between human-to-human as opposed to algorithm-to-human.  Our experiments show an average of 61.3% 
human-to-human concordance and 64.3% algorithm-to-human concordance for area measurements of EF 
vs. 74% human-to-human concordance and 68.3% algorithm-to-human concordance for linear 
measurements of EF.  The variability of the 1D measurements in the PLAX view results in an algorithm-to-
human concordance value that is lower as a result of broader mean estimation than the localized human-
to-human measurements.  The concordance correlation coefficient is computed on the -length 
measurements (i.e.,  paired measurement values , for ) with the 
following formula: 

 
 
where the mean is , the variance is , and the covariance is 

. 

Furthermore, leveraging the training of scanning plane deviations from expert scanning and labelling, we 
have implemented a red-to-green meter indicating how close the operator is to an accurate scanning plane 
for chamber area calculations.  This red-to-green meter complements the augmented reality probe 
placement directions. 
 
  



 
Fig. S1. Ultrasound-on-chip patch prototype.  A functioning prototype of an ultrasound “patch,” build 
using Ultrasound-on-Chip technology.



 
Fig. S2. Measured MEMS Element Characterization. (A) Capacitance, (B) Pulse-Echo Roundtrip Gain 
Variation. 

 



 
Fig. S3. Pre-FDA submission side-by-side comparison with predicate device.  On-screen image pairs 
are shown between the ultrasound-on-chip device (left) and a corresponding scan using a Lumify device 
(right).  Each device is configured to operate in 3 imaging modes: 
Deep abdominal (top row): (A) liver, (B), kidney, (C) gallbladder Mid-range echocardiography (middle row): 
(D) parasternal long-axis, (E) parasternal short-axis, (F) apical 4-chamber Shallow superficial (bottom row): 
(G) thyroid, (H) carotid, (I) rotator cuff 

 

 

 
  



 
Fig. S4. Ultrasound-on-chip Doppler imaging of the carotid artery.  (A) Color Doppler flow (B) 
Spectral Doppler flow calculation using an adjustable gate and angle overlay on the B-mode image.  The 
calipers measure a peak systolic velocity (PSV), end diastolic velocity (EDV), and the time elapsed. 
  



 

Apical	2-	and	4-Chamber	View	(Simpson’s	method)(6)	(area	measurement) 

Cardiac Ejection Fraction  
Apical 2- and 4-Chamber View 

Concordance Correlation Coefficient (5) 
(higher better) 

Average Human-to-Human 61.3% ± 8.2 % 

Average Machine-to-Human 64.3% ± 4.9% 

PLAX	View	(Teichholz	method)(7)	(linear	measurement) 

Cardiac Ejection Fraction 
Parasternal Long-Axis View 

Concordance Correlation Coefficient 
(higher better) 

Average Human-to-Human 74.0% ± 3.6% 

Average Machine-to-Human 68.3% ± 10.0% 

  

Table S1 Results from interpretation assistance models. We evaluate our models with two different 
methods of calculating Ejection Fraction: a segmentation of the LV chamber and a linear measurement 
of the LV diameter. Concordance was calculated between pairs of annotators (machine or human) who 
both annotated no less than 20 of the same images (classifying them in one of four diagnostic ranges) 
(8). The concordance results indicate that our approach exceeds human-level performance on the area 
measurement and generalizes to the linear measurement. 

  



Movie S1 OB: fetus umbilical cord Doppler flow 

Movie S2 Lung: pleura interface 

Movie S3 Abdominal: Kidney Vascular Flow 

Movie S4 Abdominal: Liver  

Movie S5 Pelvis: Bladder Jets 

Movie S6 Cardiac: Apical 4 Chamber 

Movie S7 Vascular: Carotid Artery  

Movie S8 Vascular: Internal Jugular Vein 

Movie S9 Small Organ: Thyroid Nodule 

Movie S10 Cardiac: Parasternal Long Axis 

Movie S11 Vascular Access: Carotid Artery Spectral Doppler 

Movie S12 3D Ultrasound of Human Kidney in vivo 
 
  



 

Movie S13.  Acquisition Assistance. 

Supplementary Movie 13 shows a demonstration of the interpretation assistance which guides the user 
toward the correct location by providing a quality indicator at the bottom of the screen.  After the user 
achieves a high-quality orientation by the indicator, a video clip can be collected which is then used for an 
ejection fraction computation from diastole and systole segmentation of distances achieved between the 
septum and ventricular walls, a result of the thresholded heatmap described above.   Similar acquisition is 
performed with an Apical Four Chamber view of the heart and where a segmented chamber is used to 
calculate an estimate for the ejection fraction and relay a quality score. 

 

 

 

 
  



 

Movie S14.  Interpretation Assistance. 

Supplementary Movie 14 shows a demonstration of the acquisition assistance where the user aims the 
mobile phone camera to view the probe scanning.  A split screen shows the ultrasound on the bottom and 
the camera output on top shows the probe with arrow overlays guiding the user to place the probe in the 
proper location for a cardiac exam, parasternal long axis (PLAX) view.  A green check mark indicates the 
proper position. 
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