

SUPPLEMENTARY INFORMATION

In format as provided by the authors

Improving cancer immunotherapy using nanomedicines: progress, opportunities and challenges

John D. Martin, Horacio Cabral, Triantafyllos Stylianopoulos and Rakesh K. Jain https://doi.org/10.1038/s41571-019-0308-z

Improving cancer immunotherapy using nanomedicine: Progress, opportunities and challenges

John D. Martin, Horacio Cabral, Triantafyllos Stylianopoulos and Rakesh K. Jain

https://doi.org/

Supplementary Figure 1. Schematic representation of cancer cells and various components of the tumor microenvironment (TME). The TME includes various stromal cells and immune cells, extracellular matrix (ECM) and blood vessels. Note that tumor vessels are leaky and compressed in places with uneven diameter and abnormal pericyte and basement membrane coverage. These characteristics impair blood flow. Moreover, the ECM hinders the penetration of drugs, especially of large MW. Endothelial cells line the vessel wall. Pericytes and basement membrane surround endothelial cells and support their structure and function. Fibroblasts produce and maintain the extracellular matrix. Once activated, these carcinoma-associated fibroblasts (CAFs) produce excessive ECM and various cytokines. The myeloid compartment, including neutrophils, is responsible for antigen capture for degradation and presentation (dendritic cells), tissue repair (macrophages), and effector functions. These various phenotypes underscore the plasticity of these cells' phenotype, which can be altered by the TME. The lymphoid compartment is made of natural killer (NK) cells, NK T cells, B cells, CD8+ T cells and other T cells (not shown) including CD4+ T cells. CD8+ T cells are the major anti-tumor effector cells from which cytotoxic T lymphocytes (CTLs) arise and destroy cancer cells presenting a specific peptide-MHC complex. NK cells depend on expression of MHC class I molecules and B cells on surface proteins. Naïve CD8+ T cells become CTLs in lymphoid organs when they are presented an antigen. CD4+ cells can become anti-tumor helper cells that support CTL function or regulatory T cells that support the tumor. Tumors with more CD8+ T cells are considered hot and have better responses to immunotherapies.

Supplementary Table 1. FDA-approved intravenously administered cancer nanomedicines and their survival benefit. This table is updated from a previous review by the senior author (1).

Trade name and	Year	Additional drugs	Control regimen	Change in OS
cancer type	approved	in investigated		
(patient number)		regimen		
PEGylated liposom	al doxorubici	n	I	
Karposi sarcoma	1995	NA	Doxorubicin,	NS
(n = 258)(2)			bleomycin, and	
			vincristine	
Recurrent	2005	NA	Topotecan	NS
epithelial ovarian				
carcinoma (n = 474) (2)				
474) (3)				
Metastatic breast	NA	NA	Doxorubicin	NS
cancer (n =				
509)(4)	2009	Dentenensile	Dente e un lle	Time to succession
Multiple myeloma $(n - 646) (4)$	2008	Bortezomib	Bortezomib	enhanced 2.8 months
(II = 0+0)(+)				childheed 2.0 months
Nanoparticle album	in-bound pac	elitaxel		
Metastatic breast	2005	NA	Paclitaxel	2.5 months
cancer (n = 460)(5)				
400)(5) Metastatic breast	ΝΔ	ΝΔ	Docetavel	5.4 months
cancer ($n = 302$)			Docetaxer	progression-free
(6)				survival
Metastatic or	NA	NA	Paclitaxel	NS and more toxic
locally recurrent				
breast cancer (n = 783) (7)				
Neoadiuvant	NA	Epirubicin and	Paclitaxel.	9.4% increased rate
breast cancer (n =		cyclophosphamide	epirubicin and	of pCR
1,229) (8)			cyclo-	
N Para t	NT A	A	phosphamide	NO
hreast cancer (n –	NA	Anthracycline	Paclitaxel and	NS
695 (9)			antinacycinic	
Advanced-stage	2012	Carboplatin	Paclitaxel,	NS
NSCLC (n =			carboplatin	
1,052)(10)	2012	Compitabina	Compitabies	1.9 months
(n = 886) (11)	2013	Gemenaoine	Gementabine	1.0 monus progression-free
(survival

Adjuvant PDAC (n = 866) (12)	NA	Gemcitabine	Gemcitabine	NS			
Metastatic non- squamous NSCLC (n = 1,202) (13)	2018	Atezolizumab and/or bevacizumab with carboplatin and paclitaxel or nab- paclitaxel	Carboplatin and paclitaxel or nab-paclitaxel	Survival benefit from atezolizumab and bevacizumab. Paclitaxel equivalent to nab-paclitaxel			
Advanced-stage TNBC (n = 902) (14)	2019	Atezolizumab	Nab-paclitaxel alone	Survival benefit from addition of atezolizumab			
Liposomal daunoru	bicin						
Karposi sarcoma	1996	NA	Doxorubicin, bleomycin, and vincristine	NS			
Liposomal irinoteca	in						
Second-line metastatic PDAC (n=266)(15)	2015	5-Fluorouracil and folinic acid	5-Fluorouracil and folinic acid	1.9 months			
Liposomal vincristin	ne						
ALL	2012	NA	NA	20% complete response			
Aqueous suspension of crystalline hafnium oxide nanoparticles *							
Locally advanced soft-tissue sarcoma (n = 179) (16)	2019	Radiotherapy	Radiotherapy	Doubled rate of pathological complete response			
Liposome-encapsulated combination of daunorubicin and cytarabine							
Newly-diagnosed therapy-related AML (t-AML) or AML with myelodysplasia- related changes (AML-MRC) (n = 309) (17)	2017	Liposome- encapsulated combination of daunorubicin and cytarabine	Daunorubicin and cytarabine (7 + 3)	3.7 months			

 309) (17)
 ALL, acute lymphocytic leukaemia; AML, Acute myeloid leukaemia; NA, not applicable; NS, not significant; NSCLC, non-small-cell lung cancer; PDAC, pancreatic ductal adenocarcinoma.

 *This formulation has received European market approval but not FDA approval

Supplementary Table 2. FDA-approved vascular normalization agents plus agents in clinical trials in combination with nanomedicines and/or immunotherapy.

Drug	Target	Approved	Clinical trials with ICBs	Clinical trials
-	-	indications		with
				nanomedicines
Axitinib	VEGFR 1–3,	RCC	Approved for: first-line treatment of	None
	PDGFRβ		patients with advanced-stage renal	
			cell carcinoma with either avelumab	
			or pembrolizumab. NCT02684006,	
			NCT02853331 (both RCC)	
Bevacizumab	Anti-VEGF-A	CRC,	Approved for : first-line treatment of	Multiple phase
	antibody	NSCLC,	patients with metastatic non-	III trials
		breast cancer,	squamous, NSCLC	including
		RCC	NCT03038100, NCT03737643,	NCT02839707
			NCT02891824, NCT03642132,	in ovarian
			NCT03353831, NCT03740165,	cancer with
			NCT03598270 (ovarian cancer);	liposomal
			NCT03414983, NCT02997228,	doxorubicin
			NCT02563002 (CRC or CRC with	and
			MMR deficiency); NCT02366143,	atezolizumab
			NCT03117049 (NSCLC);	and
			NCT03635567, NCT03556839	NCT00785291
			(cervical cancer); NCT03778957,	with nab-
			NCT03434379 (HCC);	paclitaxel.
			NCT02839707 (endometrial cancer);	-
			NCT02017717 (glioblastoma);	
			NCT02420821 (RCC)	
Cabozantinib	VEGFR 2,	MTC, RCC	None	None
	Tie2			
Everolimus	mTOR	RCC, PNET,	NCT01668784, NCT02811861	None
	inhibitor	GI cancer,	(RCC)	
		NSCLC		
Lenalidomide	Chemotherapy	Multiple	NCT02579863	None
	pleiotropic	myeloma		
Levantinib	VEGFR 1–3,	Thyroid	None	None
	PDGFRa,	cancer		
	FGFR 1-4			
Nintedanib	VEGFR 2,	NSCLC	None	None
	PDGFR- α/β ,			
	FGFR 1			
Pazopanib	VEGFR 1–3,	RCC, soft	NCT03260894 (RCC)	None
	PDGFR _β ,	tissue sarcoma		
	FGFR 1–2			
Ramucirumab	Anti-VEGFR2	Gastric	None	None
	antibody	cancer, HCC		
	-	NSCLC, CRC		
Regorafenib	VEGFR 1–3,	CRC	None	None
_	PDGFRβ,			
	FGFR 1–2			
Sorafenib	VEGFR 2,	RCC, HCC,	NCT03755791, NCT03434379,	None

	PDGFRβ	thyroid cancer	NCT02576509, NCT03298451	
			(HCC)	
Sunitinib	VEGFR 1–2,	RCC, GIST,	NCT02684006, NCT03729245,	None
	PDGFRα/β	PNET	NCT02231749, NCT02420821,	
			NCT03141177, NCT02853331,	
			NCT03260894, NCT02811861	
			(RCC)	
Thalidomide	Chemotherapy	Multiple	NCT02576977, NCT02726581	None
	pleiotropic	myeloma	(Multiple myeloma)	
Vandetanib	VEGFR 2	MTC	None	None
Aflibercept	VEGF-	CRC	None	None
_	inhibitory			
	protein			
	(VEGFA,			
	VEGFB,			
	PIGF)			

CRC, colorectal cancer; GIST, gastro-intestinal stromal tumour; HCC, hepatocellular carcinoma; MTC, medullary thyroid cancer; NSCLC, non-small-cell lung cancer; PNET, primitive neuroectodermal tumours. On April 22, 2019 we searched clinicaltrials.gov for the [name of antiangiogenic therapy] AND pembrolizumab OR atezolizumab OR nivolumab OR cemiplimab OR ipilimumab OR durvalumab OR avelumab OR ipilimumab AND Cancer [DISEASE] with filters for Phase III and active or recruiting. For trials in combination with NM, on April 22, 2019 we searched clinicaltrials.gov for the [name of stromal normalizing therapy] AND (nab-paclitaxel OR (liposomal AND doxorubicin)) AND Cancer [DISEASE] with filters for Phase III and active or recruiting. Supplementary table 3. Investigational stromal normalization agents in clinical trials involving nanomedicines and/or immune-checkpoint inhibition.

Drug name/class, target	FDA	Clinical stage	Clinical stage with	Clinical stage
	approved for	for cancer with	immunotherapy	with
	cancer/other	chemotherapy		nanomedicine
	indications			
Losartan, an angiotensin	No/yes	Phase II	NCT03563248;	None
system inhibitor also		completed –	an ongoing phase II	
targeting TGFβ		historically high	trial – in combination	
		resection rates in	with nivolumab,	
		patients with	radiotherapy and	
		locally advanced	FOLFIRINOX in	
Device 1 - ite 1 - e - rite arcia D	NT - /	PDAC(18)	patients with PDAC	NCT0252070.
Paricalcitol, a vitamin D	No/yes	Phase II ongoing	NC102930902;	NC10352079;
receptor agonist		- In combination	phase II ongoing – in	phase II in
		with had-	combination with	PDAC with
		gencitabine in	chemotherany in	r DAC with gemcitabine
		metastatic PDAC	resectable	and nab-
		metastatic i Dire	(NCT02930902	naclitaxel
			NCT03519308) or	puentaner
			metastatic	
			(NCT02754726)	
			PDAC or as	
			maintenance therapy	
			(NCT03331562)	
Plerixafor and	Yes/yes	Phase I	Phase I and	None
immunostimulant via		completed – in	observational studies	
CXCL12 and CXCR4		combination	in patients with	
		with	PDAC, ovarian cancer	
		bevacizumab in	and colorectal cancer	
		GBM(19); phase	(none active or	
		II ongoing – in	recruiting)	
		combination		
		with		
		temozolomide		
		GPM		
Metformin a biguanide	No/ves	DDM Phase III	Phase II ongoing in	Several
used in diabetes that also	NO/ yes	nase m	combination with	including
targets TGEB		combination	nivolumah in NSCI C	NCT02488564
		with paclitaxel	(NCT03048500) and	. a phase II
		and carbonlatin	CRC	trial in
		in endometrial	(NCT03800602).	advanced
		cancer	pembrolizumab in	HER2+ breast
			melanoma	cancer with
			(NCT03311308).	doxil and
			durvalumab in	NCT02336087
			HNSCC	phase I in

All-trans retinoic acid	Yes/yes	Approved for acute promyelotcytic leukaemia	(NCT03618654), and in breast cancer (NCT01042379) Phase II ongoing in melanoma in combination with pembrolizumab	unresectable PDAC with nab-pacliatxel and gemcitabine NCT0330714; phase I in patients with locally
			(NCT03200847) and ipilimumab (NCT02403778)	advanced or metastatic PDAC
PEGPH20, a pegylated recombinant hyaluronidase*	No/no	In phase I/II, PEGPH20 associated with worse survival with FOLFIRINOX in mPDAC(20)	Early phase I trial with avelumab in chemoresistant locally advanced (NCT03481920) or metastatic PDAC (NCT03193190), with pembrolizumab in NSCLC and gastric cancer (NCT02563548, NCT03281369), with atezolizumab in cholangiocarcinoma (NCT03267940)	NCT0271580; phase III trial in stage IV PDAC first- line with gemcitabine and nab- paclitaxel in patients with high tumour hyaluronan levels, based on positive phase II results(21)
Pentoxifylline, a non- selective phosphodiesterase inhibitor	No/yes	Phase II	None	None
Pirfenidone, an anti- inflammatory agent approved for idiopathic pulmonary fibrosis that also targets TGFβ	No/yes	Phase I ongoing in NSCLC	None	None
Tranilast an anti- histamine that also targets TGFβ	No/no (approved as an anti- histamine in Japan and Korea)	None	None	None

CRC, colorectal cancer; FOLFIRINOX; folinic acid, 5-fluorouracil, irinotecan, oxaliplatin; GBM, glioblastoma; HNSCC, head and neck squamous cell carcinoma; NSCLC, non-small-cell lung cancer; PDAC, pancreatic ductal adenocarcinoma;

*PEGPH20 does not reprogram CAFs, but rather depletes desmoplasia, which has been shown in preclinical studies to induce tumor progression. **Some studies have demonstrated a correlation between relaxin levels and tumour progression. For trials involving combination with ICI, on April 22, 2019 we searched clinicaltrials.gov for the [name of stromal normalizing therapy] AND pembrolizumab OR atezolizumab OR nivolumab OR cemiplimab OR ipilimumab OR

durvalumab OR avelumab OR ipilimumab AND Cancer [DISEASE] with filters for and active or recruiting. For trials in combination with NM, on April 22, 2019 we searched clinicaltrials.gov for the [name of stromal normalizing therapy] AND (nab-paclitaxel OR (liposomal AND doxorubicin)) AND Cancer [DISEASE] with filters for and active or recruiting.

Supplementary table 4. Retrospective studies of inhibitors of the renin—angiotensin aldosterone (RAS) system in patients with cancer. This table is updated from a previous review of the senior author (22).

Type,	Year	Number of	Combined	Outcome	Outcome	
population		patients	therapies	control	RAS	
		_		(months)	inhibitor use	
					(months)	
NSCLC						
Stage IIIB-	2009(23)	287	Chemotherapy	OS 8.6	11.7	
IV						
Stage IIIA–B	2015(24)	673	$RT \pm chemotherapy$	No change in	OS	
Metastatic	2015(25)	117	Chemotherapy	OS 12	17	
		201	~			
Stage I-	2016(26)	301	Surgery +	PFS 6.8	9.2	
IIIA/Stage			Chemotherapy or			
IIIB–IV			TKIs			
Stage IIIB–	2016(27)	CP: 1,465	Chemotherapy \pm	CP OS 8.4	12	
IV		CBP: 348	anti-VEGF (CP±			
			bevacizumab)			
Advanced-	2019(28)	283	Anti-PD-1/PD-L1	PFS 3.8	2.5	
stage			antibodies			
Breast cancer	1	1				
Stage I–III	2011(29)	1,413	Neoadjuvant	No change in	OS	
			chemotherapy			
StageI–IIIA	2011(30)	1,779	Curative	Increased recurrence		
Stage II/III	2011(31)	703	Curative	No change in	No change in OS, reduced	
-				recurrence		
Stage I–IV	2012(32)	486	Treatment NR	No change in OS		
Early triple-	2013(33)	800	Resection	No change in	OS	
negative						
Stage I–III	2013(34)	1,449	Neoadjuvant	No change in	OS	
C			chemotherapy			
Stage I–II	2014(35)	4,216	Resected	Increased risk	of second	
C				primary breast	t cancer	
Pathologic	2015(36)	218	Resected	No change in	OS	
N3						
Early	2016(37)	671	NA	No change in	OS	
ER ⁺ /HER2 ⁻						
RCC	•	·		·		
Metastatic	2011(38)	127	Sunitinib	PFS 6	13	
Metastatic	2014(39)	278	Sunitinib	Higher PFS w	ith RAS	
	Ň,			inhibitor use		
Metastatic	2015(40)	4,736	Systemic	OS 16.7	26.7	
Metastatic	2015(41)	213	Sunitinib	Longer OS wi	th RAS	
	, ,			inhibitors		
Non-	2015(42)	557	Resection	Higher 5-year	survival rate	
metastatic	, ,			with RAS inhi	ibitors	
Metastatic	2016(43)	1,545	anti-VEGF/placebo	No change in OS		

Urinary tract cancer						
Localized	2012(44)	279	Resection	5-year MFS	93.0	
UTUC				72.8%		
NMIBC	2012(45)	330	Resection	5-year RFS	78.4	
				53.3%		
NMIBC	2015(46)	340	Resection	5-year RFS	45.6	
				28.1%		
Bladder	2017(47)	269	Resection	5-year OS	76.1	
cancer, T1-4.				61.4%		
N0/>1						
Prostate cance	r					
Local/locally	2016(48)	558	RT plus HT	Biochemical	18.4	
advanced	2010(40)	550	KI plus III	recurrence	10.4	
auvanceu				38.3%		
PDAC				50.570		
Advanced	2010(49)	155	Chemotherany	05.9.5	15.1	
Auvanceu-	2010(49)	155	Chemotherapy	03 9.5	13.1	
Advanced	2012(50)	250	Chamatharany	Longer OS		
Advanced-	2015(50)	230	Chemotherapy	Longer US		
Advensed	2015(51)	240	Charactherear	05 11 2	15.6	
Advanced-	2015(51)	349	Chemotherapy	05 11.2	15.0	
stage	2015(52)	164				
11-4/N0-1	2015(52)	164	Resection	No change in	US	
Resected,	2017(53)	794	-	OS 19.3	36.3	
locally						
advanced,						
metastatic						
Oesophageal o	cancer	1	1	1		
Stage I–IV	2015(54)	1,174	CRT +/- resection	No change in	OS	
Stage I–III	2015(55)	141	Resection	OS 58.3	75.3	
Advanced-	2018(56)	375	Chemotherapy	OS 30	59	
stage						
Gastric cancer	r					
Advanced-	2012(57)	63	Chemotherapy	OS 8.2	13.9	
stage						
Colorectal can	icer	•	·		•	
CRC stage II	2007(58)	55	Surgery	More distant r	netastasis with	
C				less RAS inhi	bitors	
Advanced-	2013(59)	262	Chemotherapy or	OS 695 days	1,341 (when	
stage CRC	()	-	RT		combined	
8					with B	
					blockers)	
Metastatic	2015(60)	181	Chemotherapy and	05 15 2	26.5	
CRC	2013(00)	101	anti-VEGE	months	20.5	
				monuis		
Rectal	2016(61)	115.	Neoadiuvant (C)PT	nCR 17%	52%	
cancer	2010(01)	186		PCIX 1770	5270	
Hangtoh:1:	aanaar	100	1		1	
HCV rolotad	cuncer	105.	Desertion	5 1000 05	767	
HC v -related	2011(02)	103;	Resection	51 60/	/0./	
HUU WITHOUT		141		31.0%		
cirrnosis and						

with					
cirrhosis	0015(50)	1.50		0.0.10	
HCC	2015(63)	153	RFA-treated	OS 48 months	84
Advanced- stage BTC	2016(64)	287	Chemotherapy	No change i	n OS
HCC	2017(65)	156; 76	Sorafenib or experimental therapy or BSC	OS 6.8	11.9
Melanoma					
Nonmetastati	2013(66)	741	Resection	No change i	n OS
Glioblastoma					
Supratentori al GBM	2012(67)	87	RT	Steroid-spar	ing effect
Supratentori al GBM	2015(68)	81	RT plus temozolomide	OS 12.9	16.7
Supratentori al GBM,	2016(69)	22	-	Less oedem	a
newly diagnosed					
GBM	2017(70)	1,186	Chemotherapy and bevacizumab	OS 56 weeks	99
Haematologic	al malignanc	ies			
Multiple myeloma	2005(71)	168	PBSCT	OS 73.3	38.7
AML	2014(72)	1,043	Chemotherapy	No change i	n OS
Ovarian cance	er				
Stage IIIC or	2019(73)	222	Standard of care	OS 33 months	63
Studies includ	ing several c	ancer types		monuis	
Lung	2013(74)	4 241·	_	Shorter OS	in breast and
CRC	2013(74)	3 967		lung	in breast and
Breast		4 019		iung	
Prostate		3.355			
Breast	2014(75)	9.814	_	No effect or	OS
CRC	201 ((75)	4 762			
Prostate		6.339			

AML, acute myeloid leukaemia; BSC, best-supportive care; BTC, biliary tract cancer; CP, carboplatin and paclitaxel; CBP, carboplatin, paclitaxel and bevacizumab; CRC, colorectal cancer; HCC, hepatocellular carcinoma; HCV, hepatitis C virus; NA, not applicable; NR, not reported; NSCLC, non-small-cell lung cancer; NMIBC, nonmuscle-invasive bladder cancer; OS, overall survival; PBSCT, peripheral blood stem cell transplantation; PDAC, pancreatic ductal adenocarcinoma; RAS, renin–angiotensin–aldosterone system; RCC, renal cell carcinoma; RFA, radiofrequency ablation; TKI, tyrosine-kinase inhibitor; UTUC, upper-tract urothelial carcinoma.

Supplemental References

- 1. Chauhan VP & Jain RK (2013) Strategies for advancing cancer nanomedicine. *Nat Mater* 12(11):958-962.
- 2. Northfelt DW, *et al.* (1998) Pegylated-liposomal doxorubicin versus doxorubicin, bleomycin, and vincristine in the treatment of AIDS-related Kaposi's sarcoma: results of a randomized phase III clinical trial. *Journal of clinical oncology* 16(7):2445-2451.
- 3. Gordon AN, *et al.* (2001) Recurrent epithelial ovarian carcinoma: a randomized phase III study of pegylated liposomal doxorubicin versus topotecan. *Journal of clinical oncology* 19(14):3312-3322.
- 4. O'Brien ME, *et al.* (2004) Reduced cardiotoxicity and comparable efficacy in a phase III trial of pegylated liposomal doxorubicin HCl (CAELYXTM/Doxil®) versus conventional doxorubicin for first-line treatment of metastatic breast cancer. *Annals of oncology* 15(3):440-449.
- 5. Gradishar W, *et al.* (2005) Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer. *Journal of clinical oncology: official journal of the American Society of Clinical Oncology* 23(31):7794.
- 6. Gradishar WJ, *et al.* (2012) Phase II trial of nab-paclitaxel compared with docetaxel as first-line chemotherapy in patients with metastatic breast cancer: final analysis of overall survival. *Clinical breast cancer* 12(5):313-321.
- 7. Rugo HS, *et al.* (2015) Randomized phase III trial of paclitaxel once per week compared with nanoparticle albumin-bound nab-paclitaxel once per week or ixabepilone with bevacizumab as first-line chemotherapy for locally recurrent or metastatic breast cancer: CALGB 40502/NCCTG N063H (Alliance). *Journal of Clinical Oncology* 33(21):2361.
- 8. Untch M, *et al.* (2016) Nab-paclitaxel versus solvent-based paclitaxel in neoadjuvant chemotherapy for early breast cancer (GeparSepto—GBG 69): a randomised, phase 3 trial. *The lancet oncology* 17(3):345-356.
- 9. Gianni L, *et al.* (2018) Comparing neoadjuvant nab-paclitaxel vs paclitaxel both followed by anthracycline regimens in women with ERBB2/HER2-negative breast cancer—the Evaluating Treatment with Neoadjuvant Abraxane (ETNA) Trial: a randomized phase 3 clinical trial. *JAMA oncology* 4(3):302-308.
- 10. Socinski MA, *et al.* (2012) Weekly nab-paclitaxel in combination with carboplatin versus solvent-based paclitaxel plus carboplatin as first-line therapy in patients with advanced non–small-cell lung cancer: final results of a phase III trial. *Journal of Clinical Oncology* 30(17):2055-2062.
- 11. Von Hoff DD, *et al.* (2013) Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. *N Engl J Med* 369(18):1691-1703.
- 12. Tempero MA, *et al.* (2019) APACT: phase III, multicenter, international, open-label, randomized trial of adjuvant nab-paclitaxel plus gemcitabine (nab-P/G) vs gemcitabine (G) for surgically resected pancreatic adenocarcinoma. (American Society of Clinical Oncology).
- 13. Socinski MA, et al. (2018) Atezolizumab for First-Line Treatment of Metastatic Nonsquamous NSCLC. New England Journal of Medicine.

- 14. Schmid P, *et al.* (2018) Atezolizumab and Nab-Paclitaxel in Advanced Triple-Negative Breast Cancer. *The New England Journal of Medicine* 379:2108-2121.
- 15. Wang-Gillam A, *et al.* (2015) Nanoliposomal irinotecan with fluorouracil and folinic acid in metastatic pancreatic cancer after previous gemcitabine-based therapy (NAPOLI-1): a global, randomised, open-label, phase 3 trial. *The Lancet* 387(10018):545-557.
- 16. Bonvalot S, *et al.* (2019) NBTXR3, a first-in-class radioenhancer hafnium oxide nanoparticle, plus radiotherapy versus radiotherapy alone in patients with locally advanced soft-tissue sarcoma (Act. In. Sarc): a multicentre, phase 2–3, randomised, controlled trial. *The Lancet Oncology*.
- 17. Lancet JE, *et al.* (2016) Final results of a phase III randomized trial of CPX-351 versus 7+ 3 in older patients with newly diagnosed high risk (secondary) AML. (American Society of Clinical Oncology).
- 18. Murphy JE, *et al.* (2019) A phase II study of neoadjuvant FOLFIRINOX in combination with losartan followed by chemoradiotherapy in locally advanced pancreatic cancer: R0 resection rate and clinical outcomes. *JAMA Oncology* 5(7):1020-1027.
- 19. Lee EQ, *et al.* (2018) Phase I and biomarker study of plerixafor and bevacizumab in recurrent high-grade glioma. *Clin. Cancer Res.* 24(19):4643-4649.
- 20. Wang-Gillam A (2019) Targeting Stroma: A Tale of Caution. *Journal of Clinical Oncology* 37(13):1041-1043.
- 21. Doherty GJ, Tempero M, & Corrie PG (2018) HALO-109–301: a Phase III trial of PEGPH20 (with gemcitabine and nab-paclitaxel) in hyaluronic acid-high stage IV pancreatic cancer. *Future Oncology* 14(1):13-22.
- 22. Pinter M & Jain RK (2017) Targeting the renin-angiotensin system to improve cancer treatment: Implications for immunotherapy. *Science Translational Medicine* 9(410):eaan5616.
- 23. Wilop S, *et al.* (2009) Impact of angiotensin I converting enzyme inhibitors and angiotensin II type 1 receptor blockers on survival in patients with advanced non-small-cell lung cancer undergoing first-line platinum-based chemotherapy. *J Cancer Res Clin Oncol* 135(10):1429-1435.
- 24. Wang H, *et al.* (2015) Incidental receipt of cardiac medications and survival outcomes among patients with stage III non–small-cell lung cancer after definitive radiotherapy. *Clinical lung cancer* 16(2):128-136.
- 25. Aydiner A, Ciftci R, & Sen F (2015) Renin-Angiotensin system blockers may prolong survival of metastatic non-small cell lung cancer patients receiving erlotinib. *Medicine* 94(22).
- 26. Miao L, *et al.* (2016) Impact of angiotensin I-converting enzyme inhibitors and angiotensin II type-1 receptor blockers on survival of patients with NSCLC. *Sci. Rep.* 6:21359.
- 27. Menter AR, *et al.* (2016) Effect of angiotensin system inhibitors on survival in patients receiving chemotherapy for advanced non-small cell lung cancer. *Clinical Lung Cancer*.
- 28. Medjebar S, *et al.* (2019) Angiotensin-converting enzyme inhibitor prescription is associated with decreased progression-free survival (PFS) and overall survival (OS) in patients with lung cancers treated with PD-1/PD-L1 immune checkpoint blockers. in *ASCO Annual Meeting*, p e20512.

- 29. Melhem-Bertrandt A, *et al.* (2011) Beta-blocker use is associated with improved relapsefree survival in patients with triple-negative breast cancer. *Journal of clinical oncology* 29(19):2645.
- 30. Ganz PA, Habel LA, Weltzien EK, Caan BJ, & Cole SW (2011) Examining the influence of beta blockers and ACE inhibitors on the risk for breast cancer recurrence: results from the LACE cohort. *Breast cancer research and treatment* 129(2):549.
- 31. Chae YK, *et al.* (2011) Reduced risk of breast cancer recurrence in patients using ACE inhibitors, ARBs, and/or statins. *Cancer investigation* 29(9):585-593.
- 32. Şendur MA, *et al.* (2012) Efficacy of angiotensin-receptor blockers on demographic and clinico-pathological characteristics of breast cancer. *The Breast* 21(3):419-420.
- 33. Botteri E, *et al.* (2013) Therapeutic effect of β -blockers in triple-negative breast cancer postmenopausal women. *Breast cancer research and treatment* 140(3):567-575.
- 34. Chae YK, *et al.* (2013) Use of ACE inhibitors and angiotensin receptor blockers and primary breast cancer outcomes. *Journal of Cancer* 4(7):549.
- 35. Boudreau DM, *et al.* (2014) Comparative safety of cardiovascular medication use and breast cancer outcomes among women with early stage breast cancer. *Breast cancer research and treatment* 144(2):405-416.
- 36. Babacan T, *et al.* (2015) The effect of renin-angiotensin-system inhibition on survival and recurrence of N3+ breast cancer patients. *J BUON* 20(1):50-56.
- 37. Goldvaser H, *et al.* (2016) The Association between Angiotensin Receptor Blocker Usage and Breast Cancer Characteristics. *Oncology* 91(4):217-223.
- 38. Keizman D, *et al.* (2011) Angiotensin system inhibitors and outcome of sunitinib treatment in patients with metastatic renal cell carcinoma: a retrospective examination. *Eur J Cancer* 47(13):1955-1961.
- 39. Keizman D, *et al.* (2014) Active smoking may negatively affect response rate, progression-free survival, and overall survival of patients with metastatic renal cell carcinoma treated with sunitinib. *The oncologist* 19(1):51-60.
- 40. McKay RR, *et al.* (2015) Angiotensin system inhibitors and survival outcomes in patients with metastatic renal cell carcinoma. *Clin. Cancer Res.* 21(11):2471-2479.
- 41. Izzedine H, Derosa L, Le Teuff G, Albiges L, & Escudier B (2015) Hypertension and angiotensin system inhibitors: impact on outcome in sunitinib-treated patients for metastatic renal cell carcinoma. *Annals of Oncology* 26(6):1128-1133.
- 42. Miyajima A, *et al.* (2015) Prognostic impact of renin–angiotensin system blockade on renal cell carcinoma after surgery. *Annals of surgical oncology* 22(11):3751-3759.
- 43. Sorich MJ, Kichenadasse G, Rowland A, Woodman RJ, & Mangoni AA (2016) Angiotensin system inhibitors and survival in patients with metastatic renal cell carcinoma treated with VEGF - targeted therapy: A pooled secondary analysis of clinical trials. *International journal of cancer* 138(9):2293-2299.
- 44. Tanaka N, *et al.* (2012) Prognonstic impact of renin-angiotensin system blockade in localised upper-tract urothelial carcinoma. *British journal of cancer* 106(2):290.
- 45. Yuge K, *et al.* (2012) Prognostic value of renin–angiotensin system blockade in nonmuscle-invasive bladder cancer. *Annals of surgical oncology* 19(12):3987-3993.
- 46. Blute Jr ML, *et al.* (2015) Renin-angiotensin inhibitors decrease recurrence after transurethral resection of bladder tumor in patients with nonmuscle invasive bladder cancer. *The Journal of urology* 194(5):1214-1219.

- 47. Yoshida T, *et al.* (2017) Prognostic impact of renin-angiotensin inhibitors in patients with bladder cancer undergoing radical cystectomy. *Annals of surgical oncology* 24(3):823-831.
- 48. Alashkham A, *et al.* (2016) The incidence and risk of biochemical recurrence following radical radiotherapy for prostate cancer in men on angiotensin-converting enzyme inhibitors (ACEIs) or angiotensin receptor blockers (ARBs). *Clinical genitourinary cancer* 14(5):398-405.
- 49. Nakai Y, *et al.* (2010) Inhibition of renin-angiotensin system affects prognosis of advanced pancreatic cancer receiving gemcitabine. *Br. J. Cancer* 103(11):1644-1648.
- 50. Nakai Y, *et al.* (2013) Clinical outcomes of chemotherapy for diabetic and nondiabetic patients with pancreatic cancer: better prognosis with statin use in diabetic patients. *Pancreas* 42(2):202-208.
- 51. Nakai Y, *et al.* (2015) The inhibition of renin-angiotensin system in advanced pancreatic cancer: an exploratory analysis in 349 patients. *J Cancer Res Clin Oncol* 141(5):933-939.
- 52. Tingle SJ, Moir JA, & White SA (2015) Role of anti-stromal polypharmacy in increasing survival after pancreaticoduodenectomy for pancreatic ductal adenocarcinoma. *World journal of gastrointestinal pathophysiology* 6(4):235.
- 53. Liu H, *et al.* (2017) Use of angiotensin system inhibitors is associated with immune activation and longer survival in nonmetastatic pancreatic ductal adenocarcinoma. *Clin. Cancer Res.* 23(19):5959-5969.
- 54. He L-R, *et al.* (2015) Impact of comorbidities and use of common medications on cancer and non-cancer specific survival in esophageal carcinoma. *BMC cancer* 15(1):111.
- 55. Chen Y-H, *et al.* (2015) Prognostic impact of renin-angiotensin system blockade in esophageal squamous cell carcinoma. *Journal of the Renin-Angiotensin-Aldosterone System* 16(4):1185-1192.
- 56. Geller A, *et al.* (2018) Angiotensin system inhibitors during induction chemotherapy for esophageal adenocarcinoma: Analysis of survival. (American Society of Clinical Oncology).
- 57. Kim ST, *et al.* (2012) How does inhibition of the renin-angiotensin system affect the prognosis of advanced gastric cancer patients receiving platinum-based chemotherapy? *Oncology* 83(6):354-360.
- 58. Heinzerling JH, Anthony T, Livingston EH, & Huerta S (2007) Predictors of distant metastasis and mortality in patients with stage II colorectal cancer. *The American surgeon* 73(3):230-238.
- 59. Engineer DR, Burney BO, Hayes TG, & Garcia JM (2013) Exposure to ACEI/ARB and β-blockers is associated with improved survival and decreased tumor progression and hospitalizations in patients with advanced colon cancer. *Translational oncology* 6(5):539-545.
- 60. Osumi H, *et al.* (2015) Angiotensin II type-1 receptor blockers enhance the effects of bevacizumab-based chemotherapy in metastatic colorectal cancer patients. *Molecular and clinical oncology* 3(6):1295-1300.
- 61. Morris ZS, *et al.* (2016) Increased tumor response to neoadjuvant therapy among rectal cancer patients taking angiotensin converting enzyme inhibitors or angiotensin receptor blockers. *Cancer* 122(16):2487-2495.

- 62. Kaibori M, *et al.* (2011) Evaluation of metabolic factors on the prognosis of patients undergoing resection of hepatocellular carcinoma. *Journal of gastroenterology and hepatology* 26(3):536-543.
- 63. Facciorusso A, *et al.* (2015) Angiotensin receptor blockers improve survival outcomes after radiofrequency ablation in hepatocarcinoma patients. *Journal of gastroenterology and hepatology* 30(11):1643-1650.
- 64. Nakai Y, *et al.* (2016) No survival benefit from the inhibition of renin–angiotensin system in biliary tract cancer. *Anticancer research* 36(9):4965-4970.
- 65. Pinter M, *et al.* (2017) Use of inhibitors of the renin–angiotensin system is associated with longer survival in patients with hepatocellular carcinoma. *United European Gastroenterology Journal* 5(7):987-996.
- 66. De Giorgi V, *et al.* (2013) Effect of β-blockers and other antihypertensive drugs on the risk of melanoma recurrence and death. *Mayo Clinic Proceedings*, (Elsevier), pp 1196-1203.
- 67. Carpentier A, *et al.* (2012) Steroid sparing effects of angiotensin II inhibitors in glioblastoma patients. *European journal of neurology* 19(10):1337-1342.
- 68. Januel E, *et al.* (2015) Impact of renin angiotensin system blockade on clinical outcome in glioblastoma. *European journal of neurology* 22(9):1304-1309.
- 69. Kourilsky A, *et al.* (2016) Impact of Angiotensin-II receptor blockers on vasogenic edema in glioblastoma patients. *Journal of neurology* 263(3):524-530.
- 70. Levin VA, Chan J, Datta M, Yee JL, & Jain RK (2017) Effect of angiotensin system inhibitors on survival in newly diagnosed glioma patients and recurrent glioblastoma patients receiving chemotherapy and/or bevacizumab. *Journal of neuro-oncology* 134(2):325-330.
- 71. Buchler T, *et al.* (2005) Outcome of patients with multiple myeloma and hypertension treated with angiotensin-I-converting enzyme inhibitors during high-dose chemotherapy. *The Hematology Journal* 5(7):559-564.
- 72. Chae YK, Dimou A, Pierce S, Kantarjian H, & Andreeff M (2014) The effect of calcium channel blockers on the outcome of acute myeloid leukemia. *Leukemia & lymphoma* 55(12):2822-2829.
- 73. Zhao Y, *et al.* (2019) Losartan treatment enhances chemotherapy efficacy and reduces ascites in ovarian cancer models by normalizing the tumor stroma. *Proc. Natl. Acad. Sci. U. S. A.* 116(6):2210-2219.
- 74. Holmes S, Griffith EJ, Musto G, & Minuk GY (2013) Antihypertensive medications and survival in patients with cancer: a population-based retrospective cohort study. *Cancer epidemiology* 37(6):881-885.
- 75. Cardwell CR, *et al.* (2014) Drugs affecting the renin-angiotensin system and survival from cancer: a population based study of breast, colorectal and prostate cancer patient cohorts. *BMC medicine* 12(1):28.