## **Supporting Information**

## Nanoparticles for co-delivery of Osimertinib and Selumetinib to Overcome Osimertinib-acquired Resistance in Non-small Cell Lung Cancer

Wu Chen<sup>1,#</sup>, Danlei Yu<sup>2, 3, #</sup>, Shi-Yong Sun<sup>3,\*</sup>, Feng Li<sup>1,\*</sup>

- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849 USA
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
- 3. Department of Hematology and Medical Oncology, Emory University School of Medicine

and Winship Cancer Institute, Atlanta, GA 30322 USA

# Equal contribution

\* Corresponding authors:

Shi-Yong Sun, PhD

Emory University School of Medicine 1365 Clifton Road, C-3088, Atlanta, GA 30322. E-mail: <u>ssun@emory.edu</u>

Feng Li, PhD Auburn University 720 S. Donahue Dr. Auburn, AL 36849, USA Tel:334-844-7406 Email: <u>FZL0023@auburn.edu</u>

## Methods

## **Determination of Intracellular ROS**.

The intracellular ROS was determined with a DCFH-DA dye method. Briefly, cells were seeded into a 12-well plate at a density of 100,000 cells per well and incubated overnight. Cells were treated with DCFH-DA ( $20 \mu M$ ) in serum-free medium at 37 °C for 3 hours. At the end of treatment, cells were washed, collected, and analyzed by flow cytometry (BD Accuri C6 Plus).



Figure S1. <sup>1</sup>H-NMR of PEG-SEL conjugate and SEL free drug in DMSO.



**Figure S2.** (A) Synthesis procedure of PEG-SEL conjugate with a NON-ROS responsive ester linker (PEG-C-SEL). 1. EDCI, HOBT, DMF; 2. DCC, DMAP, DMF. (B) <sup>1</sup>H-NMR of PEG-C-SEL in DMSO.



**Figure S3.** SEL drug release profiles of ROS responsive PEG-S-SEL conjugate and non-ROS responsive PEG-C-SEL conjugate. Results are mean  $\pm$  SD (n=3). \*\*\*, P < 0.001



**Figure S4**. SEL concentration in NPs prepared with PEG-S-SEL conjugate and physical encapsulation of SEL free drug in micelle NP. Results are mean  $\pm$  SD (n=3). \*\*, P < 0.01.



Figure S5: Atomic force microscope (AFM) images of (A) OSI-SEL NP, (B) SEL NP, (C) OSI NP



**Figure S6.** (A) Particle size and (B) Zeta potential of different Coumarin-6 loaded nanoparticles. Results are mean  $\pm$  SD (n=3).



**Figure S7. In vitro drug release from OSI-SEL NPs.** Release of (A) OSI and (B) SEL from NPs in the presence or absence of 5 mM H<sub>2</sub>O<sub>2</sub>. Results are mean  $\pm$  SD (n=3). \*\*\*, P < 0.001



**Figure S8.** Anticancer activities of PEG-S-SEL and PEG-C-SEL in combination with OSI were determined with MTT assay. Results are mean  $\pm$  SD (n=4). \*\*\*, P < 0.001.



**Figure S9**. The indicated cell lines seeded in 96-well cell culture plates were treated with different concentrations of the tested NPs for 3 days. Cell numbers were determined with the SRB assay and expressed as the percentage of control. Results are mean  $\pm$  SD (n = 4).



Figure S10. *In vitro* anticancer efficacy against OSI-sensitive PC9 NSCLC cells. Cell viability were determined with the MTT assay after treatment with different formulations for 48 hours. Results are mean  $\pm$  SD (n=3).



**Figure S11.** Intracellular ROS levels of PC9 and PC9 AR cells determined with DCFH-DA dye/flow cytometry method. Results are mean  $\pm$  SD (n=3). \*\*, P < 0.01.