

## Supplementary material

## Table S1: List of primers

| Name                                                                                                | Sequence                                          | Description                         |  |  |  |  |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------|--|--|--|--|--|--|--|--|--|--|--|
| Genetic engineering                                                                                 |                                                   |                                     |  |  |  |  |  |  |  |  |  |  |  |
| ompR deletion / complementation     oCK647   gaggaattcgagctcggtaccCGGTTTCACGTACTCGATAGC   ompR-up F |                                                   |                                     |  |  |  |  |  |  |  |  |  |  |  |
| oCK647                                                                                              | gaggaattcgagctcggtaccCGGTTTCACGTACTCGATAGC        | ompR-up F                           |  |  |  |  |  |  |  |  |  |  |  |
| oCK648                                                                                              | tcgcctcatgcccgggGTTTATACTCCCAAAGGTTCG             | ompR-up R                           |  |  |  |  |  |  |  |  |  |  |  |
| oCK649                                                                                              | aaaccccgggCATGAGGCGATTGCGCTTC                     | <i>ompR</i> -down F                 |  |  |  |  |  |  |  |  |  |  |  |
| oCK650                                                                                              | ctatcaacaggagtccaagactagtATCCGCCAGTTGCTTAACACC    | ompR-down R                         |  |  |  |  |  |  |  |  |  |  |  |
| oCK354                                                                                              | CCGAGCGTTCTGAACAAATC                              | plasmid integration                 |  |  |  |  |  |  |  |  |  |  |  |
| oCK576                                                                                              | CATCGGCAGGAGGTTAAGAC                              | <i>ompR</i> deletion verification F |  |  |  |  |  |  |  |  |  |  |  |
| oCK578                                                                                              | ATCAGCAGCGTGCGGTCATC                              | <i>ompR</i> deletion verification R |  |  |  |  |  |  |  |  |  |  |  |
| oVT559                                                                                              | gctcggtacccggggatcctctagaaagaggagaaaATGCAAGAGAACT | OmpR complementation F              |  |  |  |  |  |  |  |  |  |  |  |
|                                                                                                     | ACAAGATTC                                         |                                     |  |  |  |  |  |  |  |  |  |  |  |
| oVT361                                                                                              | cgcaagcttgcatgcctgcagATAAGTCGTCACCAGGCTG          | OmpR complementation R              |  |  |  |  |  |  |  |  |  |  |  |
| qRT-PCR                                                                                             |                                                   | •                                   |  |  |  |  |  |  |  |  |  |  |  |
| oVT614                                                                                              | TGCAGTTTCCAGCTCCAAAC                              | ompC-F                              |  |  |  |  |  |  |  |  |  |  |  |
| oVT615                                                                                              | AGCGTCGTATTTCAGACCAC                              | ompC- R                             |  |  |  |  |  |  |  |  |  |  |  |
| oVT436                                                                                              | AAAAACGAGCGTGACACTGC                              | ompF- F                             |  |  |  |  |  |  |  |  |  |  |  |
| oVT437                                                                                              | AGCACCAACGATACCAAAGC                              | ompF R                              |  |  |  |  |  |  |  |  |  |  |  |
| oBV97                                                                                               | TGATGCTGGCTGAAAACACC                              | <i>rpoD-</i> F                      |  |  |  |  |  |  |  |  |  |  |  |
| oBV98                                                                                               | TTCAACGGTGCCCATTTCAC                              | rpoD- R                             |  |  |  |  |  |  |  |  |  |  |  |
| Sequencing                                                                                          | τ<br>5                                            | 1                                   |  |  |  |  |  |  |  |  |  |  |  |
| oVT357                                                                                              | AGGGGCGTTTTCATCTCGTT                              | ompR-F                              |  |  |  |  |  |  |  |  |  |  |  |
| oVT599                                                                                              | TCGGCAAAATCGCGAAGTTC                              | ompR-R                              |  |  |  |  |  |  |  |  |  |  |  |
| oVT1083                                                                                             | GTAAGCTGACGAACCAGGCA                              | fim-F                               |  |  |  |  |  |  |  |  |  |  |  |
| oVT1084                                                                                             | TAATCTCTGGCTCCCGTTGC                              | fim-F                               |  |  |  |  |  |  |  |  |  |  |  |

| Strain |               | MIC (µg/ml) |      |         |     |     |       |     |       |     |     |  |  |  |  |  |
|--------|---------------|-------------|------|---------|-----|-----|-------|-----|-------|-----|-----|--|--|--|--|--|
|        |               | IPM         | РМВ  | СІР     | MIN | KAN | GEN   | AMK | тов   | CHL | SPT |  |  |  |  |  |
| 655    | WT            | 0.0625      | 0.25 | < 0.008 | 1   | 1   | 0.125 | 0.5 | 0.25  | 4   | 8   |  |  |  |  |  |
| MG1    | $\Delta ompR$ | 0.031       | 0.25 | 0.008   | 1   | 1   | 0.125 | 0.5 | 0.125 | 8   | 8   |  |  |  |  |  |
| 7136   | WT            | 0.0625      | 0.25 | 0.008   | 0.5 | 2   | 0.5   | 1   | 0.5   | 4   | 8   |  |  |  |  |  |
|        | $\Delta ompR$ | 0.031       | 0.25 | 0.008   | 0.5 | 2   | 0.25  | 1   | 0.25  | 4   | 8   |  |  |  |  |  |
| 3136   | WT            | 0.0625      | 0.25 | 0.016   | 2   | 2   | 0.5   | 1   | 1     | 8   | 16  |  |  |  |  |  |
| SI     | $\Delta ompR$ | 0.031       | 0.25 | 0.008   | 2   | 2   | 0.5   | 1   | 0.25  | 8   | 16  |  |  |  |  |  |
| S179   | WT            | 0.0625      | 0.25 | 0.008   | 0.5 | 4   | 0.5   | 1   | 0.5   | 8   | 32  |  |  |  |  |  |
|        | $\Delta ompR$ | 0.0625      | 0.25 | 0.008   | 0.5 | 2   | 0.5   | 1   | 0.5   | 8   | 16  |  |  |  |  |  |
| S135   | WT            | 0.0625      | 0.25 | 0.008   | 0.5 | 2   | 0.5   | 2   | 0.5   | 4   | 8   |  |  |  |  |  |
|        | $\Delta ompR$ | 0.031       | 1    | 0.016   | 0.5 | 4   | 0.25  | 1   | 0.5   | 4   | 16  |  |  |  |  |  |
| 4      | WT            | 0.0625      | 0.25 | 0.008   | 0.5 | 2   | 0.5   | 2   | 0.5   | 4   | 16  |  |  |  |  |  |
| S2     | $\Delta ompR$ | 0.031       | 0.5  | 0.008   | 0.5 | 2   | 0.25  | 0.5 | 0.25  | 8   | 16  |  |  |  |  |  |
| 52     | WT            | 0.125       | 0.25 | <0.008  | 1   | 4   | 1     | 2   | 1     | 4   | 16  |  |  |  |  |  |
| S5     | $\Delta ompR$ | 0.125       | 0.25 | 0.016   | 1   | 4   | 1     | 2   | 1     | 8   | 16  |  |  |  |  |  |
| 62     | WT            | 0.031       | 0.5  | <0.008  | 0.5 | 4   | 0.5   | 1   | 0.5   | 4   | 16  |  |  |  |  |  |
| SI     | $\Delta ompR$ | 0.031       | 0.5  | 0.008   | 0.5 | 2   | 0.5   | 1   | 0.5   | 8   | 32  |  |  |  |  |  |
| 31     | WT            | 0.0625      | 0.5  | < 0.008 | 2   | 8   | 0.5   | 2   | 0.5   | 4   | 16  |  |  |  |  |  |
| LF3    | ΔompR         | 0.031       | 0.25 | < 0.008 | 0.5 | 2   | 0.25  | 1   | 0.25  | 4   | 16  |  |  |  |  |  |

## Table S2: MIC of standard of care antibiotics against WT and △ompR AIEC strains

IPM: imipenem, PMB: polymyxin B, CIP: ciprofloxacin, MIN: minocycline, KAN: kanamycin, GEN: gentamycin, AMK: amikacin, TOB: tobramycin, CHL: chloramphenicol, SPT: spectinomycin. MIC shifts equal or higher than 4-fold between WT and  $\Delta ompR$  strains are highlighted in bold.

| Stugin        |               | MIC (μg/ml) |            |
|---------------|---------------|-------------|------------|
| Stram         |               | Vancomycin  | Rifampicin |
| 655           | WT            | 128         | 4          |
| MGI           | $\Delta ompR$ | 64          | 2          |
| 98            | WT            | 128         | 4          |
| 713           | $\Delta ompR$ | 128         | 4          |
| 98            | WT            | 128         | 2          |
| S13           | $\Delta ompR$ | 64          | 2          |
| 6/            | WT            | 128         | 4          |
| SI3           | $\Delta ompR$ | 64          | 4          |
| S135          | WT            | >128        | 2          |
|               | $\Delta ompR$ | 64          | 2          |
| <b>†</b> †    | WT            | 128         | 2          |
| $S2^{\prime}$ | $\Delta ompR$ | 64          | 2          |
| 2             | WT            | >128        | 8          |
| SS            | $\Delta ompR$ | >128        | 4          |
| 62            | WT            | 128         | 4          |
| S16           | $\Delta ompR$ | 64          | 2          |
| 31            | WT            | >128        | 2          |
| LF            | $\Delta ompR$ | 64          | 2          |

Table S3: MIC of vancomycin and rifampicin against WT and  $\triangle ompR$  AIEC strains

MIC shifts equal or higher than 4-fold between WT and  $\Delta ompR$  strains are highlighted in bold.



yeast aggregation (titer =0.16)

**Figure S1: Example of a yeast aggregation titer assessment.** A fixed amount of yeast cells suspension and decreasing concentrations of bacteria were mixed, and the lowest bacterial dilution still able to form homogenous aggregation was used as read-out. In this example, the yeast aggregation titer is 0.16.

| Consensus T<br>7136 T<br>LF31 T<br>S135 T<br>S136 T<br>S162 T<br>S162 T                    |                                         |                                                                                             | T<br>T<br>T<br>T<br>T<br>T                                | A A A A A A A A | A<br>A A A A A A A                                                                            | A A A A A A A                        | T<br>T<br>T<br>T<br>T<br>T<br>T<br>T |                                      | 2 fir<br>T 1<br>T 1<br>T 1<br>T 1<br>T 1 |                     |                                                             | ТТТТТ                                   | 0 0 0 0 0 0                | A<br>A A<br>A<br>A<br>A<br>A                         | A<br>A<br>A<br>A<br>A<br>A           | T<br>T<br>T<br>T<br>T                                       | T '<br>T '<br>T '<br>T '                |            | г т<br>г т<br>г т<br>г т<br>г т                             | т<br>т<br>т<br>т | A A A A A A A A A A A A A A A A A A A | T<br>T<br>T<br>T<br>T<br>T | 0 0 0 0 0 0 0   | ТТТТТ                                | T<br>T<br>T<br>T<br>T<br>T<br>T         | 0 0 0 0 0 0              | A<br>A<br>A<br>A<br>A<br>A<br>A | ТТТТТ                           | T<br>T<br>T<br>T<br>T<br>T                                    | T <sup>-</sup><br>T <sup>-</sup><br>T <sup>-</sup><br>T <sup>-</sup><br>T <sup>-</sup> |            |            |                                       | T<br>T<br>T<br>T<br>T<br>T | 6 6 6 6 6 6 6                             | T<br>T<br>T<br>T<br>T<br>T<br>T | т<br>ттттт<br>т                 | A A A A A A A                  | 0 0 0 0 0 0 0                        | A A A A A A A                        | 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 |
|--------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------|-----------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|------------------------------------------|---------------------|-------------------------------------------------------------|-----------------------------------------|----------------------------|------------------------------------------------------|--------------------------------------|-------------------------------------------------------------|-----------------------------------------|------------|-------------------------------------------------------------|------------------|---------------------------------------|----------------------------|-----------------|--------------------------------------|-----------------------------------------|--------------------------|---------------------------------|---------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------|------------|------------|---------------------------------------|----------------------------|-------------------------------------------|---------------------------------|---------------------------------|--------------------------------|--------------------------------------|--------------------------------------|-----------------------------------------|
| S244 T<br>S52 T                                                                            | ΓΑ<br>ΓΑ                                | , т<br>, т                                                                                  | T<br>T                                                    | A<br>A          | A<br>A                                                                                        | A<br>A                               | T<br>T                               | T<br>T                               | ר ד<br>ר ד                               | r G                 | G C<br>G C                                                  | T<br>T                                  | G<br>G                     | A<br>A                                               | A<br>A                               | T<br>T                                                      | T<br>T                                  | T T<br>T T | гт<br>гт                                                    | T<br>T           | A<br>A                                | T<br>T                     | G<br>G          | T<br>T                               | T<br>T                                  | G<br>G                   | A<br>A                          | T<br>T                          | T<br>T                                                        | т <sup>.</sup><br>т <sup>.</sup>                                                       | Γ A<br>Γ A | 4 C<br>4 C | ст<br>Ст                              | T<br>T                     | G<br>G                                    | T<br>T                          | T<br>T                          | A<br>A                         | C<br>C                               | A<br>A                               | G<br>G                                  |
|                                                                                            |                                         |                                                                                             |                                                           |                 |                                                                                               |                                      |                                      |                                      | P1                                       | fiml                | 3                                                           |                                         |                            |                                                      |                                      |                                                             |                                         |            |                                                             |                  |                                       |                            |                 |                                      |                                         |                          |                                 |                                 |                                                               |                                                                                        |            |            |                                       |                            |                                           |                                 |                                 |                                |                                      |                                      |                                         |
| Consensus G<br>7136 G<br>LF31 G<br>S135 G<br>S136 G<br>S162 G<br>S179 G<br>S244 G<br>S52 G | 0 0 0 0 0 0 0 0 0                       | A                                                                                           |                                                           |                 | A C   A C   A C   A C   A C   A C   A C   A C   A C   A C   A C   A C   A C   A C   A C   A C |                                      |                                      |                                      | 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6  | 0 0 0 0 0 0 0 0 0   | 0 0 0 0 0 0 0 0 0                                           | 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 |                            | T -<br>T -<br>T -<br>T -<br>T -<br>T -<br>T -<br>T - |                                      | 3 T<br>3 T<br>3 T<br>3 T<br>3 T<br>3 T<br>3 T<br>3 T<br>5 T |                                         |            | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                       | 0000000000       | 0 0 0 0 0 0 0 0 0                     | A                          | A A A A A A A A | A                                    | 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | T<br>T T T T T T T T T   | T<br>T<br>T<br>T<br>T<br>T      |                                 | T T<br>T T<br>T T<br>T T<br>T T<br>T T<br>T T<br>T T          |                                                                                        |            |            | A A A A A A A A A A A A A A A A A A A | 0 0 0 0 0 0 0 0 0          | T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T | A                               | A                               | 0 0 0 0 0 0 0 0 0              | T<br>T<br>T<br>T<br>T<br>T<br>T<br>T | A                                    | T<br>T<br>T<br>T<br>T<br>T<br>T<br>T    |
|                                                                                            |                                         |                                                                                             |                                                           |                 |                                                                                               |                                      | P1                                   | fimE                                 | •                                        |                     |                                                             |                                         |                            |                                                      |                                      |                                                             |                                         |            |                                                             |                  |                                       |                            |                 |                                      |                                         |                          |                                 |                                 |                                                               |                                                                                        |            |            | _                                     | •                          |                                           |                                 |                                 |                                |                                      |                                      |                                         |
| Consensus T<br>7136 T<br>LF31 T<br>S135 T<br>S136 T<br>S162 T<br>S179 T<br>S244 T<br>S52 T | 000000000000000000000000000000000000000 | C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C | A A<br>A A<br>A A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A |                 |                                                                                               | T<br>T<br>T<br>T<br>T<br>T<br>T<br>T | A                                    | T<br>T<br>T<br>T<br>T<br>T<br>T<br>T | T<br>T<br>T<br>T<br>T<br>T<br>T<br>T     | 6 6 6 6 6 6 6 6 6 6 | T T<br>T T<br>T T<br>T T<br>T T<br>T T<br>T T<br>T T<br>T T |                                         | T<br>T<br>T<br>T<br>T<br>T | A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A  | T<br>T<br>T<br>T<br>T<br>T<br>T<br>T | T<br>T<br>T<br>T<br>T<br>T<br>T<br>T                        | 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 |            | A T<br>A T<br>A T<br>A T<br>A T<br>A T<br>A T<br>A T<br>A T |                  | A<br>A<br>A<br>A<br>A<br>A<br>A       |                            | AAAAAAAAAA      | T<br>T<br>T<br>T<br>T<br>T<br>T<br>T | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | A<br>A A A A A A A A A A | A<br>A A A A A A A A A A        | T<br>T<br>T<br>T<br>T<br>T<br>T | G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G |                                                                                        |            |            |                                       | A<br>A A A A A A A<br>A    | 0000000000                                | A                               | T<br>T<br>T<br>T<br>T<br>T<br>T | G <mark>A</mark> G G G G G G G | T<br>T<br>T<br>T<br>T<br>T<br>T      | T<br>T<br>T<br>T<br>A<br>T<br>T<br>T | 0 0 0 0 0 0 0 0 0 0                     |

Figure S2: Sequence of the *fimB* and *fimE* promoters of the 8 AIEC strains. No mutations were found in

the two promoters of *fimB* while the S162 AIEC strain carries a mutation in the *fimE* promoter.



Figure S3: Effect of X-100 Triton on bacterial cells. The T84 cell lysis treatment (1% X-100 Triton for 5 min at room temperature) used in the adhesion assay was applied to the AIEC S136 WT and  $\Delta ompR$  mutant to ensure that bacterial cells are not lysed.



Figure S4: Adhesion levels of AIEC WT strains to intestinal epithelial cells T84.

Adhesion assay was performed with T84 intestinal epithelial cells infected with the different WT strains at a MOI of 10 bacteria/cell for 3 hrs. Results are expressed in CFU/well (means  $\pm$  sem, 5 independent experiments).



Figure S5: Growth curve of WT,  $\triangle ompR$  and  $\triangle ompC \triangle ompF$  strains in presence of 0%, 0.1%, 0.5% and 1% of DOC.

The WT K12 MG1655 *E.coli* strain (A), its  $\Delta ompR$  mutant (B) and  $\Delta ompC\Delta ompF$  (C) were grown in LB supplemented with (black line) 0 % DOC, (blue line) 0.1% DOC, (green line) 0.5% DOC and (red line) 1% DOC. Data representative of at least two independent experiments.



## Figure S6: Influence of deoxycholate on gene expression.

Expression levels of *ompR*, *ompC*, *ompF* and *mdtE* were quantified by qRT-PCR in WT and  $\Delta ompR$  S136 strains that were grown to mid-log growth phase (OD<sub>600</sub> 0.4) and incubated with 0% (black), 0.01% (grey) and 0.1% (white) deoxycholate (DOC) for 30 minutes. The expression levels were normalized to the S136 WT strain without DOC (means ± sem, 2 technical replicates). \* expression not detected.