Supporting information

Lathyrane Diterpenoids as Novel hPXR Agonists: Isolation, Structural Modification, and Structure-Activity Relationships

Dong Huang[†], Rui-Min Wang[†], Wei Li, Ying-Yuan Zhao, Fang-Yu Yuan, Xue-Long Yan, Ye Chen, Gui-Hua Tang, Hui-Chang Bi*, and Sheng Yin*

School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006,

China

*Corresponding author: yinsh2@mail.sysu.edu.cn (S. Yin);

bihchang@mail.sysu.edu.cn (H.-C. Bi)

[†]These authors contribute equally.

Table of contents:

1. Experimental section

- **2.** Table S1. ¹H and ¹³C NMR spectral data of compounds 1–3 in CDCl₃.
- **3.** Table S2. ¹H and ¹³C NMR spectral data of compounds **4** and **5** in CDCl₃.
- **4. Table S3.** The gene-specific primer sequences for RT-qPCR.
- Figure S1. The key ¹H-¹H COSY (→) and HMBC (→) correlations of compounds 1–5
- 6. Figure S2. The key NOE (----) correlations of compounds 1–5.
- 7. Figure S3. ORTEP diagrams of compounds 26, 30, and 31.
- 8. Figure S4. Chemical correlations of compounds 3, 4, 5, 9, 10, 13, 14, and 35.
- 9. Figure S5. The cytotoxicity of compounds 1–34.

10. Figure S6–S115. ¹H NMR, ¹³C NMR, HSQC, HMBC, ¹H–¹H COSY and NOESY spectra of compounds **1–5**, **20–26**, and **28–34**.

- 11. Figure S116–S145. ¹H NMR and ¹³C NMR spectra of compounds 6–19 and 27.
- 12. Figure S146–S164. HRESIMS spectra of compounds 1–5, 20–26 and 28–34.
- 13. Figure S165–S185. IR spectra of compounds 1–5, 20–26 and 28–34.
- 14. Figure S184–S217. The purity analyses of compounds 1–34 by HPLC.

1. Experimental section

1.1. General experimental procedures

X-ray data were collected using an Angilent X calibur Nova X-ray diffractometer. Melting point was measured on an X-4 melting instrument and uncorrected. Optical rotations were measured on a Perkin-Elmer 341 polarimeter. UV spectra were recorded on a Shimadzu UV-2450 spectrophotometer. IR spectra were determined on a Bruker Tensor 37 infrared spectrophotometer with KBr disks. NMR spectra were measured on a Bruker AM-400/500 spectrometer at 25 °C. HRESIMS were carried out on a Finnigan LCQ Deca instrument. A Shimadzu LC-20AT equipped with an SPD-M20A PDA detector was used for HPLC, and a YMC-pack ODS-A column (250 \times 10 mm, S-5 μ m, 12 nm) was used for semipreparative HPLC separation. Silica gel (300–400 mesh, Qingdao Haiyang Chemical Co. Ltd.), reversed-phase C₁₈ (Rp-C₁₈) silica gel (12 nm, S-50 µm, YMC Co. Ltd.), Sephadex LH-20 gel (Amersham Biosciences), and MCI gel (CHP20P, 75–150 μ m, Mitsubishi Chemical Industries Ltd.) were used for column chromatography (CC). All solvents were of analytical grade (Guangzhou Chemical Reagents Company, Ltd.). The purity of the samples was determined by HPLC, conducted on a Shimadzu LC-20AT series system with Inertsil ODS-SP columns (4.6 mm \times 150 mm, 5 μ m or 4.6 mm \times 100 mm, 5 μ m). The samples were eluted with a 90:10 acetonitrile/H₂O mixture at a flow rate of 3 mL/min. The purity of all biologically evaluated compounds is greater than 95%.

1.2. Plant material

Seeds of *E. lathyris* were collected in January 2018 in Anhui Province, P. R. China, and were authenticated by one of the authors (G. H. Tang). A voucher specimen (accession number: QJZ201801) has been deposited at the School of Pharmaceutical Sciences, Sun Yat-sen University.

1.3. Extraction and bioassay-guided isolation

The seeds of *E. lathyris* (8 kg) were extracted with 95% EtOH (75 L \times 3) at room temperature to give 817.2 g of crude extract. The extract was suspended in H₂O (3 L) and successively partitioned with petroleum ether, EtOAc, and n-BuOH. EtOAc fraction that showed potent agonistic activity on hPXR was selected for further chemical investigation. The EtOAc extract (352.8 g) was subjected to a D101 macroporous adsorptive resins eluted with a MeOH/H₂O gradient (6:4 \rightarrow 10:0) to afford three fractions (Fr. I–III). Fr. II (215.6 g) was applied to silica gel CC (PE/EtOAc, $50:1 \rightarrow 1:1$) to give four fractions (Fr. IIA-IID). Fr. IIA was recrystallized with MeOH to afford 14 (13.2 g). Fr. IIB (15.7 g) was subjected to silica gel CC (PE/EtOAc, $40:1 \rightarrow 0:1$) to give three fractions (Fr. IIB₁-IIB₃). Fr. IIB₁ (246.2 mg) was separated by silica gel CC (PE/EtOAc, 50:1), followed by semi-preparative HPLC (MeCN/H₂O, 80/20, 3 mL/min) to give 9 (12.6 mg, t_R 10.6 min) and 10 (22.7 mg, t_R 11.3 min). Fr. IIB₂ and Fr. IIB₃ were recrystallized with MeOH to afford 16 (3.2 g) and 15 (7.6 g), respectively. Fr. IIC (2.9 g) was separated by Rp-C₁₈ silica gel CC (MeOH/H₂O, $6:4 \rightarrow 10:0$) to give five fractions (Fr. IIC₁-IIC₅). Fr. IIC₁ (132.2) mg) was subjected to silica gel CC (CH₂Cl₂/MeOH, 100:1 \rightarrow 0:1), followed by semi-preparative chiral HPLC (MeCN/H₂O, 75/25, 3 mL/min) to yield 3 (34 mg, $t_{\rm R}$ 13.0 min). Fr. IIC₂ (1.435 g) was separated by Sephadex LH-20 (MeOH), followed by silica gel CC (PE/EtOAc, $10:1 \rightarrow 0:1$) to give three fractions (Fr. IIC_{2a}-IIC_{2c}). Fr. IIC_{2a} (207.2 mg) was separated by silica gel CC (PE/EtOAc, $15:1 \rightarrow 0:1$), followed by semi-preparative chiral HPLC (MeCN/H₂O, 70/30, 3) mL/min) to give 8 (67.3 mg, t_R 8.9 min), 6 (29.1 mg, t_R 11.4 min), and 7 (16.8 mg, $t_{\rm R}$ 14.6 min). Fr. IIC_{2b} (367.8 mg) was subjected to Rp-C₁₈ silica gel CC (MeOH/H₂O, 7:3 \rightarrow 10:0), followed by semi-preparative chiral HPLC (MeCN/H₂O, 70/30, 3 mL/min) to give 4 (31.2 mg, $t_{\rm R}$ 15.6 min) and 5 (18.0 mg, $t_{\rm R}$ 14.6 min). Fr. IIC_{2b1} was subjected to silica gel CC (PE/EtOAc, 15:1 \rightarrow 0:1) and then further purified by Sephadex LH-20 (EtOH) to give 2 (90.8 mg) and 1 (24.6 mg). Fr. IIC_{2c} (179.3 mg) was applied to silica gel CC (PE/EtOAc, 20:1 \rightarrow 0:1) to give three fractions (Fr. IIC_{2c1}-IIC_{2c3}). Fr. IIC_{2c2} (69.2 mg) was separated on Sephadex LH-20 (MeOH) and followed by semi-preparative chiral HPLC (MeCN/H₂O, 70/30, 3 mL/min) to yield 12 (10.5 mg, t_R 13.8 min) and 11 (16.2 mg, $t_{\rm R}$ 14.4 min). Fr. IIC_{2c3} (44.6 mg) was subjected to Sephadex LH-20 (MeOH) yield 13 (24.1 mg). ¹H and ¹³C NMR data of 1-5 were summarized in Table S1.1.

Compound 1. Colorless oil; $[\alpha]^{25}_{D}$ +109.1 (*c* 3.0, MeCN); UV (MeCN) λ_{max} (log ε) 273 (3.97), 232 (4.18) nm; IR v_{max} 3460, 2928, 1722, 1659, 1453, 1370, 1272, 1113, 1004, 714 cm⁻¹; HRESIMS *m/z* 517.2193 [M + Na]⁺ (calcd for C₂₉H₃₄O₇Na⁺,

517.2197).

Compound **2**. Colorless oil; $[\alpha]^{25}_{D}$ –25.0 (*c* 3.0, MeCN); UV (MeCN) λ_{max} (log ε) 274 (4.15), 232 (4.17) nm; IR v_{max} 3446, 2926, 1717, 1606, 1452, 1268, 1108, 1057, 714 cm⁻¹; HRESIMS *m/z* 439.2487 [M + H]⁺ (calcd for C₂₇H₃₅O₅⁺, 439.2479).

Compound 3. Colorless oil; $[\alpha]^{25}_{D}$ +55.3 (*c* 3.0, MeCN); UV (MeCN) λ_{max} (log ε) 233 (4.53), 272 (4.31) nm; IR ν_{max} 2931, 1722, 1629, 1453, 1369, 1275, 1236, 1112, 1024, 943, 712 cm⁻¹; HRESIMS *m/z* 559.2306 [M + Na]⁺ (calcd for C₃₁H₃₆O₈Na⁺, 559.2302).

Compound 4. Colorless oil; $[\alpha]^{25}_{D}$ +202.7 (*c* 3.0, MeCN); UV (MeCN) λ_{max} (log ε) 275 (4.38) nm; IR ν_{max} 2926, 1738, 1630, 1450, 1369, 1273, 1228, 1114, 906, 769 cm⁻¹; HRESIMS *m/z* 571.2659 [M + Na]⁺ (calcd for C₃₃H₄₀O₇Na⁺, 571.2666).

Compound 5. Colorless oil; $[\alpha]^{25}_{D}$ –46.7 (*c* 3.0, MeCN); UV (MeCN) λ_{max} (log ε) 275 (4.26) nm; IR v_{max} 3478, 2929, 1739, 1623, 1455, 1375, 1245, 1154, 1021 cm⁻¹; HRESIMS *m/z* 499.2295 [M + Na]⁺ (calcd for C₂₆H₃₆O₈Na⁺, 499.2302).

1.4. Preparation of 17 and 27 by alkaline hydrolysis of 15 and 14, respectively

To a solution of **15** (30 mg, 0.047 mmol) or **14** (30 mg, 0.057 mmol) in 2 mL of MeOH was added 1% NaOH at rt for 1 h. The mixture was then diluted with 5 mL of H_2O , followed by the extraction of EtOAc (5 mL × 3). The organic layer was dried, evaporated and purified by silica gel CC (PE/EtOAc, 10:1) to afford **17** (15.3 mg) and **27** (17.2 mg).

3,5,7,15-Tetrahydroxy-14-oxolathyra-6(17),12E-diene (17). The spectroscopic

data was identical to that reported.¹

3,5,15-Trihydroxy-14-oxolathyra-6(17),12*E*-diene (27). The spectroscopic data was identical to that reported.¹

1.5. Preparation of 18–22 by acylation of 17

To a solution of **17** (20 mg, 0.057 mmol) in freshly distilled pyridine (2 mL) was added excess acyl chlorides. The reaction mixture was stirred at rt or 0 °C for 2 h and then quenched by adding 2 mL of H₂O. After removal of the solvent under vacuum, the residue was purified by semi-preparative HPLC (MeCN/H₂O = 75:25, 3 mL/min). The acyl chlorides used in this experiment were acetic anhydride, 2-furoyl chloride, thiophene-2-carbonyl chloride and benzoyl chloride to give the acylation products compounds **19** (11.3 mg, t_R 14.5 min), **18** (10.6 mg, t_R 9.4 min), **20** (11.8 mg, t_R 10.2 min), **21** (9.6 mg, t_R 12.7 min), and **22** (12.41 mg, t_R 13.2 min), respectively.

7-Acetoxy-3,5,15-trihydroxy-14-oxolathyra-6(17),12*E*-diene (18). The spectroscopic data was identical to that reported.²

3,5,7-Triacetoxy-15-hydroxy-14-oxolathyra-6(17),12E-diene (19). The spectroscopic data was identical to that reported.³

7-(2-Furoyl)-3,5,15-trihydroxy-14-oxolathyra-6(17),12*E*-diene (**20**). Colorless oil; $[\alpha]^{25}_{D}$ –53.3 (*c* 0.3, MeCN); UV (MeCN) λ_{max} (log ε) 253 (3.94) nm; IR (KBr) ν_{max} 3419, 2925, 1718, 1672, 1614, 1471, 1393, 1298, 1178, 1115, 1073, 1010, 925, 763 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ_{H} 5.81 (1H, d, *J* = 9.3 Hz, H-12), 5.32 (1H, s, H-17a), 5.18 (1H, s, H-17b), 5.00 (1H, d, *J* = 8.2 Hz, H-7), 4.39 (1H, brs, H-3), 4.23 (1H, brs, H-5), 2.74 (1H, dd, J = 14.7, 10.2 Hz, H-1a), 2.51 (1H, brs, H-4), 2.30 (1H, m, H-2), 2.05 (3H, s, H-20), 2.04 (1H, m, H-8a), 1.76 (1H, dd, J = 14.7, 9.8 Hz, H-1b), 1.39 (1H, d, J = 9.3 Hz, H-11), 1.27 (1H, m, H-8b), 1.25 (1H, m, H-9), 1.16 (3H, d, J = 6.3 Hz, H-16), 1.15 (3H, s, H-19), 1.12 (3H, s, H-18), for 7-*O*-2-furoyl: 7.62 (1H, m), 7.28 (1H, m), 6.56 (1H, m); ¹³C NMR (CDCl₃, 100 MHz) $\delta_{\rm C}$ 207.9 (C-14), 148.1 (C-6), 139.4 (C-13), 137.0 (C-12), 108.5 (C-17), 87.9 (C-15), 76.3 (C-3), 75.3 (C-7), 69.5 (C-5), 52.3 (C-4), 45.9 (C-1), 38.1 (C-2), 31.0 (C-9), 30.6 (C-8), 28.3 (C-18), 25.5 (C-11), 23.5 (C-10), 15.3 (C-19), 14.0 (C-16 and C-20), for 7-*O*-2-furoyl: 158.4, 146.7, 144.3, 118.3, 112.0; HRESIMS m/z 467.2048 [M + Na]⁺ (calcd for C₂₅H₃₂O₇Na⁺, 467.2040).

3,5,15-Trihydroxy-7-(thiophene-2-carbonyl)-14-oxolathyra-6(17),12*E*-diene (**21**). Colorless oil; $[\alpha]^{25}_{D}$ –49.3 (*c* 0.3, MeCN); UV (MeCN) λ_{max} (log ε) 265 (4.20), 253 (4.30) nm; IR (KBr) ν_{max} 3422, 2925, 1707, 1679, 1613, 1525, 1417, 1362, 1260, 1149, 1090, 1073, 1005, 918, 751, 722, 578 cm⁻¹; ¹H NMR (CD₃OD, 400 MHz) δ_{H} 6.53 (1H, d, *J* = 10.6 Hz, H-12), 5.22 (1H, s, H-17a; 1H, m, H-7), 5.17 (1H, s, H-17b), 4.62 (1H, d, *J* = 3.0 Hz, H-5), 4.29 (1H, dd, *J* = 3.7, 3.7 Hz, H-3), 2.77 (1H, dd, *J* = 13.5, 8.3 Hz, H-1a), 2.44 (1H, dd, *J* = 3.0, 3.7 Hz, H-4), 2.10 (1H, ddd, *J* = 15.4, 6.9, 4.1 Hz, H-8a), 1.99 (1H, m, H-2), 1.92 (3H, d, *J* = 1.0 Hz, H-20), 1.71 (1H, dd, *J* = 13.5, 11.0 Hz, H-1b), 1.68 (1H, m, H-8b), 1.55 (1H, dd, *J* = 10.6, 8.8 Hz, H-11), 1.35 (1H, m, H-9), 1.20 (3H, s, H-19), 1.18 (3H, s, H-18), 1.09 (3H, d, *J* = 6.8 Hz, H-16), for 7-*O*-2-thiophene-2-carbonyl: 7.88 (1H, dd, *J* = 3.8, 1.2 Hz), 7.79 (1H, dd, *J* = 5.0, 3.8 Hz); ¹³C NMR (CD₃OD, 100 MHz) δ_{C} 207.0 (C-14), 151.0 (C-6), 141.6 (C-12), 138.9 (C-13), 110.0 (C-17), 88.5 (C-15), 78.3 (C-3), 78.0 (C-7), 69.1 (C-5), 53.6 (C-4), 47.2 (C-1), 39.2 (C-2), 32.4 (C-9), 31.2 (C-8), 28.8 (C-18), 27.8 (C-11), 25.3 (C-10), 15.9 (C-19), 14.0 (C-16), 13.7 (C-20), for 7-*O*-thiophene-2-carbonyl: 163.3, 134.8 × 2, 134.3, 129.1; HRESIMS m/z 483.1817 [M + Na]⁺ (calcd for C₂₅H₃₂O₆SNa⁺, 483.1812).

5,7-Dibenzoyloxy-3,15-dihydroxy-14-oxolathyra-6(17),12E-diene (22).Colorless oil; $[\alpha]^{25}_{D}$ +63.00 (c 0.3, MeCN); UV (MeCN) λ_{max} (log ε) 272 (4.08), 232 (4.41) nm; IR (KBr) v_{max} 3443, 2926, 1719, 1619, 1452, 1271, 1109, 1069, 1026, 995, 709 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) $\delta_{\rm H}$ 6.94 (1H, d, J = 8.5 Hz, H-12), 5.96 (1H, d, J = 7.1 Hz, H-5), 5.41 (1H, t, J = 5.4 Hz, H-7), 5.37 (1H, s, H-17a), 5.26 (1H, s, H-17b), 4.13 (1H, dd, J = 2.9, 2.9 Hz, H-3), 2.99 (1H, dd, J = 14.5, 10.1 Hz, H-1a), 2.69 (1H, dd, J = 7.1, 2.9 Hz, H-4), 2.23 (1H, m, H-2), 2.15 (1H, m, H-8a), 2.03 (1H, m, H-8b), 1.93 (3H, s, H-20), 1.72 (1H, dd, J = 14.5, 10.0 Hz, H-1b), 1.52 (1H, dd, J = 10.9, 8.5 Hz, H-11), 1.37 (1H, m, H-9), 1.26 (3H, s, H-19), 1.17 (3H, s, H-18), 1.14 (3H, d, *J* = 6.8 Hz, H-16), for 5-*O*Bz: 7.82 (2H, m), 7.22 (2H, t, *J* = 7.5 Hz), 7.40 (1H, t, J = 7.5 Hz), 7-OBz: 7.78 (2H, m), 7.18 (2H, t, J = 7.5 Hz), 7.37 (1H, t, J = 7.5 Hz); ¹³C NMR (CDCl₃, 100 MHz) $\delta_{\rm C}$ 203.7 (C-14), 145.4 (C-12), 143.0 (C-6), 137.3 (C-13), 116.0 (C-17), 88.6 (C-15), 77.3 (C-3), 77.0 (C-7), 69.3 (C-5), 54.6 (C-4), 48.7 (C-1), 37.8 (C-2), 31.9 (C-9), 30.0 (C-8), 28.4 (C-18), 27.1 (C-11), 24.5 (C-10), 15.9 (C-19), 14.4 (C-16), 13.3 (C-20), for 5-*O*Bz: 166.6, 133.1, 129.7 × 2, 129.5, 128.2 × 2; for 7-OBz: 165.7, 132.8, 129.4 × 2, 129.2, 128.0 × 2; HRESIMS *m*/*z* 581.2517 [M + Na]⁺ (calcd for C₃₄H₃₈O₇Na⁺, 581.2510).

1.6. Preparation of 23 and 31 by reduction of 15 and 14, respectively

To a solution of **15** (30.0 mg, 0.047 mmol) or **14** (30.0 mg, 0.057 mmol) in MeOH (2 mL) was added NaBH₄ (3.5 mg, 0.093 mmol). The reaction mixture was stirred at rt for 15 min and then quenched by adding excess glacial acetic acid. After removal of the solvent under vacuum, the residue was purified by semi-preparative HPLC (MeCN/H₂O = 85:15, 3 mL/min) to afford compounds **23** (13.0 mg, t_R 15.5 min) and **31** (9.0 mg, t_R 13.8 min).

5,14-Diacetoxy-3,7-dibenzoyloxy-15-hydroxylathyra-6(17),12*E*-diene (23). Colorless oil; $[\alpha]^{25}_{D}$ +60.00 (*c* 0.3, MeCN); UV (MeCN) λ_{max} (log ε) 232 (4.32) nm; IR (KBr) ν_{max} 3489, 2925, 1718, 1452, 1373, 1276, 1241, 1110, 1026, 916, 713 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ_{H} 5.84 (1H, dd, *J* = 3.2, 3.2 Hz, H-3), 5.80 (1H, brs, H-5), 5.65 (1H, d, *J* = 10.0 Hz, H-12), 5.47 (1H, s, H-14), 5.14 (1H, d, *J* = 8.2 Hz, H-7), 5.10 (1H, s, H-17a), 4.92 (1H, s, H-17b), 2.54 (1H, dd, *J* = 14.3, 9.8 Hz, H-1a), 2.46 (1H, d, *J* = 3.2 Hz, H-4), 2.41 (1H, m, H-2), 2.05 (1H, m, H-8 α), 1.98 (1H, dd, *J* = 14.3, 9.2 Hz, H-1b), 1.93 (3H, s, H-20), 1.62 (1H, m, H-8 β), 1.37 (1H, t, *J* = 10.0 Hz, H-11), 1.18 (1H, m, H-9; 3H, s, H-19), 1.09 (3H, s, H-18), 1.05 (3H, d, *J* = 6.7 Hz, H-16), for 3-*O*Bz: δ_{H} 8.10 (2H, m), 7.47 (2H, m), 7.59 (1H, m); 5-*O*Ac: δ_{H} 1.46 (3H, s); 7-*O*Bz: δ_{H} 8.10 (2H, m), 7.44 (2H, m), 7.55 (1H, m); 14-*O*Ac: δ_{H} 2.14 (3H, s); 15-*O*H: δ_{H} 3.16 (1H, s); ¹³C NMR (CDCl₃, 100 MHz) δ_{C} 146.1 (C-6), 132.1 (C-13), 123.8 (C-12), 107.3 (C-17), 82.1 (C-15), 78.8 (C-14), 76.8 (C-3), 75.1 (C-7), 69.8 (C-5), 49.8 (C-4), 48.0 (C-1), 36.1 (C-2), 30.2 (C-8), 29.9 (C-9), 28.6 (C-18), 24.9 (C-11), 22.3 (C-10), 16.6 (C-20), 15.1 (C-19), 14.7 (C-16), for 3-OBz: 165.3, 133.1, 130.0, 129.7 × 2, 128.5 × 2; 5-OAc: $\delta_{\rm C}$ 170.1, 20.5; 7-OBz: $\delta_{\rm C}$ 166.1, 132.9, 130.8, 129.6 × 2, 128.4 × 2; 14-OAc: $\delta_{\rm C}$ 169.8, 20.9; HRESIMS m/z 667.2888 [M + Na]⁺ (calcd for C₃₈H₄₄O₉Na⁺, 667.2878).

5-Acetoxy-3-benzoyloxy-12,15-epoxylathyra-6(17),13Z-diene (31). Colorless crystals; mp 131.4–132.8 °C; $[\alpha]^{25}_{D}$ +81.33 (c 0.3, MeCN); UV (MeCN) λ_{max} (log ε) 232 (4.29) nm; IR (KBr) v_{max} 2925, 1724, 1452, 1371, 1272, 1236, 1112, 712 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) $\delta_{\rm H}$ 5.58 (1H, dd, J = 4.2, 4.2 Hz, H-3), 5.53 (1H, d, J =11.5 Hz, H-5), 5.41 (1H, brs, H-14), 4.93 (1H, brs, H-12), 4.93 (1H, s, H-17a), 4.89 (1H, s, H-17b), 2.84 (1H, dd, J = 11.5, 4.2 Hz, H-4), 2.54 (1H, dd, J = 11.5, 5.9 Hz, H-7 β), 2.10 (1H, m, H-1 α), 2.03 (1H, m, H-2), 1.93 (1H, m, H-7 α), 1.92 (1H, m, H-8β), 1.90 (1H, m, H-1β), 1.84 (1H, m, H-8α), 1.69 (3H, s, H-20), 1.14 (3H, s, H-19), 1.05 (3H, s, H-18), 0.91 (3H, d, J = 6.3 Hz, H-16), 0.56 (1H, d, J = 10.0 Hz, H-11), 0.44 (1H, m, H-9), for 3-OBz: $\delta_{\rm H}$ 8.05 (2H, m), 7.54 (1H, t, J = 7.5 Hz), 7.43 (2H, t, J = 7.5 Hz); 5-OAc: $\delta_{\rm H}$ 1.87 (3H, s); ¹³C NMR (CDCl₃, 100 MHz) $\delta_{\rm C}$ 144.5 (C-6), 135.6 (C-13), 129.2 (C-14), 114.1 (C-17), 94.4 (C-15), 84.5 (C-12), 78.4 (C-3), 68.7 (C-5), 52.9 (C-4), 47.9 (C-1), 38.3 (C-7), 36.4 (C-2), 29.2 (C-9), 28.8 (C-18), 27.1 (C-11), 22.7 (C-8), 15.4 (C-19), 14.8 (C-10), 13.7 (C-16), 12.5 (C-20), for 3-OBz: 166.1, 132.7, 130.4, 129.6 \times 2, 128.3 \times 2; 5-OAc: $\delta_{\rm C}$ 170.0, 21.2; HRESIMS m/z $487.2454 [M + Na]^+$ (calcd for C₂₉H₃₆O₅Na⁺, 487.2455).

1.7. Preparation of 24 and 25 by epoxidation of 15

To a stirred solution of 15 (80.0 mg, 0.125 mmol) in CH₂Cl₂ (2 mL) was added S11

m-CPBA (24.1 mg, 0.150 mmol) at 60 °C for 1 h. After that, excess saturated NaHCO₃ solution was added to the reaction mixture for another 10 min. The reaction mixture was washed with H₂O and extracted with EtOAc. After removal of the solvent under vacuum, the residue was purified with silica gel flash column chromatography (PE:EtOAc = 15:1) and followed by semi-preparative HPLC (MeCN/H₂O = 80:20, 3 mL/min) to afford **24** (22.4 mg, t_R 11.7 min) and **25** (27.6 mg, t_R 14.1 min).

5,15-Diacetoxy-3,7-dibenzoyloxy-6,17)-12,13-diepoxy-14-oxolathyra (24).White powder; $[\alpha]^{25}_{D}$ +76.33 (*c* 0.3, MeCN); UV (MeCN) λ_{max} (log ε) 233 (4.46) nm; IR (KBr) v_{max} 2922, 1718, 1458, 1375, 1276, 1239, 1113, 714 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) $\delta_{\rm H}$ 5.98 (1H, m, H-3), 5.40 (1H, s, H-5), 5.30 (1H, d, J = 8.2 Hz, H-7), 3.50 (1H, brs, H-4), 3.12 (1H, d, J = 9.8 Hz, H-12), 3.02 (1H, d, J = 4.5 Hz, H-17a), 2.96 $(1H, dd, J = 15.4, 8.6 Hz, H-1\alpha)$, 2.66 (1H, m, H-2), 2.64 (1H, d, J = 4.5 Hz, H-17b), 2.48 (1H, dd, J = 15.4, 11.3 Hz, H-1 β), 2.19 (1H, m, H-8 α), 1.85 (3H, s, H-20), 1.82 (1H, m, H-8β), 1.30 (3H, s, H-19), 1.13 (3H,s, H-18), 1.12 (1H, m, H-9), 1.10 (3H, d, J = 6.6 Hz, H-16), 0.46 (1H, t, J = 9.8 Hz, H-11), for 3-OBz: $\delta_{\rm H}$ 8.04 (2H, d, J = 7.5Hz), 7.58 (1H, t, J = 7.5 Hz), 7.44 (2H, t, J = 7.5 Hz); 5-OAc: $\delta_{\rm H}$ 1.33 (3H, s); 7-OBz: $\delta_{\rm H}$ 8.08 (2H, d, J = 7.5 Hz), 7.63 (1H, t, J = 7.5 Hz), 7.49 (2H, t, J = 7.5 Hz); 15-OAc: $\delta_{\rm H}$ 2.08 (3H, s); ¹³C NMR (CDCl₃, 100 MHz) $\delta_{\rm C}$ 201.3 (C-14), 92.3 (C-15), 76.2 (C-3), 72.9 (C-7), 65.5 (C-5), 62.7 (C-13), 62.5 (C-12), 60.4 (C-6), 50.4 (C-4), 46.8 (C-17), 44.4 (C-1), 37.9 (C-2), 28.4 (C-18), 26.8 (C-9), 25.3 (C-8), 22.8 (C-11), 21.5 (C-10), 15.0 (C-19 and 20), 13.9 (C-16), for 3-OBz: 165.5, 133.4, 130.1, 129.5 \times 2, 128.4 × 2; 5-OAc: δ_C 168.7, 19.7; 7-OBz: δ_C 166.7, 133.8, 129.9 × 2, 128.8, 128.6 × 2; 15-*O*Ac: δ_C 169.7, 21.1; HRESIMS *m*/*z* 697.2608 [M + Na]⁺ (calcd for C₃₈H₄₂O₁₁Na⁺, 697.2619).

5,15-Diacetoxy-3,7-dibenzoyloxy-12,13-epoxy-14-oxolathyra-6(17)-ene (25).White powder; $[\alpha]^{25}_{D}$ +61.33 (*c* 0.3, MeCN); UV (MeCN) λ_{max} (log ε) 232 (4.30) nm; IR (KBr) v_{max} 2926, 1718, 1453, 1371, 1275, 1111, 1068, 1026, 714 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) $\delta_{\rm H}$ 5.84 (1H, brs, H-3), 5.79 (1H, brs, H-5), 5.44 (1H, t, J = 5.2 Hz, H-7), 5.34 (1H, s, H-17a), 5.10 (1H, s, H-17b), 3.25 (1H, brs, H-4), 3.15 (1H, d, J = 9.5 Hz, H-12), 2.90 (1H, dd, J = 15.2, 9.0 Hz, H-1 α), 2.49 (1H, m, H-2), 2.29 (1H, dd, $J = 15.2, 11.9 \text{ Hz}, \text{H} \cdot 1\beta$, 2.22 (1H, m, H-8 α), 2.01 (1H, m, H-8 β), 1.69 (3H, s, H-20), 1.27 (3H, s, H-19), 1.14 (3H, s, H-18), 1.13 (1H, m, H-9), 1.02 (3H, d, J = 6.5 Hz, H-16), 0.49 (1H, d, J = 9.5 Hz, H-11), for 3-OBz and 7-OBz: $\delta_{\rm H}$ 8.09 (2H, d, J = 7.3Hz), 8.06 (2H, d, J = 7.3 Hz), 7.58 (2H, t, J = 7.3 Hz), 7.45 (4H, m); 5-OAc: $\delta_{\rm H}$ 1.31 (3H, s); 15-OAc: $\delta_{\rm H}$ 2.13 (3H, s); ¹³C NMR (CDCl₃, 125 MHz) $\delta_{\rm C}$ 204.0 (C-14), 142.8 (C-6), 113.2 (C-17), 91.2 (C-15), 77.0 (C-3 and C-7), 67.8 (C-5), 63.8 (C-13), 61.8 (C-12), 52.4 (C-4), 46.4 (C-1), 37.1 (C-2), 28.6 (C-8), 28.4 (C-18), 27.3 (C-9), 22.6 (C-11), 20.5 (C-10), 15.5 (C-19), 14.9 (C-20), 14.1 (C-16), for 3-OBz and 7-OBz: 166.1, 165.5, 133.4, 133.1, 130.3 \times 2, 129.7 \times 2, 129.6 \times 2, 128.5 \times 2, 128.3 \times 2; 5-OAc: $\delta_{\rm C}$ 168.9, 20.3; 15-OAc: $\delta_{\rm C}$ 169.8, 21.2; HRESIMS m/z 681.2668 [M + Na]⁺ (calcd for $C_{38}H_{42}O_{10}Na^+$, 681.2670).

1.8. Preparation of 26 by hydrogenation of 15

To a stirred solution of **15** (80.0 mg, 0.125 mmol) in EtOAc (2 mL) was added 10% Pd/C under an atmosphere of hydrogen at 50 °C for 24 h. After that, the reaction S13

mixture was filtered and evaporated to dryness. The obtained residue was purified with silica gel flash column chromatography (PE:EtOAc = 30:1) and followed by semi-preparative HPLC (MeCN/H₂O = 80:20, 3 mL/min) to afford **26** (18.6 mg, t_R 15.3 min).

5,15-Diacetoxy-3,7-dibenzoyloxy-14-oxolathyra-6(17)-ene (26).Colorless crystals; mp 146.7–147.9 °C; $[\alpha]^{25}_{D}$ +49.67 (c 0.3, MeCN); UV (MeCN) λ_{max} (log ε) 232 (4.29) nm; IR (KBr) v_{max} 2924, 1720, 1455, 1370, 1275, 1231, 1111, 712 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) $\delta_{\rm H}$ 5.64 (1H, dd, J = 3.2, 3.2 Hz, H-3), 5.39 (1H, d, J = 11.0Hz, H-5), 5.14 (1H, d, *J* = 6.1 Hz, H-7), 3.41 (1H, dd, *J* = 11.0, 3.2 Hz, H-4), 3.25 (1H, m, H-13), 2.61 (1H, dd, J = 14.1, 6.8 Hz, H-1 α), 2.40 (1H, m, H-2), 2.13 (1H, dd, J =14.1, 14.1 Hz, H-1 β), 1.81 (1H, brd, J = 15.0 Hz, H-8 α), 1.69 (1H, m, H-6), 1.62 (1H, m H-12 α), 1.43 (1H, m, H-12 β), 1.36 (1H, m, H-8 β), 1.27 (6H, d, J = 7.0 Hz, H-17 and 20), 1.04 (3H, s, H-18), 0.99 (1H, m, H-11), 0.92 (1H, m, H-9), 0.90 (3H, d, J = 6.6 Hz, H-16), 0.78 (3H, s, H-19), for 3-OBz and 7-OBz: $\delta_{\rm H}$ 7.99 (2H, d, J = 7.5 Hz), 7.91 (2H, d, J = 7.5 Hz), 7.53 (2H, m), 7.41 (4H, m); 5-OAc: $\delta_{\rm H}$ 1.40 (3H, s); 15-OAc: $\delta_{\rm H}$ 2.30 (3H, s); ¹³C NMR (CDCl₃, 100 MHz) $\delta_{\rm C}$ 217.2 (C-14), 93.6 (C-15), 78.2 (C-3), 72.8 (C-7), 71.7 (C-5), 56.3 (C-4), 48.7 (C-1), 39.3 (C-6), 38.4 (C-2), 38.0 (C-13), 30.1 (C-8), 29.0 (C-12), 28.7 (C-18), 25.6 (C-10), 20.0 (C-20), 19.4 (C-11), 16.4 (C-10), 15.2 (C-19), 13.3 (C-11), 12.6 (C-17), for 3-OBz and 7-OBz: 165.9, 165.5, 133.0, 132.9, 130.7, 130.3, 129.4 × 2, 129.3 × 2, 128.4 × 2, 128.3 × 2; 5-OAc: $\delta_{\rm C}$ 170.3, 20.5; 15-OAc: $\delta_{\rm C}$ 170.0, 22.1; HRESIMS m/z 669.3028 [M + Na]⁺ (calcd for C₃₈H₄₆O₉Na⁺, 669.3034).

1.9. Preparation of 28 by oxidation of 27

To a stirred solution of **27** (25.0 mg, 0.075 mmol) in CH_2Cl_2 (2 mL) was added Dess-Martin periodinane reagent (31.7 mg, 0.075 mmol) at rt for 3 h. After that, the reaction mixture was filtered and evaporated to dryness. The obtained residue was purified with silica gel flash column chromatography (PE:EtOAc = 15:1) to afford **28** (17.3 mg).

3,15-Dihydroxy-5,14-dioxolathyra-6(17),12*E*-diene (**28**). White powder; $[\alpha]^{25}_{D}$ +146.00 (*c* 0.3, MeCN); UV (MeCN) λ_{max} (log ε) 248 (4.21) nm; IR (KBr) ν_{max} 3452, 2926, 1642, 1453, 1379, 1260, 1230, 1150, 1113, 1057, 1000, 904, 861 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ_{H} 7.02 (1H, dd, J = 11.6, 1.0 Hz, H-12), 5.80 (1H, s, H-17a), 5.61 (1H, s, H-17b), 4.24 (1H, dd, J = 2.9, 2.9 Hz, H-3), 3.35 (1H, dd, J = 13.5, 8.5 Hz, H-1a; 1H, d, J = 2.9 Hz, H-4), 2.97 (1H, dd, J = 13.7, 5.7 Hz, H-7a), 1.99 (2H, m, H-7b and 8a), 1.90 (1H, m, H-2), 1.74 (3H, d, J = 1.0 Hz, H-20), 1.63 (1H, dd, J = 13.5, 11.7 Hz, H-1b), 1.55 (1H, m, H-8b), 1.39 (1H, dd, J = 11.6, 8.2 Hz, H-11), 1.14 (3H, s, H-18), 1.11 (3H, d, J = 6.7 Hz, H-16), 1.09 (1H, m, H-9), 1.01 (3H, s, H-19), for 3-*O*H: δ_{H} 4.63 (1H, brs), 15-*O*H: δ_{H} 3.43 (1H, s); ¹³C NMR (CDCl₃, 100 MHz) δ_{C} 203.9 (C-5), 197.2 (C-14), 151.1 (C-12), 149.9 (C-6), 133.3 (C-13), 127.3 (C-17), 90.7 (C-15), 79.4 (C-3), 56.1 (C-4), 47.1 (C-1), 38.8 (C-2), 35.3 (C-9), 32.7 (C-7), 29.0 (C-11 and 18), 25.4 (C-10), 22.0 (C-8), 16.1 (C-19), 13.3 (C-16), 12.6 (C-20); HRESIMS *m*/*z* 355.1873 [M + Na]⁺ (calcd for C₂₀H₂₈O₄Na⁺, 355.1880).

1.10. Preparation of **29** and **30** by hydrogenation of **14**

A total of **14** (80.0 mg, 0.153 mmol) was prepared following the same procedure used in *section 4.8*. The obtained residue was purified with silica gel flash column chromatography (PE:EtOAc = 35:1) and followed by semi-preparative HPLC (MeCN/H₂O = 80:20, 3 mL/min) to afford **29** (19.2 mg, t_R 15.3 min) and **30** (16.8 mg, t_R 15.9 min).

5,15-Diacetoxy-3-benzoyloxy-14-oxolathyra-6(17)-ene (29). White powder; $[\alpha]^{25}_{D}$ –21.67 (c 0.3, MeCN); UV (MeCN) λ_{max} (log ε) 232 (4.32) nm; IR (KBr) ν_{max} 2924, 1742, 1719, 1453, 1370, 1272, 1231, 1111, 1025, 735, 710 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) $\delta_{\rm H}$ 5.82 (1H, d, J = 9.5 Hz, H-5), 5.76 (1H, dd, J = 4.4, 4.4 Hz, H-3), 5.41 (1H, s, H-17a), 5.15 (1H, s, H-17b), 3.31 (1H, dd, *J* = 11.7, 7.2 Hz, H-13), 3.17 (1H, dd, J = 9.5, 4.4 Hz, H-4), 2.84 (1H, dd, J = 11.8, 4.8 Hz, H-1 α), 2.35 (1H, m, H-7 β), 2.10 (1H, m, H-2), 2.07 (1H, m, H-1 β), 1.88 (2H, m, H-7 α and 8 α), 1.76 $(1H, m, H-12\alpha)$, 1.27 $(1H, m H-12\beta)$, 1.02 $(3H, d, J = 6.7 Hz, H-20; 1H, m, H-8\beta)$, 0.99 (3H, s, H-18), 0.93 (3H, d, J = 6.2 Hz, H-16), 0.83 (3H, s, H-19), 0.50 (1H, m, H-11), 0.34 (1H, m, H-9); for 3-*O*Bz: $\delta_{\rm H}$ 8.03 (2H, m), 7.56 (1H, t, *J* = 7.5 Hz), 7.44 (2H, t, J = 7.5 Hz); 5-OAc: $\delta_{\rm H}$ 1.81 (3H, s); 15-OAc: $\delta_{\rm H}$ 2.18 (3H, s); ¹³C NMR (CDCl₃, 100 MHz) & 211.8 (C-14), 147.2 (C-6), 117.7 (C-17), 92.1 (C-15), 78.3 (C-3), 73.6 (C-5), 50.6 (C-4), 43.9 (C-1), 38.4 (C-13), 37.3 (C-2), 30.4 (C-7), 28.8 (C-18), 28.5 (C-12), 28.4 (C-9), 22.6 (C-8), 21.8 (C-11), 18.8 (C-20), 17.3 (C-10), 15.2 (C-19), 13.2 (C-16), for 3-OBz: 165.9, 133.0, 130.0, 129.5 × 2, 128.4 × 2; 5-OAc: $\delta_{\rm C}$ 169.2, 20.9; 15-OAc: $\delta_{\rm C}$ 169.7, 21.7; HRESIMS m/z 547.2653 [M + Na]⁺ (calcd for C₃₁H₄₀O₇Na⁺, 547.2666).

5,15-Diacetoxy-3-benzoyloxy-14-oxolathyra-12*E*-ene (**30**). Colorless oil; $[\alpha]^{25}$ _D +51.33 (c 0.3, MeCN); UV (MeCN) λ_{max} (log ε) 273 (4.54), 232 (4.47) nm; IR (KBr) v_{max} 2926, 1738, 1652, 1621, 1453, 1368, 1271, 1233, 1114, 1028, 712 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) $\delta_{\rm H}$ 6.76 (1H, d, J = 11.5 Hz, H-12), 6.02 (1H, d, J = 7.7 Hz, H-5), 5.69 (1H, dd, J = 3.4, 3.4 Hz, H-3), 3.47 (1H, dd, J = 13.9, 7.7 Hz, H-1 α), 2.28 (1H, dd, J = 7.7, 3.4 Hz, H-4), 2.26 (1H, m, H-2), 1.87 (3H, br. s, H-20), 1.82 (1H, m, H-8 α), 1.75 (1H, m, H-8 β), 1.62 (1H, m, H-6), 1.61 (1H, m, H-1 β), 1.49 (1H, dd, J =11.5, 8.3 Hz, H-11), 1.21 (3H, s, H-19), 1.19 (3H, s, H-18; 2H, m, H-7 α and β), 1.11 (1H, ddd, J = 11.5, 8.3, 4.1 Hz, H-9), 0.92 (3H, d, J = 6.7 Hz, H-16), 0.81 (3H, d, J = 6.7 Hz, H-17), for 3-OBz: $\delta_{\rm H}$ 7.99 (2H, m), 7.57 (1H, t, J = 7.5 Hz), 7.43 (2H, t, J = 7.5 Hz); 5-OAc: $\delta_{\rm H}$ 1.65 (3H, s); 15-OAc: $\delta_{\rm H}$ 2.22 (3H, s); ¹³C NMR (CDCl₃, 100 MHz) $\delta_{\rm C}$ 196.8 (C-14), 146.1 (C-12), 133.9 (C-13), 92.0 (C-15), 80.8 (C-3), 66.4 (C-5), 54.7 (C-4), 48.0 (C-1), 38.5 (C-2), 36.6 (C-9), 35.8 (C-6), 32.8 (C-7), 29.2 (C-18), 29.1 (C-11), 25.4 (C-10), 20.1 (C-8), 16.8 (C-19), 14.8 (C-17), 14.0 (C-16), 12.6 (C-20), for 3-OBz: 166.0, 133.1, 130.1, 129.5 \times 2, 128.5 \times 2; 5-OAc: $\delta_{\rm C}$ 170.2, 20.5; 15-OAc: $\delta_{\rm C}$ 169.8, 21.7; HRESIMS m/z 547.2662 [M + Na]⁺ (calcd for C₃₁H₄₀O₇Na⁺, 547.2666).

1.11. Preparation of 32-34 by cyclopropane ring-opening of 14

To a stirred solution of **14** (150.0 mg, 0.287 mmol) in MeOH (2 mL) was added NaBH₄ (13.0 mg, 0.344 mmol) at rt for 15 min, and followed treated with 10% hydrochloric acid at 60 $^{\circ}$ C for 30 min. After that, the reaction mixture was evaporated to dryness. The obtained residue was purified with silica gel flash column

chromatography (PE:EtOAc = 40:1) and followed by semi-preparative HPLC (MeCN/H₂O = 75:25, 3 mL/min) to afford **32** (21.2 mg, t_R 15.9 min), **33** (13.8 mg, t_R 15.4 min) and **34** (15.8 mg, t_R 13.6 min).

5-Acetoxy-3-benzoyloxy-15-hydroxy-10,11-secolathyra-6(17),10(18),11E,13Z-te traene (32). White powder; $[\alpha]^{25}_{D}$ +43.67 (c 0.3, MeCN); UV (MeCN) λ_{max} (log ε) 232 (4.26) nm; IR (KBr) v_{max} 3476, 2926, 1718, 1452, 1371, 1275, 1114, 1026, 900, 712 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) $\delta_{\rm H}$ 6.24 (1H, d, J = 16.2 Hz, H-12), 5.85 (1H, d, J = 7.0 Hz, H-5), 5.71 (1H, dd, J = 4.5, 4.5 Hz, H-3), 5.59 (1H, dd, J = 16.2, 7.8 Hz, H-11), 5.48 (1H, s, H-14), 5.04 (1H, s, H-17a), 4.96 (1H, s, H-17b), 4.76 (1H, s, H-18a), 4.75 (1H, s, H-18b), 3.20 (1H, dd, J = 7.0, 4.5 Hz, H-4), 2.66 (1H, ddd, J = 12.0, 7.8, 3.0 Hz, H-9), 2.34 (1H, m, H-7 α), 2.08 (2H, m, H-1 α and β), 2.07 (1H, m, H-2), 1.97 (1H, m, H-8α), 1.95 (1H, m, H-7β), 1.83 (3H, s, H-20), 1.75 (1H, m, H-8 β), 1.72 (3H, s, H-19), 0.94 (3H, d, J = 5.5 Hz, H-16), for 3-*O*Bz: $\delta_{\rm H}$ 8.06 (2H, m), 7.57 (1H, t, J = 7.5 Hz), 7.45 (2H, t, J = 7.5 Hz); 5-OAc: $\delta_{\rm H}$ 1.77 (3H, s); 15-OH: 2.40 (1H, brs); ¹³C NMR (CDCl₃, 100 MHz) $\delta_{\rm C}$ 147.6 (C-10), 147.2 (C-6), 134.6 (C-13), 134.4 (C-11), 133.9 (C-14), 129.7 (C-12), 113.5 (C-17), 110.2 (C-18), 80.0 (C-15), 78.9 (C-3), 73.6 (C-5), 52.5 (C-9), 51.8 (C-1), 49.4 (C-4), 35.6 (C-2), 30.2 (C-7), 29.5 (C-8), 23.8 (C-20), 20.9 (C-19), 13.7 (C-16), for 3-OBz: 165.8, 133.0, 130.1, 129.6 × 2, 128.4 × 2; 5-OAc: $\delta_{\rm C}$ 169.7, 21.0; HRESIMS m/z 487.2445 [M + Na]⁺ (calcd for C₂₉H₃₆O₅Na⁺, 487.2455).

5-Acetoxy-3-benzoyloxy-15-hydroxy-10-methoxy-10,11-*seco*lathyra-6(17),11*E*, 13*Z*-triene (**33**). White powder; $[\alpha]^{25}_{D}$ +58.67 (*c* 0.3, MeCN); UV (MeCN) λ_{max} (log ε) 232 (4.30) nm; IR (KBr) v_{max} 3450, 2926, 1717, 1453, 1368, 1275, 1179, 1114, 1071, 907, 712 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) $\delta_{\rm H}$ 6.19 (1H, d, J = 16.1 Hz, H-12), 5.84 (1H, d, J = 6.2 Hz, H-5), 5.70 (1H, dd, J = 4.0, 4.0 Hz, H-3), 5.58 (1H, dd, J = 16.1),8.6 Hz, H-11), 5.47 (1H, s, H-14), 4.93 (1H, s, H-17a), 4.89 (1H, s, H-17b), 3.19 (1H, m, H-4), 2.34 (1H, m, H-7 β), 2.17 (1H, m, H-9), 2.12 (1H, m, H-1 α), 2.07 (1H, m, H-2), 2.05 (1H, m, H-1*β*), 2.01 (1H, m, H-8*α*), 1.84 (1H, m, H-7*α*), 1.82 (3H, s, H-20), 1.50 (1H, m, H-8β), 1.12 (3H, s H-19), 1.11 (3H, s H-18), 0.94 (3H, d, J = 5.7 Hz, H-16), for 3-*O*Bz: $\delta_{\rm H}$ 8.06 (2H, m), 7.56 (1H, t, *J* = 7.5 Hz), 7.44 (2H, t, *J* = 7.5 Hz); 5-OAc: $\delta_{\rm H}$ 1.76 (3H, s); 10-OMe: $\delta_{\rm H}$ 3.19 (3H, s); 15-OH: $\delta_{\rm H}$ 2.53 (1H, s); ¹³C NMR (CDCl₃, 100 MHz) $\delta_{\rm C}$ 147.1 (C-6), 134.2 (C-13), 133.3 (C-11), 133.0 (C-14), 130.7 (C-12), 112.7 (C-17), 80.3 (C-15), 78.9 (C-3), 76.3 (C-10), 73.2 (C-5), 54.0 (C-9), 51.8 (C-1), 49.0 (C-4), 35.6 (C-2), 30.6 (C-7), 24.8 (C-8), 24.5 (C-20), 23.5 (C-18), 21.9 (C-19), 13.9 (C-16), for 3-*O*Bz: 165.8, 133.0, 130.1, 129.6 × 2, 128.4 × 2; 5-OAc: $\delta_{\rm C}$ 169.7, 21.0; 10-OMe: $\delta_{\rm C}$ 48.9; HRESIMS m/z 519.2710 [M + Na]⁺ (calcd for C₃₀H₄₀O₆Na⁺, 519.2717).

5-Acetoxy-3-benzoyloxy-10,15-dihydroxy-10,11-*seco*lathyra-6(17),11*E*,13*Z*-trie ne (**34**). White powder; $[\alpha]^{25}_{D}$ +57.00 (*c* 0.3, MeCN); UV (MeCN) λ_{max} (log ε) 232 (4.27) nm; IR (KBr) ν_{max} 3447, 2965, 1716, 1452, 1371, 1277, 1118, 1026, 908, 713 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ_{H} 6.23 (1H, d, *J* = 16.1 Hz, H-12), 5.84 (1H, d, *J* = 6.1 Hz, H-5), 5.71 (1H, dd, *J* = 4.0, 4.0 Hz, H-3), 5.61 (1H, dd, *J* = 16.1, 8.7 Hz, H-11), 5.47 (1H, s, H-14), 4.91 (1H, s, H-17a), 4.86 (1H, s, H-17b), 3.19 (1H, m, H-4), 2.34 (1H, dd, *J* = 13.3, 10.0 Hz, H-7 β), 2.13 (1H, m, H-1 α), 2.07 (1H, m, H-2), 2.03 (1H, m, H-9; 1H, m, H-1 β ; 1H, m, H-8 α), 1.85 (1H, m, H-7 α), 1.82 (3H, s, H-20), 1.55 (1H, m, H-8 β), 1.19 (6H, s, H-18 and H-19), 0.93 (3H, d, J = 5.8 Hz, H-16), for 3-*O*Bz: $\delta_{\rm H}$ 8.05 (2H, m), 7.56 (1H, t, J = 7.5 Hz), 7.44 (2H, t, J = 7.5 Hz); 5-*O*Ac: $\delta_{\rm H}$ 1.76 (3H, s); 15-OH: $\delta_{\rm H}$ 2.55 (1H, brs); ¹³C NMR (CDCl₃, 100 MHz) $\delta_{\rm C}$ 146.8 (C-6), 134.2 (C-13), 133.0 (C-11 and 14), 131.8 (C-12), 112.6 (C-17), 80.3 (C-15), 78.9 (C-3), 72.9 (C-5), 72.2 (C-10), 56.9 (C-9), 51.9 (C-1), 48.9 (C-4), 35.5 (C-2), 30.8 (C-7), 28.1 (C-18), 26.9 (C-19), 25.2 (C-8), 24.7 (C-20), 13.9 (C-16), for 3-*O*Bz: 165.8, 133.0, 130.0, 129.6 × 2, 128.4 × 2; 5-*O*Ac: $\delta_{\rm C}$ 169.8, 21.0; HRESIMS m/z505.2568 [M + Na]⁺ (calcd for C₂₉H₃₈O₆Na⁺, 505.2561).

1.12. X-ray crystallographic analysis

Compound **26** was recrystallized from MeCN/H₂O (20:1) to afford colorless needles. $C_{38}H_{46}O_9 \cdot 2MeCN$ (M = 728.85 g/mol): orthorhombic, space group P2₁2₁2₁, a = 8.76640(10) Å, b = 9.56870(10) Å, c = 47.6317(6) Å, V = 3995.49(8) Å3, Z = 4, T = 100 K, μ (Cu K α) = 0.690 mm⁻¹, *Dcalc* = 1.212 g/cm³, 39757 reflections measured (7.424° $\leq 2\Theta \leq 153.90°$), 8304 unique ($R_{int} = 0.0464$, $R_{sigma} = 0.0327$) which were used in all calculations. The final R_1 was 0.0416 (I > 2 σ (I)) and wR_2 was 0.0916 (all data). Flack parameter = 0.02 (6). Crystallographic data for the structure of **26** have been deposited in the Cambridge Crystallographic Data Centre (deposition number: CCDC 2080912).

Compound **30** was recrystallized from petroleum ether/ethanol (20:1) to afford colorless needles. C₃₁H₄₀O₇ (M = 524.63 g/mol): orthorhombic, space group P2₁, a =

9.9964(2) Å, b = 8.27010(10) Å, c = 17.4475(3) Å, V = 1408.61(4) Å3, Z = 2, T = 100 K, $\mu\mu$ (Cu K α) = 0.702 mm⁻¹, *Dcalc* = 1.237 g/cm³, 27407 reflections measured (5.186° $\leq 2\Theta \leq 153.572°$), 5740 unique ($R_{int} = 0.0533$, $R_{sigma} = 0.0353$) which were used in all calculations. The final R_1 was 0.0384 (I > 2 σ (I)) and wR_2 was 0.1059 (all data). Flack parameter = -0.13 (8). Crystallographic data for the structure of **30** have been deposited in the Cambridge Crystallographic Data Centre (deposition number: CCDC 2080915).

Compound **31** was recrystallized from MeCN/H₂O (20:1) to afford colorless needles. C₂₉H₃₆O₅ (M = 464.58 g/mol): orthorhombic, space group P2₁2₁2₁, a =10.50870(10) Å, b = 13.93090(10) Å, c = 17.2371(3) Å, V = 2523.44 (4) Å3, Z = 4, T =100 K, μ (Cu K α) = 0.658 mm⁻¹, Dcalc = 1.223 g/cm³, 25420 reflections measured (8.16° $\leq 2\Theta \leq 154.202°$), 5247 unique ($R_{int} = 0.0546$, $R_{sigma} = 0.0353$) which were used in all calculations. The final R_1 was 0.0415 (I > 2 σ (I)) and wR_2 was 0.1068 (all data). Flack parameter = 0.00 (10). Crystallographic data for the structure of **31** have been deposited in the Cambridge Crystallographic Data Centre (deposition number: CCDC 2080917).

These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033

1.13. Cell Culture

HEK293T cells, purchased from ATCC, were cultivated in DMEM (Corning, USA) medium supplemented with 10% fetal bovine serum (FBS, Coring, USA) and 1% penicillin/streptomycin (PS, Gibco, USA). Human hepatoma cell line HepaRG (Thermo Fisher Scientific, USA) was cultured to confluence in Williams' E medium (Thermo Fisher Scientific, USA) supplemented with 10% FBS, 1% ITS (Thermo Fisher Scientific, USA), 1% GlutaMAX (Thermo Fisher Scientific, USA), 100U PS and 0.1 μ M dexamethasone (Sigma-Aldrich, USA) for two weeks. Then HepaRG cells differentiate in medium containing 2% dimethylsulfoxide (DMSO, MP Biomedicals, USA). Cells were all incubated at 37 °C with 5% CO₂.

1.14. Dual luciferase reporter Assays

Dual-luciferase reporter gene assay was performed as described in our previous reports.⁴⁻⁶ HEK293T cells were seeded in 96-well plates at a density of 1.2×10^4 cells per well without antibiotics. 100 ng pGL3-CYP3A4-XREM-Luc, 50 ng pSG5-hPXR, and 3 ng pGL4.74 [hRluc/TK] control vector were co-transfected into each well using MegaTran 1.0 (Origene, USA) according to the manufacturer's instructions. 6 hours later, the transfection mixtures were replaced by culture medium containing 10 μ M hPXR positive agonist RIF or the tested compounds. After incubation for 24 h, dual-luciferase activity was measured using a Dual Reporter Assay System (Promega, Madison, WI) in an Amersham Pharmacia Biotech luminometer. *Renilla* activity was measured as normalization to firefly luciferase activity for each well.

1.15. Quantitative reverse-transcription polymerase chain reaction

Trizol reagent was used to purify total RNA from HepaRG according to the manufacturer's instruction (Invitrogen, Grand Island, NY). Approximately 1000 ng RNA was isolated and randomly reverse-transcribed to cDNA with PrimeScript RT reagent kit (Accurate biology, China). RT-qPCR analysis for specific genes was performed using SYBR Premix Ex Taq II kit (Accurate biology, China) in Applied Biosystems 7500 Real-Time PCR System. ACTB of HepaRG was used as normalized control. The gene-specific primer sequences used in the experiment are listed in Table. S1.2.

1.16. Molecular modeling

All the molecular docking studies, including protein preparation, ligand preparation and docking simulation, were performed using MOE2014.0901. Crystal structure of hPXR and RIF complex (PDB ID: 1SKX) was downloaded from RCSB Protein Data Bank (http://www.rcsb.org/), with a resolution of 2.8 Å. The forcefield environment was set as default Amber10: EHT, and the LigX module was applied to preprocess the ligand-protein complex. Small molecules (draw by Chemdraw 17.0) were imported into the MOE software and built as a candidate compound library while the force-field parameters set as MMFF94 × default environment. After energy minimizing and optimization, a stochastic conformational search was performed. Each compound can generate up to 1000 conformations. The candidate molecules were docked into the suggested active site using the default induced fit docking protocol and rescoring via London dG and GBVI/WSA dG algorithm.

1.17. Statistical Analysis

All the presented data and results were confirmed by at least three independent experiments. The data were presented as means \pm the standard deviation (S.D.) and analyzed with GraphPad Prism 7.0 software (GraphPad Software, U.S.). Statistical differences between two groups were determined using student-T-test. A value of P <0.05 was accepted as statistically significant.

References

(1) Appendino, G.; Belloro, E.; Tron, G. C.; Jakupovic, J.; Ballero, M. Diterpenoids from *Euphorbia pithyusa* subsp. cupanii. *J. Nat. Prod.* 1999, *62*, 1399–1404.

(2) Cheng, Z.; Wu, Y. Transformation method of lathyrol derivatives and application thereof in preparing antitumor drug. CN107164422A, 2017.

(3) Narayanan, P.; Röhrl, M.; Zechmeister, K.; Engel, D. W.; Hoppe, W. Structure of 7-hydroxy-lathyrol a further diterpene from *Euphorbia lathyrism*. *Tetrahedron*. *Lett*. 1971, *12*, 1325–1328.

(4) Zeng, H.; Li, D.; Qin, X.; Chen, P.; Tan, H.; Zeng, X.; Li, X.; Fan, X.; Jiang, Y.; Zhou, Y.; Chen, Y.; Wang, Y.; Huang, M.; Bi, H. Hepatoprotective effects of schisandra sphenanthera extract against lithocholic acid-induced cholestasis in male mice are associated with activation of the pregnane x receptor pathway and promotion of liver regeneration. *Drug. Metab. Dispos.* 2016, *44*, 337–342.

(5) Fan, S.; Liu, C.; Jiang, Y.; Gao, Y.; Chen, Y.; Fu, K.; Yao, X.; Huang, M.; Bi, H. Lignans from Schisandra sphenanthera protect against lithocholic acid-induced cholestasis by pregnane X receptor activation in mice. *J. Ethnopharmacol.* 2019, *245*, 112103–112112.

	1 ^{<i>a</i>}		2^{b}		3 ^{<i>a</i>}	
no.	$\delta_{\rm H}$, mult	$\delta_{ m C}$	$\delta_{\rm H}$, mult	$\delta_{ m C}$	$\delta_{\rm H}$, mult	$\delta_{ m C}$
1α	3.76, dd (14.8, 9.3)	44.0	3.48, dd (13.6, 9.3)	45.8	3.33, dd (14.5, 8.3)	47.0
1 <i>β</i>	1.71, dd (14.8, 10.7)		1.46, dd (13.6, 10.0)		1.88, dd (14.5, 11.4)	
2	2.46, m	38.6	2.06, m	38.9	2.41, m	37.2
3	5.65, dd (3.8, 3.8)	81,1	4.06, dd (3.0, 3.0)	80.9	5.94, dd (3.8, 3.8)	79.4
4	3.02, dd (10.8, 3.8)	51.8	2.54, dd (10.9, 3.0)	52.5	2.81, m	55.8
5	6.59, d (10.8)	137.1	6.03, d (10.9)	127.1	6.08, d (10.2)	67.1
6		143.3		138.9		147.7
7α		203.7	2.15, m	31.9		199.9
7β			2.49, m			
8α	2.61, dd (12.1, 4.3)	36.3	2.26, m	28.4	2.79, dd (13.8, 7.5)	33.7
8 <i>β</i>	2.95, dd (12.1, 12.1)		1.59, m		3.01, dd (13.8, 8.0)	
9	1.22, m	31.8	1.16, m	34.5	1.60, m	31.5
10		24.8		25.1		25.4
11	1.51, dd (11.7, 8.4)	27.7	1.50, dd (11.5, 7.0)	29.7	1.56, m	28.1
12	6.70, dd (11.7, 1.0)	145.4	7.38, d (11.5)	152.1	6.43, d (10.7)	143.3
13		133.8		132.6		136.0
14		193.1		197.2		196.2
15		95.6		92.8		92.2
16	1.05, d (6.8)	14.4	1.12, d (6.8)	14.2	0.98, d (6.8)	14.0
17	4.13, brs	58.0	a 4.61, d (12.1)	64.9	a 6.13, s	128.0
			b 4.32, d (12.1)		b 5.77, s	
18	1.19, s	28.5	1.19, s	29.2	1.19, s	28.4
19	1.15, s	16.2	1.09, s	16.2	1.23, s	15.9
20	1.82, d (1.0)	12.5	1.86, s	12.5	1.77, s	12.8
5-OAc					1.78, s	20.6
						169.7
15-OAc	2.16, s	21.6			2.22, s	21.8
		169.2				169.8
OBz	3-		17-		3-	
C=O		165.5		166.5		165.8
1′		129.9		130.3		129.9
2',6'	8.09, m	129.6	7.98, m	129.5	8.01, m	129.4
3',5'	7.49, t (7.7)	128.6	7.41, t (7.8)	128.4	7.45, t (7.5)	128.5
4'	7.62, m	133.4	7.54, t (7.8)	133.0	7.58, t (7.5)	133.2
15-OH			3.05, brs			

2. Table S1. ¹H and ¹³C NMR spectral data of compounds 1–3 in CDCl₃ (J in Hz, δ in ppm)

^aRecorded at ¹H (400 MHz), ¹³C NMR (100 MHz); ^bRecorded at ¹H (500 MHz), ¹³C NMR (125 MHz)

	4		5		
no.	$\delta_{ m H}$, mult	$\delta_{ m C}$	$\delta_{ m H}$, mult	$\delta_{ m C}$	
1α	3.48, dd (14.3, 8.4)	48.4	3.31, dd (14.4, 10.2)	51.0	
1β	1.63, dd (14.3, 11.9)		1.50, dd (10.2, 5.3)		
2	2.32, m	37.7	2.27, m	36.6	
3	5.69, dd (3.5, 3.5)	80.4	5.66, dd (3.5, 3.5)	82.2	
4	2.83, dd (10.0, 3.5)	52.0	2.59, m	54.2	
5	6.17, d (10.0)	65.5	6.24, d (10.2)	65.8	
6		144.6		130.1	
7	α 2.07, m	34.9	5.58, dd (12.5, 3.6)	136.2	
	β2.23, m				
8α	1.97, m	21.6	2.35, m	24.5	
8β	1.77, m		2.62, m		
9	1.15, m	35.3	1.23, m	30.7	
10		25.2		25.5	
11	1.39, dd (11.4, 8.3)	28.5	1.48, d (11.3)	28.2	
12	6.52, dd (11.4, 0.8)	146.5	7.69, d (11.3)	150.1	
13		134.1		134.5	
14		196.7		198.2	
15		92.3		90.1	
16	0.94, d (6.7)	14.1	0.94, d (6.8)	14.6	
17a	5.00, s	115.4	4.42, d (12.3)	65.2	
17b	4.75, s		4.36, d (12.3)		
18	1.17, s	29.0	1.18, s	28.5	
19	1.17, s	16.8	1.32, s	16.4	
20	1.71, d (0.8)	12.4	1.71, br s	12.0	
3-OAc			2.07, s	20.9	
				169.4	
5-OAc	1.92, s	21.1	1.89, s	21.2	
		170.3		169.6	
15-OAc	2.18, s	22.1			
1		169.8	2.02		
17-OAc			2.03, s	21.1	
• •	2			171.0	
cinnamyl	3	1665			
C=0		166.5			
1'		134.3			
2',6'	7.52, m	128.1			
3',5'	7.38, m	128.8			
4'	7.37, m	130.4			
7'	7.67, d (16.0)	145.1			
8'	6.39, d (16.0)	117.9			
15-OH			2.98, s		

3. Table S2. ¹H (400 MHz) and ¹³C NMR (100 MHz) spectral data of compounds **4** and **5** in CDCl₃ (*J* in Hz, δ in ppm)

Gene	Specie	Forward primer	Reverse primer	
	S	(5'→3')	(5'→3')	
ACTB	Human	CCTTGCACATGCCGGA	GCACAGAGCCTCGCCTT	
		G		
CYP3A4	Human	GTGGGGCTTTTATGAT	GCCTCAGATTTCTCACCAA	
		GGTCA	CACA	
CYP2B6	Human	CCGGGGGATATGGTGTG	CCGAAGTCCCTCATAGTGG	
		ATCTT	TC	
MDR1	Human	CCATAGCTCGTGCCCT	CGGTGAGCAATCACAATGC	
		TGTTAGA	AG	

4. Table S3. The gene-specific primer sequences for RT-qPCR.

5. Figure S1. The key ${}^{1}H{-}^{1}H$ COSY (---) and HMBC (----) correlations of compounds 1–5.

7. Figure S3. ORTEP diagram of compounds 26, 30, and 31.

Cell Counting Kit-8 (CCK8) assay was applied to test cytotoxicity of compounds. HEK-293T cells were seeded in a 96-well plate (1×10^4 /well) and treated with RIF or compounds at 10 μ M for 24 h. After that, 10 μ L CCK8 was applied to each well and incubated for an hour at 37 °C. Cell viability was quantified by measuring optical density at 450 nm with a microplate reader.

10. Figure S6–S115.

Figure S6. ¹H NMR spectrum of 1 in CDCl₃.

Figure S7. ¹³C NMR and DEPT 135 spectra of 1 in CDCl₃.

Figure S8. HSQC spectrum of 1 in CDCl₃.

Figure S9. HMBC spectrum of 1 in CDCl₃.

Figure S10. ¹H–¹H COSY spectrum of 1 in CDCl₃.

Figure S11. NOESY spectrum of 1 in CDCl₃.

Figure S12. ¹H NMR spectrum of 2 in CDCl₃.

Figure S13. ¹³C NMR and DEPT 135 spectra of 2 in CDCl₃.

Figure S14. HSQC spectrum of 2 in CDCl₃.

Figure S15. HMBC spectrum of 2 in CDCl₃.

Figure S16. $^{1}H-^{1}H$ COSY spectrum of 2 in CDCl₃.

Figure S17. NOESY spectrum of 2 in CDCl₃.

Figure S18. ¹H NMR spectrum of 3 in CDCl₃.

Figure S19. ¹³C NMR and DEPT 135 spectra of **3** in CDCl₃.

Figure S20. HSQC spectrum of 3 in CDCl_{3.}

Figure S21. HMBC spectrum of 3 in CDCl_{3.}

Figure S22. ¹H–¹H COSY spectrum of 3 in CDCl₃.

Figure S23. NOESY spectrum of 3 in CDCl₃.

Figure S24. ¹H NMR spectrum of 4 in CDCl₃.

Figure S25. ¹³C NMR and DEPT 135 spectra of 4 in CDCl₃.

Figure S26. HSQC spectrum of 4 in CDCl_{3.}

Figure S27. HMBC spectrum of 4 in CDCl_{3.}

Figure S28. ¹H–¹H COSY spectrum of 4 in CDCl₃.

Figure S29. NOESY spectrum of 4 in CDCl₃.

Figure S30. ¹H NMR spectrum of 5 in CDCl₃.

Figure S31. ¹³C NMR and DEPT 135 spectra of 5 in CDCl₃.

Figure S32. HSQC spectrum of 5 in CDCl₃.

Figure S34. ¹H–¹H COSY spectrum of 5 in CDCl₃.

Figure S35. NOESY spectrum of 5 in CDCl₃.

Figure S36. ¹H NMR spectrum of 20 in CDCl₃.

Figure S37. ¹³C NMR and DEPT 135 spectra of **20** in CDCl₃.

Figure S38. HSQC spectrum of 20 in CDCl₃.

Figure S39. HMBC spectrum of 20 in CDCl₃.

Figure S40. ¹H-¹H COSY spectrum of 20 in CDCl₃.

Figure S41. ¹H NMR spectra of 21 in CDCl₃.

Figure S42. ¹³C NMR and DEPT 135 spectra of 21 in CDCl₃.

Figure S43. HSQC spectrum of 21 in CDCl₃.

Figure S44. HMBC spectrum of 21 in CDCl₃.

Figure S46. ¹H NMR spectrum of 22 in CDCl₃.

Figure S47. ¹³C NMR and DEPT 135 spectra of 22 in CDCl₃.

Figure S49. HMBC spectrum of 22 in CDCl₃.

Figure S50. ¹H–¹H COSY spectrum of 22 in CDCl₃.

Figure S51. ¹H NMR spectrum of 23 in CDCl₃.

Figure S52. ¹³C NMR and DEPT 135 spectra of 23 in CDCl₃.

Figure S54. HMBC spectrum of 23 in CDCl₃.

Figure S55. ¹H–1H COSY spectrum of 23 in CDCl₃.

Figure S56. NOESY spectrum of 23 in CDCl₃.

Figure S57. ¹H NMR spectrum of 24 in CDCl₃.

Figure S58. ¹³C NMR and DEPT 135 spectra of 24 in CDCl₃.

Figure S59. HSQC spectrum of 24 in CDCl₃.

Figure S61. ¹H–¹H COSY spectrum of 24 in CDCl₃.

Figure S63. ¹H NMR spectrum of 25 in CDCl₃.

Figure S64. ¹³C NMR and DEPT 135 spectra of 25 in CDCl₃.

Figure S65. HSQC spectrum of 25 in CDCl₃.

Figure S67. ¹H–¹H COSY spectrum of 25 in CDCl₃.

Figure S68. NOESY spectrum of 25 in CDCl₃.

Figure S69. ¹H NMR spectrum of 26 in CDCl₃.

Figure S70. ¹³C NMR and DEPT 135 spectra of 26 in CDCl₃.

Figure S71. HSQC spectrum of 26 in CDCl₃.

Figure S72. HMBC spectrum of 26 in CDCl₃.

Figure S73. ¹H–¹H NMR spectrum of 26 in CDCl₃.

Figure S75. ¹H NMR spectrum of 28 in CDCl₃.

Figure S76. ¹³C NMR and DEPT 135 spectra of 28 in CDCl₃.

Figure S77. HSQC spectrum of 28 in CDCl₃.

Figure S78. HMBC spectrum of 28 in CDCl₃.

S104

Figure S79. ¹H-¹H COSY spectrum of 28 in CDCl₃.

Figure S80. ¹H NMR spectrum of 29 in CDCl₃.

Figure S81. ¹³C NMR and DEPT 135 spectra of 29 in CDCl₃.

Figure S82. HSQC spectrum of 29 in CDCl₃.

Figure S83. HMBC spectrum of 29 in CDCl₃.

Figure S84. ¹H–¹H COSY spectrum of 29 in CDCl₃.

Figure S86. ¹H NMR spectrum of 30 in CDCl₃.

Figure S87. ¹³C NMR and DEPT 135 spectra of **30** in CDCl₃.

Figure S88. HSQC spectrum of 30 in CDCl₃.

Figure S89. HMBC spectrum of 30 in CDCl₃.

Figure S90. ¹H-¹H COSY spectrum of 30 in CDCl₃.

Figure S91. NOESY spectrum of 30 in CDCl₃.

Figure S92. ¹H NMR spectrum of 31 in CDCl₃.

Figure S93. ¹³C NMR and DEPT 135 spectra of **31** in CDCl₃.

Figure S94. HSQC spectrum of 31 in CDCl₃.

Figure S95. HMBC spectrum of 31 in CDCl₃.

Figure S96. ¹H–1H COSY spectrum of **31** in CDCl₃.

Figure S98. ¹H NM spectrum of 32 in CDCl₃.

Figure S99. ¹³C NMR and DEPT 135 spectra of **32** in CDCl₃.

Figure S100. HSQC spectrum of 32 in CDCl₃.

Figure S101. HMBC spectrum of 32 in CDCl₃.

Figure S102. ¹H–¹H COSY spectrum of 32 in CDCl₃.

Figure S103. NOESY spectrum of 32 in CDCl₃.

Figure S104. ¹H NMR spectrum of 33 in CDCl₃.

Figure S105. ¹³C NMR and DEPT 135 spectra of **33** in CDCl₃.

Figure S106. HSQC spectrum of 33 in CDCl₃.

Figure S107. HMBC spectrum of 33 in CDCl₃.

Figure S110. ¹H NMR spectrum of 34 in CDCl₃.

Figure S111. ¹³C NMR and DEPT 135 spectra of **34** in CDCl₃.

Figure S112. HSQC spectrum of 34 in CDCl₃.

Figure S113. HMBC spectrum of 34 in CDCl₃.

Figure S114. ¹H–¹H NMR spectrum of 34 in CDCl₃.

Figure S115. NOESY spectrum of 34 in CDCl₃.

S141

11. Figure S116–S145.

Figure S116. ¹H NMR spectrum of 6 in CDCl₃.

Figure S117. ¹³C NMR and DEPT 135 spectra of 6 in CDCl₃.

Figure S118. ¹H NMR spectrum of 7 in CDCl₃.

Figure S119. ¹³C NMR and DEPT 135 spectra of 7 in CDCl₃.

Figure S120. ¹H NMR spectrum of 8 in CDCl₃.

Figure S121. ¹³C NMR and DEPT 135 spectra of 8 in CDCl₃.

Figure S122. ¹H NMR spectrum of 9 in CDCl₃.

Figure S123. ¹³C NMR and DEPT 135 spectra of 9 in CDCl₃.

Figure S124. ¹H NMR spectrum of 10 in CDCl₃.

Figure S125. ¹³C NMR and DEPT 135 spectra of 10 in CDCl₃.

Figure S126. ¹H NMR spectrum of 11 in CDCl₃.

Figure S127. ¹³C NMR and DEPT 135 spectra of 11 in CDCl₃.

Figure S128. ¹H NMR spectrum of 12 in CDCl₃.

Figure S129. ¹³C NMR and DEPT 135 spectra of 12 in CDCl₃.

Figure S130. ¹H NMR spectrum of 13 in CDCl₃.

Figure S131. ¹³C NMR and DEPT 135 spectra of 13 in CDCl₃.

Figure S132. ¹H NMR spectrum of 14 in CDCl₃.

Figure S133. ¹³C NMR and DEPT 135 spectra of 14 in CDCl₃.

Figure S134. ¹H NMR spectrum of 15 in CDCl₃.

Figure S135. ¹³C NMR and DEPT 135 spectra of 15 in CDCl₃.

Figure S136. ¹H NMR spectrum of 16 in CDCl₃.

Figure S137. ¹³C NMR and DEPT 135 spectra of 16 in CDCl₃.

Figure S138. ¹H spectrum of 17 in CDCl₃.

Figure S139. ¹³C NMR and DEPT 135 spectra of 17 in CDCl₃.

Figure S140. ¹H spectrum of 18 in CDCl₃.

Figure S141. ¹³C NMR and DEPT 135 spectra of 18 in CDCl₃.

Figure S142. ¹H spectrum of 19 in CDCl₃.

Figure S143. ¹³C NMR spectrum of 19 in CDCl₃.

S169

Figure S144. ¹H spectrum of 27 in CDCl₃.

Figure S145. ¹³C NMR and DEPT 135 spectra of 27 in CDCl₃.

12. Figure S146–S164.

Figure S146. HRESIMS spectrum of 1.

Figure S150. HRESIMS spectrum of 5.

C26 H36 O8 [M+Na]+ : Predicted region for 499.2302 m/z

Figure S151. HRESIMS spectrum of 20.

0-

 Rank
 Score
 Formula (M)

 1
 88.13
 C25 H32 O7

467.0 467.5 468.0 468.5 469.0 469.5 470.0 470.5 471.0 471.5 472.0 472.5 473.0 473.5 474.0

Meas. m/z

467.2048

Pred. m/z Df. (mDa) Df. (ppm)

0.8

467.2040

DBE

10.0

Iso

1.71 89.72

469.2101

lon

[M+Na]+

Figure S152. HRESIMS spectrum of 21.

Rank	Score Formula (M)	lon	Meas. m/z	Pred. m/z	Df. (mDa)	Df. (ppm)	Iso	DBE
1	63.98 C25 H32 O6 S	[M+Na]+	483.1817	483.1812	0.5	1.03	64.03	10.0

Figure S153. HRESIMS spectrum of 22.

Figure S154. HRESIMS spectrum of 23.

Figure S155. HRESIMS spectrum of 24.

Figure S156. HRESIMS spectrum of 25.

Figure S157. HRESIMS spectrum of 26.

Figure S158. HRESIMS spectrum of 28.

Figure S160. HRESIMS spectrum of 30.

Figure S161. HRESIMS spectrum of 31.

Figure S162. HRESIMS spectrum of 32.

Figure S163. HRESIMS spectrum of 33.

Figure S164. HRESIMS spectrum of 34.

13. Figure S165–S185.

Figure S165. IR (KBr disc) spectrum of 1.

Figure S166. IR (KBr disc) spectrum of 2.

Figure S167. IR (KBr disc) spectrum of 3.

Figure S168. IR (KBr disc) spectrum of 4.

Figure S169. IR (KBr disc) spectrum of 5.

Figure S170. IR (KBr disc) spectrum of 20.

Figure S171. IR (KBr disc) spectrum of 21.

Figure S172. IR (KBr disc) spectrum of 22.

Figure S173. IR (KBr disc) spectrum of 23.

Figure S174. IR (KBr disc) spectrum of 24.

Figure S175. IR (KBr disc) spectrum of 25.

Figure S176. IR (KBr disc) spectrum of 26.

Figure S177. IR (KBr disc) spectrum of 28.

Figure S178. IR (KBr disc) spectrum of 29.

Figure S179. IR (KBr disc) spectrum of 30.

Figure S180. IR (KBr disc) spectrum of 31.

Figure S181. IR (KBr disc) spectrum of 32.

Figure S182. IR (KBr disc) spectrum of 33.

Figure S183. IR (KBr disc) spectrum of 34.

14. Figure S184–S217.

Figure S184. HPLC chromatogram of compound 1.

1 PDA Multi 1/254nm 4nm

	PeakTable							
PDA	PDA Ch1 254nm 4nm							
Pea	ak#	Ret. Time	Area	Height	Area %	Height %		
	1	6.339	4496	354	1.407	1.924		
	2	10.481	314992	18061	98.593	98.076		
	Total		319488	18415	100.000	100.000		

PeakTable						
PDA Ch1 2	54nm 4nm					
Peak#	Ret. Time	Area	Height	Area %	Height %	
1	5.434	4674	622	0.543	0.584	
2	5.985	4821	675	0.560	0.634	
3	7.814	847251	104774	98.461	98.424	
4	10.040	3751	381	0.436	0.358	
Total		860497	106452	100.000	100.000	

	_	
Deal	ZΤα	ble
1 Ca	V T C	ioic.

]	PDA Ch1 270nm 4nm							
	Peak#	Ret. Time	Area	Height	Area %	Height %		
	1	3.230	11430	1100	2.380	2.620		
	2	5.437	3311	459	0.689	1.094		
	3	11.366	465420	40422	96.930	96.286		
	Total		480160	41981	100.000	100.000		

PeakTable							
1	PDA Ch1 2	54mm 4mm					
	Peak#	Ret. Time	Area	Height	Area %	Height %	
	1	7.175	199178	20692	1.483	1.866	
	2	9.504	13232976	1087970	98.517	98.134	
]	Total		13432153	1108662	100.000	100.000	

PeakTable

PDA Ch1 254nm 4nm								
Peak#	Ret. Time	Area	Height	Area %	Height %			
1	6.318	3232302	435588	99.190	99.489			
2	6.701	26387	2239	0.810	0.511			
Total		3258689	437827	100.000	100.000			

1 PDA Multi 1/254nm 4nm

			Р	eakTable				
]	PDA Ch1 254nm 4nm							
	Peak#	Ret. Time	Area	Height	Area %	Height %		
	1	5.449	18499	2415	1.501	1.633		
ſ	2	6.002	21813	3095	1.770	2.092		
	3	7.654	1192269	142418	96.729	96.275		
	Total		1232581	147928	100.000	100.000		

PeakTable

	1 cut 1 dolo							
]	PDA Ch1 254nm 4nm							
[Peak#	Ret. Time	Area	Height	Area %	Height %		
	1	9.719	446780	45549	2.571	3.724		
	2	10.762	16933731	1177476	97.429	96.276		
[Total		17380511	1223025	100.000	100.000		

_	_	
Deal	Cable	
FCdK.	Laur	-

PDA	Ch1	254nm 4nm
-		

Peak#	Ret. Time	Area	Height	Area %	Height %
1	5.179	4144	387	0.726	1.086
2	5.839	9560	792	1.675	2.223
3	10.004	557220	34447	97.600	96.691
Total		570924	35625	100.000	100.000

-					
	00	- L	- CO		
-		к I	-		_
	-u	<u>n</u> 1	. cv	U	~

PDA Ch1 254nm 4nm						
Peak#	Ret. Time	Area	Height	Area %	Height %	
1	7.763	2109934	310314	97.701	97.970	
2	8.180	49649	6430	2.299	2.030	
Tota	1	2159583	316743	100.000	100.000	

Figure S193. HPLC chromatogram of compound 10.

	PeakTable								
P	DA Ch1 2	54nm 4nm							
Γ	Peak#	Ret. Time	Area	Height	Area %	Height %			
Γ	1	6.160	14796090	1749577	99.478	99.575			
Γ	2	6.566	77613	7471	0.522	0.425			
	Total		14873703	1757047	100.000	100.000			

	PeakTable								
PDA	A Ch1 2	54nm 4nm							
Pe	eak#	Ret. Time	Area	Height	Area %	Height %			
	1	6.363	4729	664	0.128	0.130			
	2	6.730	3700248	508928	99.872	99.870			
	Total		3704977	509592	100.000	100.000			

Figure S195. HPLC chromatogram of compound 12.

		Р	eakTable		
PDA Ch1 2	54nm 4nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	6.585	1272	156	1.126	1.182
2	8.280	111685	13008	98.874	98.818
Total		112957	13164	100.000	100.000

Ja iviuiti 1/254nm 4nm	

PeakTable								
PDA Ch1 2	54nm 4nm							
Peak#	Ret. Time	Area	Height	Area %	Height %			
1	7.193	2645024	338696	100.000	100.000			
Total		2645024	338696	100.000	100.000			

	PeakTable							
P	DA Ch1 2	54mm 4mm						
	Peak#	Ret. Time	Area	Height	Area %	Height %		
	1	6.018	79856	11603	1.029	1.219		
Γ	2	6.526	122597	14954	1.580	1.571		
	3	7.161	104765	13399	1.350	1.408		
	4	7.395	7454125	911740	96.042	95.802		
	Total		7761343	951696	100.000	100.000		

1 PDA Multi 1/254nm 4nm	I.
-------------------------	----

	PeakTable									
F	PDA Ch1 254nm 4nm									
Γ	Peak#	Ret. Time	Area	Height	Area %	Height %				
	1	5.656	986989	156405	100.000	100.000				
	Total		986989	156405	100.000	100.000				

Ρ	eal	kТ	a	bl	le
-				_	

P	DA Ch1 2	54nm 4nm				
	Peak#	Ret. Time	Area	Height	Area %	Height %
	1	5.667	30081	4803	0.423	0.509
Γ	2	6.009	6998172	930653	98.312	98.579
Γ	3	6.494	90056	8608	1.265	0.912
	Total		7118309	944063	100.000	100.000

			Р	eakTable					
]	DA Ch1 254nm 4nm								
	Peak#	Ret. Time	Area	Height	Area %	Height %			
	1	6.361	164637	17505	1.981	1.553			
ſ	2	6.786	8145381	1109415	98.019	98.447			
	Total		8310018	1126920	100.000	100.000			

		P	eakTable						
PDA Ch1 2	DA Ch1 200nm 4nm								
Peak#	Ret. Time	Area	Height	Area %	Height %				
1	4.360	8353	1005	0.822	0.922				
2	9.708	1008155	107962	99.178	99.078				
Total		1016508	108967	100.000	100.000				

- . . - . . - -

Figure S202. HPLC chromatogram of compound 19.

1 PDA Multi 1/254nm 4nm

PeakTable

PDA Ch1 254nm 4nm									
Peak#	Ret. Time	Area	Height	Area %	Height %				
1	5.931	224884	17222	100.000	100.000				
Total		224884	17222	100.000	100.000				

				PeakTable		
1	PDA Ch1 2	54mm 4mm				
	Peak#	Ret. Time	Area	Height	Area %	Height %
	1	5.902	956162	141690	99.750	99.673
	2	6.264	2394	465	0.250	0.327
	Total		958556	142155	100.000	100.000

PeakTable

PDA Ch1 2	54nm 4nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	4.179	169276	22854	2.740	2.777
2	4.632	43187	7946	0.699	0.965
3	6.831	5964411	792284	96.560	96.258
Total		6176874	823084	100.000	100.000

		1	PeakTable		
PDA Ch1 2	54mm 4mm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	9.775	4233	428	1.460	1.639
2	10.672	285708	25678	98.540	98.361
Total		289941	26106	100.000	100.000

-					
p	eai	ĿТ	2	hl	e
	Ca.	n. 1	c.	0	

PDA Ch1 254nm 4nm									
Peak#	Ret. Time	Area	Height	Area %	Height %				
1	11.997	174401	18827	100.000	100.000				
Total		174401	18827	100.000	100.000				

Figure S207. HPLC chromatogram of compound 24.

		PeakTable	•	
PDA Ch1 2	54mm 4mm			
Peak#	Ret. Time	Area	Height	Area %
1	9.720	75775	7942	100.000
Total		75775	7942	100 000

	PeakTable					
PDA Ch1 2	00nm 4nm					
Peak#	Ret. Time	Area	Height	Area %		
1	5.908	205	81	0.010		
2	6.071	18770	1974	0.917		
3	6.368	995	286	0.049		
4	11.422	2026277	210696	99.024		
Total		2046248	213036	100.000		

FDA Mulu 1/200101 4101

	PeakTable						
PDA Ch1 200nm 4nm							
	Peak#	Ret. Time	Area	Height	Area %	Height %	
	1	7.539	918343	90398	100.000	100.000	
	Total		918343	90398	100.000	100.000	

1 PDA Multi 1/200nm 4nm

-				
Pea		2	hl	ρ
1 Ua	ΓI	.a	υı	~

PDA Ch1 200nm 4nm							
Peak#	Ret. Time	Area	Height	Area %	Height %		
1	6.352	1133223	113671	100.000	100.000		
Total		1133223	113671	100.000	100.000		

_			_		
	eol	61		ы	0
	сa	n 1	La	UJ	

PDA Ch1 254nm 4nm							
Peak#	Ret. Time	Area	Height	Area %	Height %		
1	8.732	194599	22663	100.000	100.000		
Total		194599	22663	100.000	100.000		

Deal	<u>ь</u> -т	-1	-1	-
Pea	кι	а	DI	е

1	PDA Ch1 200nm 4nm							
	Peak#	Ret. Time	Area	Height	Area %	Height %		
ſ	1	7.351	24356	1173	2.150	1.335		
ſ	2	7.680	493	171	0.044	0.194		
ſ	3	13.398	1107914	86458	97.806	98.470		
	Total		1132763	87801	100.000	100.000		

Figure S213. HPLC chromatogram of compound 30.

PDA Ch1 200nm 4nm							
Peak#	Ret. Time	Area	Height	Area %	Height %		
1	9.231	7300284	232753	100.000	100.000		
Total		7300284	232753	100.000	100.000		

PeakTable

PeakTable

PDA Ch1 254nm 4nm							
Peak#	Ret. Time	Area	Height	Area %			
1	10.891	951694	89381	100.000			
Total		951694	89381	100.000			

	PeakTable						
PDA Ch1 200nm 4nm							
	Peak#	Ret. Time	Area	Height	Area %	Height %	
	1	11.057	1210675	114909	100.000	100.000	
ĺ	Total		1210675	114909	100.000	100.000	

. . .

Figure S216. HPLC chromatogram of compound 33.

1 PDA Multi 1/254nm 4nm

.

-			-		
μ	60	61	L D	ы	
	ua	n.,	La	U.	n.

PDA Chi 254mm 4mm						
Peak#	Ret. Time	Area	Height	Area %	Height %	
1	6.648	196112	21144	100.000	100.000	
Total		196112	21144	100.000	100.000	

PeakTable							
PDA Ch1 254nm 4nm							
Peak#	Ret. Time	Area	Height	Area %	Height %		
1	0.380	13149	868	3.931	2.555		
2	6.117	321377	33083	96.069	97.445		
Total		334527	33950	100.000	100.000		