Supporting Information for

Magnesium-promoted Additions of Difluoroenolates to Unactivated Imines

Alex L. Nguyen,[†] Hari R. Khatri,[†] James R. Woods,[‡] Cassidy S. Baldwin,[†] Frank R. Fronczek,[§] and David A. Colby^{*,†}

[†] Department of BioMolecular Sciences, University of Mississippi, University, Mississippi 38677, United States, [‡] Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, 47907, United States, and [§] Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States

Table of Contents:

I. X-ray Experimental	S1
II. X-ray Crystallographic Data	S2
III. Spectral Data	S4

I. X-ray Experimental

Diffraction data were collected at low temperature (90K) with MoK α (λ =0.71073 Å) for **30** and **31** or CuK α radiation (λ =1.54184 Å) for **32** on a Bruker Kappa Apex-II DUO diffractometer. Refinement was by full-matrix least squares using SHELXL2014/7. H atoms were visible in difference maps, but were placed in idealized positions in the refinements except for those on N, for which positions were refined. Approximately 50:50 disorder of the naphthyl group was present in **31**. The crystal of **31** was a twin, and the crystal of **32** was also a twin with two independent molecules present in the asymmetric unit. Crystal data: for **30**: C₂₅H₁₉F₂NO, monoclinic P2₁/c, a=5.7571(4), b=18.4857(13), c=17.5890(13) Å, β =94.410(4)°, Z=4, μ (MoK α)=0.10 mm⁻¹, θ_{max} =30.6°, 5689 independent data, 265 variables, R=0.057, CCDC 1816639; for **31**: C₂₆H₂₁F₂NO₂, triclinic P-1, a=5.6561(3), b=9.7402(4), c=19.2384(9) Å, α =102.673(3), β =96.750(3), γ =97.299(3)°, Z=2, μ (MoK α)=0.10 mm⁻¹, θ_{max} =28.4°, 14427 independent data, 352 variables, R=0.051, CCDC 1816640; for **32**: C₂₇H₂₂F₃NO, triclinic P-1, a=10.1332(6), b=10.5209(5), c=20.5621(10) Å, α =77.223(3), β =81.352(4), γ =89.909(3)°, Z=4, μ (CuK α)=0.84 mm⁻¹, θ_{max} =68.3°, 7629 independent data, 587 variables, R=0.116, CCDC 1816641.

II. X-ray Crystallographic Data

Figure S1. ORTEP Diagram of 30 with 50% ellipsoids.

Figure S2. ORTEP Diagram of 31. with 50% ellipsoids, showing disorder of naphthyl group.

Figure S3. ORTEP Diagram of 32 with 50% ellipsoids. H atoms are not shown.

$ \begin{array}{c} $	7-103.391 7-103.391 104.110 7-115.742 7-116.410	
0 -10 -20 -30 -40 -50 -60	-70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 f1 (ppm)	-2

$ \begin{array}{c} $	
under de general de la comptense al para de la comptense de la comptense de la comptense de la comptense de la c	
0 -10 -20 -30 -40 -50 -60	-70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 - f1 (ppm)

Br Br 38 376 MHz CDCl ₃	95.634 95.653 96.372	
	ł	
	,	
		 0 -180 -190 -200 -2

9 HN F F 39 376 MHz CDCl ₃	96.242 96.966 110.226 110.240
0 -10 -20 -30 -40 -50 -60	-70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 - 11 (opm)

