
Constructing ion channels from water-
soluble α-helical barrels

In the format provided by the 
authors and unedited

Supplementary information

https://doi.org/10.1038/s41557-021-00688-0



 

 

1 

 

 

 

Methods and Supplementary Information for: 

“Constructing ion-channels from water-soluble a-helical barrels” 
 

Alistair J. Scott, Ai Niitsu, Huong T. Kratochvil, Eric J. M. Lang, Jason T. Sengel, 
William M. Dawson, Kozhinjampara. R. Mahendran, Marco Mravic, Andrew R. Thomson, R. Leo 
Brady, Lijun Liu, Adrian J. Mulholland, Hagan Bayley, William F. DeGrado, Mark I. Wallace, 
and Derek N. Woolfson 

 

Correspondence to: d.n.woolfson@bristol.ac.uk 

  



 

 

2 

 

Index 

Computational methods 3 

HPLC and MALDI-TOF data 8 

CD spectroscopy data 13 

AUC data 18 

DPH binding data 22 

PHENIX Polder omit map 23 

MD simulation data (water-soluble barrels) 24 

Additional electrophysiology data 29 

Additional oSCR data 31 

MD simulation data (K2-CCTM-VbIc) 32 

Electrostatic calculation data 34 

Data tables 40 

Movie Captions 45 

References 46 

 	



 

 

3 

 

Computational methods 
bZIP Interface Scoring 

Complementary pairs of coiled-coil interfaces were identified using the bZIP1 scoring function, as previously 
described2. Briefly, bZIP generates a unitless estimate of coiled-coil pairing energy based on the g, a, d, and 
e register positions, with positive scores representing more favourable pairings. By searching for pairings 
that score well in combination, but where the individual homo-pairings score poorly, it is possible to identify 
homotypic interface pairs. Where there is a suitable overlap in sequence composition, it is possible to 
combine these interface pairs into a single sequence that when folded into a helix displays each interface on 
either side of that helix. This arrangement gives rise to barrel-like assemblies. The bZIP function has access 
to pairing energy values for polar a and d residues, as well as hydrophobic residues at the e and g positions. 
Therefore, we reasoned that bZIP scores could be used as the basis of sequence designs for 'inverted' Type-2 
interfaces with a polar core and hydrophobic periphery. Type-2 interfaces where a = Thr and d = Ser were 
scored.   Positions b and c were limited to L, I or V. Fitness scores for interface pairs were assigned by 
subtracting the score for the highest-scoring competing homo-assembly from that of the desired heteromeric 
assembly. For scores see Supplementary Table 3.  

Molecular dynamics (MD) simulations of water-soluble barrels 

System preparation 

Starting from the crystal structures of CC-Type2-(TaSd)2 (PDB ID: 6YB0), CC-Type2-(TaId)5 (PDB ID: 
6YAZ) and CC-Type2-(LaIdSg)2 (CC-Hex2; PDB ID: 4PN9), missing residues CC-Type2-(TaId)5 were 
modelled using the automodel routine of Modeller3 with other residues kept fixed and a helical restraint 
applied to residues 2 to 36. Of the 25 models created, the one with the best molpdf score was retained. For 
CC-Type2-(LaIdSg)2 (CC-Hex2), the missing Gly residues were modelled in with COOT4 as described 
previously5. For all three structures, crystallographic water molecules were retained, and Maestro’s Protein 
Preparation Wizard (Schrödinger Release 2017-4: Maestro, Schrödinger, LLC, New York, NY, 2017) was 
used to choose between possible flipped Gln conformations; to cap N-and C-terminus residues with acetyl 
and amine moieties, respectively; to add hydrogen atoms using the protonation states calculated with 
Propka6; and optimising the hydrogen bonds network. The resulting structures were then solvated with the 
SOLVATE program (http://www.mpibpc.mpg.de/grubmueller/solvate, last visited November 2019), 
developed by H. Grubmüller and V. Groll, to create a solvation shell of TIP3P water molecules of at least 5 
Å around the protein using 8 Gaussians. The tleap program, part of the Amber 17 modelling suite7 was then 
used to create a truncated octahedron cell of TIP3P water molecules setting the padding to 6 Å around the 
previously generated solvation shell and the closeness to 0.75 Å. K+ and Cl- ions  were added randomly to 
the solvent cell to neutralise the protein charge and model a concentration of 0.1 M KCl. The protein was 
modelled using the Amber ff14SB force field8. 

MD simulations 

For each system, 3 replicas were run, each starting with different randomly assigned Boltzmann velocity 
distribution. For each replica, we followed the same careful minimisation-heating-equilibration protocol 
established previously5. Briefly, the system was minimised, first restraining the non-hydrogen protein atoms, 
then only the backbone atoms with a decreasing harmonic restraint, then only the Ca atoms and finally 
without any restraints. Heating was achieved by linearly increasing the temperature from 0 to 293 K over 20 
ps, restraining the backbone atoms using a force constant of 5 kcal.mol-1.Å-2. NPT equilibration was then run, 
first gradually decreasing the restraint on the backbone atoms from 5 to 1 kcal.mol-1.Å-2 over 3 steps of 500 
ps, then gradually decreasing the restraint on the Ca from 1 to 0.05 kcal.mol-1.Å-2 over 5 steps of 500 ps. 
Equilibration was then pursued for 5 ns without any restraints. 
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Production MD was then run in the NPT ensemble, with 3 replicas simulated for 500 ns for each system. For 
both equilibration and production phases, temperature was kept at 293 K using Langevin dynamics with a 
thermostat collision of 5 ps-1 and pressure was maintained constant with a MC barostat using a relaxation 
time of 1 ps. 

Apart from the minimisation and heating phases that were run with pmemd.MPI, all the simulations were run 
using pmemd.CUDA9, part of the Amber 17 modelling suite7, on single Nvidia P100 GPUs available on the 
University of Bristol HPC system BlueCrystal Phase 4. 

MD Analysis 

Trajectories were processed with CPPTRAJ10, part of the Amber 17 modelling suite7, removing the protein 
translational and rotational motions, calculating the backbone RMSD and the water density inside the 
channels (grid command). MD structure figures and movies were prepared with VMD11. 

The channels and their water content were then analysed using the Channel Annotation Package CHAP 
(https://www.channotation.org/, last visited November 201912). For the analysis, the 3 replica simulations for 
each system were concatenated and the CHAP analysis was run every 30 ps of the 1.5 µs trajectories.  The 
cut-off applied to the minimum water number density, n min, to evaluate if the channel exhibit or not a 
continuous line of interacting water molecules along the channel, connecting the bulk water at the two ends 
was determined empirically by comparing n min for various degrees of channel occupancy. For CC-Type2-
(TaId)5 and CC-Type2-(TaSd)2 a cut-off value of 12.275 (corresponding to 1 kBT of energy barrier between 
water in the pore and the bulk) and 8.342 (corresponding to ¼ of the bulk density number of water) were 
chosen respectively. The cut-off is different for the two systems due to the difference in shape and volume 
for the two channels. Our choice for the cut-off was reinforced by the fact that those values correspond 
approximatively to the antimode of the near bimodal distribution of the minimum number density for CC-
Type2-(TaId)5 and for the short hydrophobic region of CC-Type2-(TaSd)2 (Supplementary Figure 48). 

Molecular dynamics (MD) simulations of CCTM-VbIc 

Bilayer System Set-up 

Starting from the octameric biological assembly from the crystal structures of K2-CCTM-VbIc (PDB: 6YB1), 
the protein was embedded and oriented in the bilayer using CHARMM-GUI13 with the CHARMM36m14 
parameters.  Crystallographic water molecules were removed. The initial bilayer orientation was predicted 
using the OPM ppm server15, from water-octanol transfer energies. The protein was embedded in a 95 Å square 
1,2-diphytanoyl-sn-glycero-3-phosphocholine (DPhPC) lipid patch and solvated an additional 27.5 Å of TIP3P 
water molecules in the z-direction of the bilayer, resulting in 101 and 102 lipids in the upper and lower leaflet, 
respectively.  Ions were added by replacing water molecules to neutralize the system and result in a final salt 
concentration of 1 M of either KCl, NaCl or CaCl2.  The final unequilibrated box dimensions were 95 x 95 x 
108 Å with 93500 – 93810 atoms, depending on the ion.  GROMACS was used for minimization and molecular 
dynamics using the recommended cut-off, switching, and Particle-Mesh Ewald distances for CHARMM36m, 
with a 2 fs time step for Langevin dynamics. 

The system was minimized using 5000 steps using steepest decent with harmonic positional restraints on all 
non-hydrogen protein atoms using 4 kcal mol-1 Å-2 for backbone atoms and 2 kcal mol-1 Å-2 for sidechain atoms.  
A 50 ps NVT dynamics simulation was next conducted using similar restraints, with temperature controlled at 
293 K with the V-rescale algorithm and a 0.1 ps coupling constant. A 20 ns NPT dynamics simulation was 
next run with 1 kcal mol-1 Å-2 harmonic restraints on protein Ca atoms, with a Berendsen thermostat at 293 K 
with a 1.0 ps coupling constant and a semiisotropic Berendsen barostat at 1 bar with a pressure coupling time 
constant of 1 ps. Finally, unrestrained dynamics simulations were conducted with a Nose-Hoover thermostat 
at 293 K with a 1.0 ps coupling constant and a semiisotropic Parrinello-Rahman barostat at 1 bar with a pressure 
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coupling time constant of 1 ps. The trajectories containing KCl, NaCl and CaCl2 were run for 700 ns, 2 μs and 
500 ns, respectively. The systems’ time-averaged dimensions were approximately 92 x 92 x 106 Å. 

Water residency analysis 

The 2 μs unrestrained MD simulation of K2-CCTM-VbIc was analysed to assess the occupancy and residence 
time of water molecules at the major polar hydrated sites within the two interiors formed by the outer four-
helix bundle (the central bundle remained dry throughout the simulation). The first 240 ns were discarded as 
equilibration and frames were analysed every 120 ps (>16000 frames analysed in total).  

For each frame, the CCTM core (residues 4-30) was aligned to that of the protein medoid conformation of the 
trajectory (obtained after clustering the protein trajectory using a k-medoids algorithm).  From a subset of ~500 
frames uniformly distributed across 240 ns to 2 μs, the centroid position of water molecules nearby each of the 
designated water sites (6 sites per tetrameric pore, 12 sites total, Supplementary Figure 58) was calculated. 
Each water site centroid calculation included >500 waters limited to within a 1.2 Å radius of the centroid 
position. 

These centroid positions were then used to track individual water molecules entering and exiting those water 
sites as well as their dwell time (Supplementary Figure 60, Table 5). A water was considered bound within a 
water site if it was within 2 Å of the defined water site centroid and if it was the closest water to that site and 
closer to that site than to any other sites.   

Modelling electrostatic energy profiles and I-V curves 

System preparation 

Parallel and antiparallel hexameric models of K2-CCTM-VbIc were prepared with CCBuilder 2.016 using the 
crystallographic parameters of CC-Type2-(TaSd)2 (radius = 9.31 Å, interface angle = 13.98º and pitch = 168.1 
Å). To test the influence of the channel radius on the results, a parallel hexameric model of K2-CCTM-VbIc 
optimized by CCBuilder 2.0 was considered, with the default optimization procedure leading to a narrower 
channel with the following parameters: radius = 8.9 Å, interface angle = 17.3º and pitch = 320 Å. The 
peptides were capped at the C and N terminus and hydrogen atoms were added with PDB2PQR17. 

Electrostatics calculations 

To calculate the electrostatics energy profile of ions translocation through the CCTM channels, the APBS 
program17 was used to solve nonlinear Poisson-Boltzmann (PB) equation. The effect of the phospholipid 
bilayer was accounted for using APBSmem18. The total thickness of the lipid bilayer was set to 36.3 Å and 
the polar head group thickness to 4.25 Å, to match experimental measurements19. Dielectric constants of 2 
and 25 were used for the hydrophobic part of the lipid bilayer and the polar head groups respectively20, 3 was 
used for the protein21, and 78.5 for water (including the inside of the channels). The protein was oriented 
with the channel axis aligned along the z axis and the center z = 0 was chosen to be the geometric center of 
all the Trp side chains, thereby corresponding to the center of the lipid bilayer since the Trp side chains were 
used to position the protein relative to the bilayer22 in agreement with the PPM webserver15 (Supplementary 
Figure 61). To calculate the electrostatic potential energy profile of K+ and Cl- moving through the channel, 
the ions were moved along the z axis between -40 and 40 Å by 0.5 Å increments and the electrostatic 
component of the energy calculated at each step using the same procedure as described in23. The Swanson 
parameter set for the charges and radii 24 was used for the protein as it yields smoother energy profiles for ion 
translocation 23 and the Roux radii were used for K+ and Cl-25. Given that the peptides were inserted 
experimentally in the presence of a +100 mV potential, the orientation of the parallel hexamer under those 
conditions were determined by running PB calculations run with APBSmem in the presence of a membrane 
potential (“Gating charge” calculations) (Supplementary Figure 62). Unsurprisingly, the peptide with the C 
terminus on the same side to which the potential is applied is the favoured orientation under a +100 mV 
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potential, with the positively charged Lys residues at the N terminus being on the 0 mV side (as shown in 
Supplementary Figure 61). 

Modelling of I-V curves 

Assuming the fluxes of the anions and cations inside a channel are independent,  current-voltage curves were 
qualitatively modelled using Nernst-Planck equation for electrodiffusion26. The equation was solved using a 
similar approach than used in previous work27,28, relying on the calculated electrostatic energy profiles of ion 
passage through the channel, with the total calculated current given by: 
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where & is the Faraday constant; 6 the gas constant; 7 the absolute temperature; [(]	the salt concentration, 
1M (equals on both sides of the membrane); 4 is the applied potential; @(=) is the radius of the channel along 
the channel axis (z-axis) and is calculated with HOLE29; J is the length of the channel centered on z=0; 3" is 
the cation valence (+1); >"(=) the diffusion coefficient for cations within the channel, ." is the partition 
coefficient for cations from the bulk solution into the channel; and <"(=) is the electrostatic potential for the 
cation at position z. 3#, >#(=), .# and <#(=) are the corresponding quantities for anions. 

To simplify the calculations, we made a number of assumptions. Firstly, the length of the channel is 
considered to be equal to the lipid bilayer thickness,	J = JLML = 36.3	Å, that is only the transmembrane 
region of the peptide is considered. This was chosen to minimize the incertitude arising from the flexibility 
of the peptide regions outside the membrane, which can have a significant effect on the channel radius and 
electrostatic potential for those regions. Secondly, because we considered the channel to be hydrated and 
have the same dielectric constant as bulk water, the water-channel partition coefficients were chosen to be 
equal to 1, ." = .# = 1. Finally, we considered the applied voltage on one side of the membrane to drop 
linearly to 0 along the channel. 

The electrostatic potential at position z for the cations or anions, <"/#(=), is given by: 

<"/#(=) = R#/"(=) + S(=) (2) 

where R#/"(=) is the electrostatic potential energy profile of ion translocation through the channel calculated 
with APBS; and S(=), illustrated in Supplementary Figure 63, describe the evolution of the applied potential 
4 along the z coordinates (following the convention established in Supplementary Figure 61) and is define 
as: 
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and because we chose J = JLML, Eq. 3 simplifies as follow: 

S(=) = 4 × [
1
2
−
1
J
\ × = (4) 

Compared to previous approaches27,28 where bulk ion diffusion coefficients were used, >"/#(=) is calculated 
the diffusion along the channel30 which gives more accurate results than using the bulk value, even for 
narrow channels31. It is defined as:  

 

>"/#(=) =
>"/#
`a$b

0.64309	 + 	0.00044	 × /01[
@"/#

0.06894× 	@(=)	\	+ 	0.35647	 × /01[
@"/#

0.19409× 	@(=)	\
 (5) 

where >"/#`a$b is the bulk diffusion coefficient and equals to 1.96 × 10-5 cm2/s and 2.03 × 10-5 cm2/s for K+ and 
Cl- respectively 26; @(=) is the channel radius; and @"/# is the radius of the ions and equals 1.7638 and 2.27 
for K+ and Cl- respectively 25. 

As in27, a single variable multiplying the calculated current was used to fit the experimental data: 

!hij = k!"#$" (6) 

This fitting procedure was preferred over a 2-variable fitting procedure (with one variable for cation current 
and one for anion) used to avoid artificially dictating the relative weight of the K+ and Cl- fluxes that could 
arise. 
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HPLC and MALDI-TOF data 

 
Figure 1. CC-Type2-(TaId)2 - HPLC traces (left) from a linear gradient of 20 to 80% MeCN (0.1% TFA) in H2O (0.1% 
TFA), monitored at 220 nm (blue) and 280 nm (red). MALDI-TOF mass spectrum (right). Calculated monoisotopic 
peptide mass = 3220.8 Da, observed mass = 3222 Da. 

 
Figure 2. CC-Type2-(TaId)5 - HPLC traces (left) from a linear gradient of 20 to 80% MeCN (0.1% TFA) in H2O (0.1% 
TFA), monitored at 220 nm (blue) and 280 nm (red). MALDI-TOF mass spectrum (right). Calculated monoisotopic 
peptide mass = 3938.1 Da, observed mass = 3940 Da. 

 
Figure 3. CC-Type2-(LaTd)5 - HPLC traces (left) from a linear gradient of 20 to 80% MeCN (0.1% TFA) in H2O 
(0.1% TFA), monitored at 220 nm (blue) and 280 nm (red). MALDI-TOF mass spectrum (right). Calculated 
monoisotopic peptide mass = 3938.1 Da, observed mass = 3940 Da. 
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Figure 4. CC-Type2-(SaId)5 - HPLC traces (left) from a linear gradient of 20 to 80% MeCN (0.1% TFA) in H2O (0.1% 
TFA), monitored at 220 nm (blue) and 280 nm (red). MALDI-TOF mass spectrum (right). Calculated monoisotopic 
peptide mass = 3868.1 Da, observed mass = 3871 Da. 

 
Figure 5. CC-Type2-(LaSd)5 - HPLC traces (left) from a linear gradient of 20 to 80% MeCN (0.1% TFA) in H2O (0.1% 
TFA), monitored at 220 nm (blue) and 280 nm (red). MALDI-TOF mass spectrum (right). Calculated monoisotopic 
peptide mass = 3868.1 Da, observed mass = 3871 Da. 

 
Figure 6. CC-Type2-(LaNd)5 - HPLC traces (left) from a linear gradient of 20 to 80% MeCN (0.1% TFA) in H2O 
(0.1% TFA), monitored at 220 nm (blue) and 280 nm (red). MALDI-TOF mass spectrum (right). Calculated 
monoisotopic peptide mass = 4003.1 Da, observed mass = 4005 Da. 
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Figure 7. CC-Type2-(LaQd)5 - HPLC traces (left) from a linear gradient of 20 to 80% MeCN (0.1% TFA) in H2O 
(0.1% TFA), monitored at 220 nm (blue) and 280 nm (red). MALDI-TOF mass spectrum (right). Calculated 
monoisotopic peptide mass = 4073.1 Da, observed mass = 4078 Da. 

 
Figure 8. CC-Type2-(TaSd)2 - HPLC traces (left) from a linear gradient of 20 to 80% MeCN (0.1% TFA) in H2O (0.1% 
TFA), monitored at 220 nm (blue) and 280 nm (red). MALDI-TOF mass spectrum (right). Calculated monoisotopic 
peptide mass = 3922.1 Da, observed mass = 3922 Da. 

 
Figure 9. CC-Type2-(TaSd)3 - HPLC traces (left) from a linear gradient of 20 to 80% MeCN (0.1% TFA) in H2O (0.1% 
TFA), monitored at 220 nm (blue) and 280 nm (red). MALDI-TOF mass spectrum (right). Calculated monoisotopic 
peptide mass = 3884.0 Da, observed mass = 3887 Da. 
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Figure 10. CCTM-LbLc - HPLC traces (left) from a linear gradient of 40 to 100% IPA:MeCN:H2O (60:30:10, 0.1% 
TFA) in H2O (0.1% TFA), monitored at 220 nm (blue) and 280 nm (red). MALDI-TOF mass spectrum (right). 
Calculated monoisotopic peptide mass = 3653.1 Da, observed mass = 3655 Da. 

 
Figure 11. CCTM-VbIc - HPLC traces (left) from a linear gradient of 40 to 100% IPA:MeCN:H2O (60:30:10, 0.1% 
TFA) in H2O (0.1% TFA), monitored at 220 nm (blue) and 280 nm (red). MALDI-TOF mass spectrum (right). 
Calculated monoisotopic peptide mass = 3597.0 Da, observed mass = 3600 Da. 

 
Figure 12. K2-CCTM-VbIc - HPLC traces (left) from a linear gradient of 40 to 100% IPA:MeCN:H2O (60:30:10, 0.1% 
TFA) in H2O (0.1% TFA), monitored at 220 nm (blue) and 280 nm (red). MALDI-TOF mass spectrum (right). 
Calculated monoisotopic peptide mass = 3083.7 Da, observed mass = 3085 Da. 
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Figure 13. CCTM-IbIc - HPLC traces (left) from a linear gradient of 40 to 100% IPA:MeCN:H2O (60:30:10, 0.1% 
TFA) in H2O (0.1% TFA), monitored at 220 nm (blue) and 280 nm (red). MALDI-TOF mass spectrum (right). 
Calculated monoisotopic peptide mass = 3653.1 Da, observed mass = 3656 Da. 

 
Figure 14. CCTM-IbLc - HPLC traces (left) from a linear gradient of 40 to 100% IPA:MeCN:H2O (60:30:10, 0.1% 
TFA) in H2O (0.1% TFA), monitored at 220 nm (blue) and 280 nm (red). MALDI-TOF mass spectrum (right). 
Calculated monoisotopic peptide mass = 3653.1 Da, observed mass = 3654 Da. 

 
Figure 15. Cy5-CCTM-VbIc - HPLC traces (left) from a linear gradient of 40 to 100% IPA in H2O (0.1% TFA), 
monitored at 280 nm (blue) and 600 nm (red). MALDI-TOF mass spectrum (right). Calculated monoisotopic peptide 
mass = 4407.3 Da, observed mass = 4411 Da. 
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CD spectroscopy data 

 
Figure 16. CD spectroscopy data for CC-Type2-(TaId)2. Left: CD spectrum at 20 °C. Right: thermal denaturation 
profile monitored at 222 nm wavelength. Temperature gradient: 30 °C / hour. Conditions: 100 µM peptide 
concentration, PBS buffer, pH 7.4. 

 
Figure 17. CD spectrum of CC-Type2-(LaTd)5 at 20 °C. Conditions: 100 µM peptide concentration, PBS buffer, pH 
7.4. 

 
Figure 18. CD spectroscopy data for CC-Type2-(LaId)1(LaTd)2(LaId)1. Left: CD spectrum at 20 °C. Right: thermal 
denaturation profile monitored at 222 nm wavelength. Temperature gradient: 30 °C / hour. Conditions: 100 µM peptide 
concentration, PBS buffer, pH 7.4. 
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Figure 19. CD spectroscopy data for CC-Type2-(TaId)5. Left: CD spectrum at 20 °C. Right: thermal denaturation 
profile monitored at 222 nm wavelength. Temperature gradient: 15 °C / hour. Conditions: 100 µM peptide 
concentration, HEPES 10 mM, KCl 100 mM, pH 7.4. 

 
Figure 20. CD spectroscopy data for CC-Type2-(LaTd)5. Left: CD spectrum at 20 °C. Right: thermal denaturation 
profile monitored at 222 nm wavelength. Temperature gradient: 30 °C / hour. Conditions: 100 µM peptide 
concentration, HEPES 10 mM, KCl 100 mM, pH 7.4. 

 
Figure 21. CD spectrum of CC-Type2-(SaId)5 at 20 °C. Conditions: 100 µM peptide concentration, 10 mM HEPES, 
100 mM KCl, pH 7.4. 
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Figure 22. CD spectroscopy data for CC-Type2-(LaSd)5. Left: CD spectrum at 20 °C. Right: thermal denaturation 
profile monitored at 222 nm wavelength. Temperature gradient: 30 °C / hour. Conditions: 100 µM peptide 
concentration, HEPES 10 mM, KCl 100 mM, pH 7.4. 

 
Figure 23. Left: CD spectrum of CC-Type2-(LaNd)5 at 20 °C. Conditions: 100 µM peptide concentration, 10 mM Tris-
HCl, 100 mM KCl, pH 7.4. Right: CD spectrum of CC-Type2-LQ5 at 20 °C. Conditions: 100 µM peptide 
concentration, 10 mM Tris, 100 mM KCl, pH 7.4. Slow precipitation was evident. 

 
Figure 24. CD spectroscopy data for CC-Type2-(TaSd)2. Left: CD spectrum at 20 °C. Right: thermal denaturation 
profile monitored at 222 nm wavelength. Temperature gradient: 15 °C / hour. Conditions: 100 µM peptide 
concentration, HEPES 10 mM, KCl 100 mM, pH 7.4. 
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Figure 25. CD spectrum of CC-Type2-(TaSd)3 at 20 °C. Conditions: 100 µM peptide concentration, PBS buffer, pH 
7.4. 

 
Figure 26. CD spectroscopy data for CCTM-LbLc. Left: CD spectrum at 20 °C. Right: thermal denaturation profile 
monitored at 222 nm wavelength. Temperature gradient: 60 °C / hour. Conditions: 100 µM peptide concentration, 
0.05% DDM, HEPES 10 mM, KCl 100 mM, pH 7.4. 

 
Figure 27. CD spectroscopy data for CCTM-VbIc. Left: CD spectrum at 20 °C. Right: thermal denaturation profile 
monitored at 222 nm wavelength. Temperature gradient: 60 °C / hour. Conditions: 100 µM peptide concentration, 
0.05% DDM, HEPES 10 mM, KCl 100 mM, pH 7.4. 
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Figure 28. CD spectroscopy data for K2-CCTM-VbIc. Left: CD spectrum at 20 °C. Right: thermal denaturation profile 
monitored at 222 nm wavelength. Temperature gradient: 60 °C / hour. Conditions: 100 µM peptide concentration, 
0.05% DDM, HEPES 10 mM, KCl 100 mM, pH 7.4. 

 
Figure 29. CD spectroscopy data for CCTM-IbLc. Left: CD spectrum at 20 °C. Right: thermal denaturation profile 
monitored at 222 nm wavelength. Temperature gradient: 60 °C / hour. Conditions: 100 µM peptide concentration, 
0.05% DDM, HEPES 10 mM, KCl 100 mM, pH 7.4. 

 
Figure 30. CD spectroscopy data for CCTM-IbIc. Left: CD spectrum at 20 °C. Right: thermal denaturation profile 
monitored at 222 nm wavelength. Temperature gradient: 60 °C / hour. Conditions: 100 µM peptide concentration, 
0.05% DDM, HEPES 10 mM, KCl 100 mM, pH 7.4.  
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AUC data 

 
Figure 31. AUC data and fits (top) with residuals (bottom) for CC-Type2-(LaId)1(TaId)2(LaId)1 (lm = 0.766). Left: 
sedimentation velocity continuous c(s) distribution at 50 krpm (s = 1.66 S, s20,w = 1.70 S, f/f0 = 1.23, Mw = 17688 Da, 
5.5x monomer mass at a 95% confidence level). Right: sedimentation equilibrium data and fitted curves from 18 – 36 
krpm for a single-species model (Mw = 18124 Da, 5.6x monomer mass, 95% confidence limits 18071 – 18178 Da). 
Conditions: 20 °C, PBS, pH 7.4. SV and SE experiments were conducted at 150 and 75 µM concentrations, 
respectively. 

 
Figure 32. AUC data and fits (top) with residuals (bottom) for CC-Type2-(TaId)5 (lm = 0.751). Left: sedimentation 
velocity continuous c(s) distribution at 50 krpm (s = 1.70 S, s20,w = 1.96 S, f/f0 = 1.41, Mw = 24343 Da, 6.2x monomer 
mass at a 95% confidence level). Right: sedimentation equilibrium data and fitted curves from 15 – 33 krpm for a 
single-species model (Mw = 19509 Da, 5.0x monomer mass, 95% confidence limits 18919 – 19735 Da). Conditions: 20 
°C, 10 mM Tris-HCl, 100 mM KCl, pH 8. SV and SE experiments were conducted at 150 and 75 µM concentrations, 
respectively. 
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Figure 33. AUC data and fits (top) with residuals (bottom) for CC-Type2-(LaTd)5 (lm = 0.751). Left: sedimentation 
velocity continuous c(s) distribution at 50 krpm (s = 1.92 S, s20,w = 1.95 S, f/f0 = 1.30, Mw = 21197, 5.4x monomer 
mass at a 95% confidence level). Right: sedimentation equilibrium data and fitted curves from 18 – 36 krpm for a 
single-species model (Mw = 21368 Da, 5.4x monomer mass, 95% confidence limits 21003 – 21158 Da). Conditions: 20 
°C, 10 mM HEPES, 100 mM KCl, pH 7.4. SV and SE experiments were conducted at 150 and 75 µM concentrations, 
respectively. 

 
Figure 34. AUC data and fits (top) with residuals (bottom) for CC-Type2-(LaSd)5 (lm = 0.743). Left: sedimentation 
velocity continuous c(s) distribution at 50 krpm (s = 1.97 S, s20,w = 2.00 S, f/f0 = 1.32, Mw = 19750, 5.1x monomer 
mass at a 95% confidence level). Conditions: 20 °C, 10 mM Tris-HCl, 100 mM KCl, pH 8. Right: sedimentation 
equilibrium data and fitted curves from 18 – 36 krpm for a single-species model (Mw = 19100 Da, 4.9x monomer mass, 
95% confidence limits 19031 – 19168 Da). Conditions: 20 °C, 10 mM HEPES, 100 mM KCl, pH 7.4. SV and SE 
experiments were conducted at 150 and 75 µM concentrations, respectively. 
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Figure 35. AUC data and fits (top) with residuals (bottom) for CC-Type2-(TaSd)2 (lm = 0.754). Left: sedimentation 
velocity continuous c(s) distribution at 50 krpm (f/f0 = 1.40, 1.85 S, s20,w = 1.88 S, Mw = 22828 Da, 5.8x monomer 
mass). Right: sedimentation equilibrium data and fitted curves from 18 – 36 krpm for a single-species model (Mw = 
22118, 5.6x monomer mass, 95% confidence limits 22034 – 22203 Da). Conditions: 20 °C, 10 mM Tris-HCl, 100 mM 
KCl, pH 8. SV and SE experiments were conducted at 150 and 75 µM concentrations, respectively. 
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Figure 36. AUC sedimentation equilibrium data for CCTM-VbIc in the presence of a) pentaethylene glycol monooctyl 
ether (C8E5 ) and b) n-dodecylphosphocholine (DPC). Profiles were fitted to a single-species model. Large systematic 
errors in the residuals indicate multiple species were likely present in solution. While fitting to multi-component models 
was attempted, a single suitable and unambiguous model was not be found. a) Mw = 44480 Da, 12.4x monomer mass. 
Conditions: 20 °C, 37.5 µM peptide concentration, 0.5% C8E5, 10 mM Tris-HCl, 100 mM KCl, pH 8. b) Mw = 13560 
Da, 3.8x monomer mass. Conditions: 20 °C; 19, 38, 56 µM peptide concentrations; 59.5% D2O; 0.35% DPC; 10 mM 
Tris-HCl; 100 mM KCl; pH 8. 

 

Figure 37. AUC sedimentation equilibrium data for K2-CCTM-VbIc in the presence of a) C8E5 and b) DPC. Profiles 
were fitted to a single-species model. Large systematic errors in the residuals indicate multiple species were likely 
present in solution. While fitting to multi-component models was attempted, a single suitable and unambiguous model 
was not be found. a) Mw = 58200 Da, 18.9x monomer mass. Conditions: 20 °C, 37.5 µM peptide concentration, 0.5% 
C8E5, 10 mM Tris-HCl, 100 mM KCl, pH 8. b) Mw = 22400 Da, 7.3x monomer mass. Conditions: 20 °C; 19, 38, 56 
µM peptide concentrations; 59.5% D2O; 0.35% DPC; 10 mM Tris-HCl; 100 mM KCl; pH 8. 
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DPH binding data 

 
Figure 38. Normalized DPH binding plots for CC-Type2-(TaId)5 (purple) and CC-Type2-(TaSd)2 (green). Dots and 
error bars represent the mean and one standard deviation, respectively, of at least 3 independent measurements. 
Conditions: 5 % v/v DMSO, 0.1 µM DPH, HEPES 10 mM, KCl 100 mM, pH 7.4. Kd relative to peptide for CC-Type2-
(TaId)5 = 40.8 µM (std. error ± 3.5 µM).  Kd relative to peptide for CC-Type2-(TaSd)2 = 21.7 µM (std. error ± 8.42 µM). 

 
Figure 39. Normalized DPH titrations for CC-Type2-(LaSd)5 (left) and CC-Type2-(LaTd)5 (right). Conditions: 5 % v/v 
DMSO, 1 µM DPH, HEPES 10 mM, KCl 100 mM, pH 7.4. 
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PHENIX Polder omit map 

 

 
Figure 40. PHENIX Polder Omit map32 from the crystal structure of CC-Type2-(TaId)2, generated by omission of the 
modelled water molecules and proximal bulk solvent within the Thr layers. Local correlation coefficients: CC1,2 = 0.23, 
CC1,3 = 0.76, CC2,3 = 0.39. Peak correlation coefficients: CC1,2 = 0.37, CC1,3 = 0.69, CC2,3 = 0.44. 
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MD simulation data (water-soluble barrels) 

 
Figure 41. Backbone root mean square deviation (RMSD) for each replica production MD simulations for CC-Type2-
(TaId)5 (top - blue), CC-Type2-(TaSd)2 (centre – orange) and (CC-Type2-(LaIdSg)5 (CC-Hex2; bottom – green) with 
respect to the crystal structure. The lighter traces correspond to the actual RMSD values, whereas the darker lines are 
the moving average. Backbone RMSD calculations reveal that the simulated structures are stable over the course of the 
MD simulations and no major conformational changes are observed at the investigated timescales. As observed 
previously 5, CC-Type2-(LaIdSg)5 deviates significantly from the crystal structure during the MD simulations, due to a 
straightening of the helices, leading to a longer and narrower channel. However, once this relaxation has occurred 
(during the MD equilibration phase), the newly adopted conformation remains very stable. 

 
Figure 42. Radius of the channels of CC-Type2-(TaId)5 (left), CC-Type2-(TaSd)2 (centre) and CC-Type2-(LaIdSg)5 
(CC-Hex2, right). The coordinates correspond to the distance along the channel axis oriented from the C terminus (left) 
to the N terminus (right) with the origin set to the centres of the barrels. On each graph the average and standard 
deviation of the channel radius over the course of the MD simulations are represented by a black line and dark grey 
area, respectively. The coloured circles represent the position of the Ca of the channel lining residues and are coloured 
based on the residue hydrophobicity, ranging from dark cyan (hydrophilic) to dark brown (hydrophobic). Analysis of 
the channel radius and volume (Supplementary Figure 43) for CC-Type2-(TaId)5, CC-Type2-(TaSd)2 and CC-Type2-
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(LaIdSg)5 confirm that the channels remain open and do not collapse even if entirely or partly dry (Supplementary 
Figure 44Figure 45). 

 
Figure 43. Probability density function for the channel volume V over the course of the MD simulations for CC-Type2-
(TaId)5 (blue), CC-Type2-(TaSd)2 (orange) and CC-Type2-(LaIdSg)5 (green). 

 
Figure 44. Water density map for CC-Type2-(TaId)5 (A), CC-Type2-(TaSd)2 (B) and CC-Type2-(LaIdSg)5 (C). 
Normalised water density over the course of the MD simulations, contoured at a density level of 0.8 g/L, is shown as a 
blue transparent surface. Peptides chains are shown as ribbons and channel lining residues are shown as sticks. The 
αHBs are oriented with the N termini of the helices at the top. 

 
Figure 45. Averaged water number density along the channel axis overs the course of the MD simulations. for CC-
Type2-(TaId)5 (left), CC-Type2-(TaSd)2 (centre) CC-Type2-(LaIdSg)5 (right). On each graph the average and standard 
deviation of the channel radius over the course of the MD simulations are represented by a black line and dark grey area 
respectively. The blue dotted horizontal line indicates the number density of bulk water. 
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Figure 46. Minimum water number density min n calculated for each trajectory frames for CC-Type2-(TaId)5 (left), 
CC-Type2-(TaSd)2 (centre) and CC-Type2-(LaIdSg)5 (right). The dotted red lines correspond to the empirically 
calculated cut-off value for min n from which the channel is considered to exhibit a continuous line of water molecules 
along the channel (see Methods). 

 
Figure 47. Snapshots from the MD simulations of CC-Type2-(LaIdSg)5. The peptide chains are represented with 
transparent ribbons, pore lining residue side chains with sticks and water molecules and ions as spheres. The αHBs are 
oriented with the N termini of the helices at the top. Apart from the N-terminal end of its channel, CC-Type2-(LaIdSg)5 
is found to be mostly dry (see also Fig. 1, Supplementary Figure 44Figure 45), yet the channel does not collapse 
(Supplementary Figure 42Figure 43). This is consistent with the concept of hydrophobic gating with water transitioning 
from a liquid to a vapour state inside the hydrophobic channel (see for example 33-35). See also Movie 2. 

 
Figure 48. Probability density function for the minimum water number density min n for CC-Type2-(TaId)5 (A) and 
CC-Type2-(TaSd)2 (B). The coordinate s corresponds to the distance along the channel axis oriented from the C 
terminus (left) to the N terminus (right) with the origin set to the centres of the barrels. The red dotted lines correspond 
to the empirically calculated cut-off value for min n from which the channel is considered to exhibit a continuous line of 
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water molecules along the channel. The percentages indicated on each side of the red dotted lines correspond to the 
relative prevalence of each state (continuous or discontinuous chain of water). 

 
Figure 49. Snapshots from the MD simulations of CC-Type2-(TaId)5. The peptide chains are represented with 
transparent ribbons, pore lining residue side chains with sticks and water molecules and ions as spheres. The αHBs are 
oriented with the N termini of the helices at the top. The percentages below the structures indicate the relative 
prevalence of the continuous (right) and discontinuous (left) presence of water inside the channel. The channel of CC-
Type2-(TaId)5 is found to be hydrated (see also Figure 1, Supplementary Figure 44Figure 45). A continuous line of 
water molecules between the two entrances of the channel is observed in ≈78% of the trajectory frames (see 
Supplementary Figure 50). Discontinuity in the water chain along the channel is explained by the dewetting of one or 
more hydrophobic sections sometimes accompanied by the dewetting of an intermediate hydrophilic section. See also 
Movie 1. 

 
Figure 50. Probability density function for the minimum water number density min n for the short (A) and long (B) 
hydrophobic section of the channel of CC-Type2-(TaSd)2. The coordinate s corresponds to the distance along the 
channel axis oriented from the C terminus (left) to the N terminus (right) with the origin set to the centre of the barrel. 
The red lines correspond to the empirically calculated cut-off value for min n from which the channel is considered to 
exhibit a continuous line of water molecules along the channel. The percentages indicated on each side of the red dotted 
lines correspond to the relative prevalence of each state (continuous or discontinuous chain of water).  The short 
hydrophobic section is defined as -3.0 nm < s < -1.5 nm and the long as 0.5 nm < s < 3 nm. 
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Figure 51. Snapshots from the MD simulations of CC-Type2-(TaSd)2. The peptide chains are represented with 
transparent ribbons, pore lining residue side chains with sticks and water molecules and ions as spheres. The αHBs are 
oriented with the N termini of the helices at the top. The percentages below the structures indicates the relative 
prevalence of the continuous and discontinuous presence of water along the long and short hydrophobic section of the 
channel. In the case of CC-Type2-(TaSd)2, the radius of the hydrophilic region is larger than that of CC-Type2-(TaId)5 

(Supplementary Figure 42) creating a large water reservoir (section of the channel for which -1.5 nm ≤ s ≤ 0.5 nm) lined 
up with Thr and Ser side chains (Supplementary Figure 44). This reservoir is connected to bulk water via the short 
hydrophobic region at the N-terminal end (-3.0 nm < s < -1.5 nm) around 78% of the time (see also Supplementary 
Figure 50A) and very rarely (less than 2‰ of the time – Supplementary Figure 50B) via the long hydrophobic region at 
the C terminal end (0.5 nm < s < 3 nm). Because of this long hydrophobic section, a continuous line of water molecules 
seldomly connect the two entrances of the channel. See also Movie 3. 
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Additional electrophysiology data 

 
Figure 52. Monodisperse and stepwise insertions of CCTM-VbIc at +100 mV. Gating events are evident. Buffer: 10 
mM Tris-HCl, pH 8.0. Current signal recorded at 10 kHz and low-pass filtered at 2 kHz. 

 
Figure 53. A) Monodisperse and stepwise insertions of K2-CCTM-VbIc at +100 mV. Buffer: 10 mM Tris-HCl, pH 8.0. 
Current signal recorded at 10 kHz and low-pass filtered at 2 kHz. B) Frequency distributions with fitted Gaussian for 
the conductance of single K2-CCTM-VbIc pores (n = 100, µ = 0.13 nS, σ = 0.01 nS) at +100 mV with 1 M KCl. C) 
Current-voltage curves for single K2-CCTM-VbIc. Electrolyte: 1 M KCl (purple) or NaCl (orange). Buffer: 10 mM 
Tris-HCl, pH 8.0. All current signals above were recorded at 10 kHz and low-pass filtered at 2 kHz. 
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Figure 54. Reversal potential measurements for CCTM-VbIc. Purple: 0.2 M KCl cis, 1 M KCl trans (x-intercept = -
22.0 mV, PK+ / PCl- = 4.21). Blue: 1 M KCl cis, 0.2 M KCl trans (x-intercept +26.9 mV, PK+ / PCl- = 6.44). Average PK+ / 
PCl- = 5.33. Buffer: 10 mM Tris-HCl, pH 8.  
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Additional oSCR data 

 
Figure 55. MSD vs. t analysis. A) Mean-squared displacement versus time plots for CCTM-VbIc channels in DIBs, 
derived from tracking isolated oSCR signals. 46 curves are shown in grey, with one highlighted in red. Standard 
deviations of the MSD values are represented by the pink shaded region. The gradient of the curve is equal to 4Dlat; the 
mean lateral diffusion coefficient (Dlat) was 1.05 ± 0.26 µm2s-1 (n = 143). B) MSD vs. t for Cy5-labelled CCTM-VbIc in 
the same system; the axes are scaled the same as in A) to highlight the increased rate of diffusion. Mean Dlat was 2.56 ± 
0.99 µm2s-1 (n = 262). C) Histograms of the computed lateral diffusion coefficients for the Ca2+-conducting channels 
(grey, n = 143) and the labelled peptides (orange, n = 262). For details of particle radii estimates see Materials and 
Methods. 

 
Figure 56. Relative surface densities of oSCR signals and labelled CCTM-VbIc. Representative images showing the 
relative surface densities of Cyanine 5 (Cy5) CCTM-VbIc (left) and the oSCR signal (right) in the same DIB, 
demonstrating that the peptide carpets the membrane. In the recording from which the oSCR image was extracted, there 
were at most 6 visible channels. Scale bars: 5 µm. 
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MD simulation data (K2-CCTM-VbIc) 

  
Figure 57. Backbone atoms RMSD with respect to K2-CCTM-VbIc crystal structure (black) and a medoid 
representative conformation obtained after clustering (green) for a 2 µs unrestrained MD simulation of K2-CCTM-VbIc 
inserted in DPhPC. The mean and maximum RMSD to X-ray structure are 0.9 and 1.4 Å, respectively. The mean and 
maximum RMSD to the medoid frame structure are 0.7 Å and 1.1 Å, respectively. 

 
Figure 58. Representative frame of K2-CCTM-VbIc MD simulations (left) showing the partially hydrated polar interior 
of the outer tetramers and resident water sites that overlay very well with the ordered waters in the X-ray crystal 
structure. The orange spheres indicate the position of the lipid phosphates. We identified the 6 innermost sites (right) 
for each interior that can host very stable interactions with water via hydrogen bonding with Ser and Thr side chains 
(see Methods and Supplementary Figure 59). The centroid position of each of these 12 water sites is represented with 
black transparent spheres and the water oxygen atom positions from 20 simulation frames are shown as red spheres, 
illustrating the prevalence of water molecules within these sites. Although water frequently and rapidly exchanged from 
the defined water sites (Supplementary Figure 60), only very few unique waters ever reach each individual water site 
(Supplementary Table 5). A given water can bind and unbind extensively to effectively occupy each site over a long 
period of time (Supplementary Table 5), although those water deviate outside of the 2 Å sphere that we designated from 
a water site’s cluster centroid (see also Methods). Sites 2 and 3 as well as sites 4 and 5 are entirely located in the Ser-
Thr region and are ~3.2 Å apart, facilitating the exchange of water between them. In contrast, sites 1 and 2, sites 3 and 
4, as well as sites 5 and 6 are ~7 Å apart and separated by a hydrophobic region lined by Ala side chains. Nonetheless, 
water molecules are found transiently transitioning between these distant sites. 
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Figure 59. Water molecules within the 8 deepest water sites (oxygen atoms as red spheres) are highly stable and 
maintained by an extensive hydrogen bonded networks with serine and threonine sidechains (black lines). 

 
Figure 60. Histogram of consecutive dwell times of water for all 12 water sites (Supplementary Figure 57) tracked 
across the 2 µs K2-CCTM-VbIc simulation. The inset histogram, a zoom-out of the main plot, shows the vast majority 
of dwell times are very short, <5 ns, constituting more than 50% the water binding events. Yet, a substantial number of 
very long dwell times are also observed from 5 ns to 354 ns, suggesting waters can form very stable and persistent 
interactions at these water sites within the protein polar pore (Supplementary Figure 58). 
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Electrostatic calculation data 

 
Figure 61. Schematic representation of parameters used for electrostatics calculations and modelling of the I-V curves. 
A parallel hexameric model of K2-CCTM-VbIc is represented in a cut away view, the hydrophobic region of the 
membrane is coloured in light grey and the polar head group in dark grey. The potential is applied outside of the 
membrane at z < 0. The C-termini of the peptide helices are on the z < 0 side of the membrane. 

 

 
Figure 62. Determination of the preferred orientation for the parallel hexamer model of K2-CCTM-VbIc in the presence 
of a membrane potential. Because the peptide is inserted in the membrane in the presence of a positive potential and 
each helix as two positively charged Lys residues on their N terminus, the orientation of the peptide in the membrane 
should reflect the preference for the C-terminal end to be on the side the potential is applied. To verify this, PB 
calculations were run with APBSmem to determine the membrane potential contribution to the energy difference 
between two possible orientations of the peptide: either the C termini (Orientation 1) or N termini (Orientation 2) of the 
helices of the on the side of the membrane to which the potential is applied (A). The energy difference between the two 
orientation (∆o = opqrstuvurpt	w − opqrstuvurpt	x), which arises from the interaction of the protein charges with the 
applied potential, was calculated with the z > 0 side of the membrane was maintained at 0 mV while the z < 0 side was 
varied from -100 to +100 mV (B). Results indicate that, as expected, Orientation 1 is strongly favoured under a positive 
potential. Because experimentally the peptides are added in the cis side of the membrane while the positive voltage is 
applied to the trans side, the Lys do not have to cross the lipid bilayer, further facilitating insertion of the peptides with 
the C termini on the trans side. 
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Figure 63. Graphical representation of the transmembrane potential y(z) defined in Eq. 3. A potential, ranging from -
120 mV (red) to +120 mV (blue), is applied on the z < 0 side of the membrane. It remains constant in solution but 
potential drops linearly along the membrane to reach 0 mV on the other side and remains null in solution. 
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Figure 64. Effect of the transmembrane potential y(z) defined in Eq. 3 on the electrostatic energy profiles of K+ (left) 
and Cl- (right) for the outer four-helix bundle (A), the parallel (B) and anti-parallel (C) models of the hexamer. Plots 
show the effect for a potential, ranging from -120 mV (red) to +120 mV (blue) by steps of 20 mV applied on the z < 0 
side of the membrane. 
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Figure 65. Calculated z-dependent diffusion coefficient of K+ (purple) and Cl- (green) for the outer four-helix bundle 
(A), the parallel (B) and anti-parallel (C) models of the hexamer. Because the outer four-helix bundle has such a narrow 
channel, the diffusion coefficients inside the channel is predicted to be close to 0. 

 

 
Figure 66. Effect of changing the diffusion coefficients. I-V curves were calculated for when Eq. 1 is solved using bulk 
diffusion coefficients for the ions with a mean value for the channel radius (dark red curve) and using the z-dependent 
diffusion coefficient calculated in Eq. 5 with a z-dependent channel radius (orange curve) without (A) and with (B) 
fitting to experimental data using Eq. 6. The fitting coefficient is equal to 0.36 and 1.40 for the bulk and the z-dependent 
diffusion coefficients respectively.  Experimental data are shown as points. From these plots it can be seen that 
employing z-dependent diffusion coefficients led to predicted currents that deviate less from experimental data in the 
absence of fitting. However, upon fitting the two methods lead essentially to the same model. Because the fitting 
coefficient is smaller when using the z-dependent diffusion coefficients, we used this approach in all the calculations. 
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Figure 67. Effect of changing the channel radius of the parallel hexamer on the calculated I-V curves. Because the 
radius of the channel has significant indirect and direct effects when solving both the PB and NP equations, we decided 
to test the robustness of our predictions by preparing a second model of the parallel hexamer but instead of using the X-
ray parameters of CC-Type2-(TaSd)2 (X-ray parameters), we optimized the model in CCBuilder 2.0 (optimization 
parameters), yielding a parallel hexamer with a narrower channel. The model generated using the optimization 
parameters is represented as plain lines whereas the model generated with the X-ray parameters is represented as dotted 
lines. A) Channel radius calculated with HOLE. B) Electrostatic energy profile for Cl- (green) and K+ (purple) 
displacement along the channel axis. C) Effect of an applied potential ranging from -120 mV (red) to +120 mV (blue) 
on the electrostatic energy profile of K+ along the channel. D) As (C) but for Cl-. E) Profile of the diffusion coefficients 
for Cl- (green) and K+ (purple) along the channel axis. F) Calculated I-V curves after fitting using Eq. 6 (c = 7.90 and 
1.40 for the model generated with the optimization parameters and the X-ray parameters, respectively), with 
experimental data shown as points. Because the channel is narrower (A), the energy profile of ion translocation along 
the channel shows higher barriers and lower energy wells (B), especially in the presence of a negative applied potential 
(C&D). Because of the narrower channel the diffusion coefficients are significantly lower than for the model generated 
with X-ray parameters with the diffusion of Cl- becoming very small in the narrowest section of the channel. Yet the 
trend of the I-V curve calculated for the model generated with the optimization parameters is similar to that of the 
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model generated with the X-ray parameters (F), albeit with a larger fitting coefficient (i.e. smaller calculated currents) 
and a more pronounced rectification. 
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Data tables 
 

Table 1. Complete table of peptides synthesised. 

 

Name Full Sequence 

CC-Type2-(TaId)2 Ac-G EIAQALK EIAKATK EIAWATK EIAQALK G-NH2 

CC-Type2-(LaTd)2 Ac-G EIAQALK ETAKALK ETAWALK EIAQALK G-NH2 

CC-Type2-(TaId)5 Ac-G EIAQATK EIAQATK EIAKATK EIAWATK EIAQATK G-NH2 

CC-Type2-(LaTd)5 Ac-G ETAQALK ETAQALK ETAKALK ETAWALK ETAQALK G-NH2 

CC-Type2-(SaId)5 Ac-G EIAQASK EIAQALK EIAKASK EIAWASK EIAQASK G-NH2 

CC-Type2-(LaSd)5 Ac-G ESAQALK ESAQALK ESAKALK ESAWALK ESAQALK G-NH2 

CC-Type2-(LaNd)5 Ac-G ENAQALK ENAQALK ENAKALK ENAWALK ENAQALK G-NH2 

CC-Type2-(LaQd)5 Ac-G EQAQALK EQAQALK EQAKALK EQAWALK EQAQALK G-NH2 

CC-Type2-(TaSd)2 Ac-G EIAQALK EIAQALK ESAKATK ESAWATK EIAQALK G-NH2 

CC-Type2-(TaSd)3 Ac-G EIAQALK ESAQATK ESAKATK ESAWATK EIAQALK G-NH2 

CCTM-LbLc   Ac-KKKKGSG ISAWATL LSALATL LSALATL LSAWATL G-NH2 

CCTM-VbIc   Ac-KKKKGSG ISAWATV ISALATV ISALATV ISAWATV G-NH2 

Cy5-CCTM-VbIc  Cy5-KKKKGSG ISAWATV ISALATV ISALATV ISAWATV G-NH2 

K2-CCTM-VbIc        Ac-G KKSAWATV ISALATV ISALATV ISAWATV G-NH2 

CCTM-IbIc   Ac-KKKKGSG ISAWATI ISALATI ISALATI ISAWATI G-NH2 

CCTM-IbLc   Ac-KKKKGSG ISAWATL ISALATL ISALATL ISAWATL G-NH2 
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Table 2. Crystallographic data collection statistics and model refinement statistics. Highest resolution shell shown in parenthesis. Rfree represents the R-factor 
calculated from reflections that were not used in refinement (5% of total). 

 
CC-Type2-(TaId)2 
PDB code: 6YB2 

CC-Type2-(TaId)5 
PDB code: 6YAZ 

CC-Type2-(TaSd)2 
PDB code: 6YB0 

K2-CCTM-VbIc 
PDB code: 6YB1 

Data Collection 

Wavelength (Å) 0.94999 0.97950 0.91974 1.11582 

Space Group P 21 21 21 P 1 P 21 21 21 P3112 

Unit Cell a, b, c (Å) 
31.0, 56.0, 90.6 40.1, 43.3, 83.0 76.4, 81.6, 90.6 47.9, 47.9,103.2 

Unit Cell a, b, g (°) 
90, 90, 90 102, 97.7, 90.2 90, 90, 90 90, 90, 120 

Resolution (Å) 23.8 – 1.18 (1.20 – 1.18) 40.29 – 1.94 (1.97 – 
1.94) 

81.6 – 1.86 (1.89 – 1.86) 26.5 – 2.15 (2.23 – 2.15) 

Reflections Total 601090 (21633) 237647 (6571) 624649 (28834) 143376 (9617) 

Reflections Unique 52714 (2562) 39971 (1922) 48308 (2272) 7539 (702) 

Multiplicity 11.4 (8.4) 5.9 (3.4) 12.9 (12.7) 19.0 (13.7) 

Rmerge 
0.071 (1.69) 0.102 (0.678) 0.121 (2.37) 0.099 (1.275) 

Mean I / sI 
12.8 (1.1) 7.7 (1.1) 10.6 (1.07) 22.10 (1.84) 

CC1/2 
0.998 (0.631) 0.993 (0.516) 0.999 (0.431) 1.000 (0.809) 

Completeness (%) 99.8 (98.8) 99.2 (94.4) 99.9 (95.6) 99.2 (95.3) 

Wilson B-Factor 15.4 32.2 22.0 40.6 

Refinement 

Reflections Used 50029 38966 48192 7525 

Rwork / Rfree 
0.161 / 0.191 0.210 / 0.232 0.190 / 0.228 0.180 / 0.210 

Protein Atoms 2977 3439 3270 869 

Solvent Atoms 141 118 296 94 

Average B-factor 29.4 60.0 44.0 60.2 

RMS (bonds, Å) 0.008 0.015 0.012 0.004 

RMS (angles, °) 0.88 1.49 1.28 0.61 

Clashscore 12 8.37 2.96 2.04 
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Table 3. bZIP scoring for a TbcSefg Type-2 interface, with positions b and c restricted to L, I or V. Interface 
pairs gade1 and gade2 correspond to positions cSgT and SeTb, respectively. Fitness scores for interface 
pairs were assigned by subtracting the higher Self-Association score for the homo-assembly from Raw score for 
the desired heteromeric assembly. N.b., bZIP scores are a unitless estimate of coiled-coil pairing energy. 

gade1 gade2 Fitness Score Raw Score gade1 Self-Association Score gade2 Self-Association Score     

ISAT  SATV 28.278   24.807  -3.471 -18.774 

ISAT  SATI 28.142   24.671  -3.471 -25.261 

LSAT  SATI 27.598   18.551  -9.047 -25.261 

VSAT  SATV 27.507   19.533  -7.974 -18.774 

LSAT  SATV 26.837   17.790  -9.047 -18.774 

VSAT  SATI 26.347   18.373  -7.974 -25.261 

ISAT  SATL 25.942   22.471  -3.471 -14.354 

LSAT  SATL 23.059   14.012  -9.047 -14.354 

VSAT  SATL 22.286   14.312  -7.974 -14.354 
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Table 4. SOCKET 36 output for the K2-CCTM-VbIc octamer (PDB ID: 6YB1). Second outer tetramer omitted. 

Outer Tetramer 
Helix A (W) 
extent of coiled coil packing 4- 28:A 
sequence KKSAWATVISALATVISALATVISAWATV 
register   abcdefgabcdefgabcdefgabcd 
partner -----XZ!XZ!-XZ!XZ!-XZ!-Z----! 
knobtype -----442344-444444-444-4----2 
repeats 0 non-canonical interrupts in  25 residues: 7,7,7,4 
Helix B (X) 
extent of coiled coil packing 4- 28:B 
sequence KKSAWATVISALATVISALATVISAWATV 
register   abcdefgabcdefgabcdefgabcd 
partner -----WY-WY--WY-WY--WY--Y----- 
knobtype -----44-44--44-34--44--4----- 
repeats 0 non-canonical interrupts in  25 residues: 7,7,7,4 
Helix C (Y) 
extent of coiled coil packing 4- 28:C 
sequence KKSAWATVISALATVISALATVISAWATV 
register   abcdefgabcdefgabcdefgabcd 
partner -----ZX-ZX--ZX-ZX--ZX--X----- 
knobtype -----44-44--44-34--44--4----- 
repeats 0 non-canonical interrupts in  25 residues: 7,7,7,4 
Helix D (Z) 
extent of coiled coil packing 4- 28:D 
sequence KKSAWATVISALATVISALATVISAWATV 
register   abcdefgabcdefgabcdefgabcd 
partner -----YW!YW!-YW!YW!-YW!-W----- 
knobtype -----442344-444444-444-4----- 
repeats 0 non-canonical interrupts in  25 residues: 7,7,7,4 
Inner Tetramer 
Helix A (W) 
extent of coiled coil packing 4- 29:A 
sequence KKSAWATVISALATVISALATVISAWATV 
register   gabcdefgabcdefgabcdefgabcd 
partner -----!XZ!XZ-!XZ!XZ-!XZ-X----Z 
knobtype -----442344-444444-444-4----2 
repeats 0 non-canonical interrupts in  26 residues: 1,7,7,7,4 
Helix D (X) 
extent of coiled coil packing 4- 29:D 
sequence KKSAWATVISALATVISALATVISAWATV 
register   gabcdefgabcdefgabcdefgabcd 
partner -----!WY!WY-!WY!WY-!WY-W----- 
knobtype -----442344-444444-444-4----- 
repeats 0 non-canonical interrupts in  26 residues: 1,7,7,7,4 
Helix E (Y) 
extent of coiled coil packing 9- 29:E 
sequence VISALATVISALATVISAWATV 
register efgabcdefgabcdefgabcd 
partner X!ZX-!ZX!ZX-!ZX-Z----X 
knobtype 2124-444444-444-4----2 
repeats 0 non-canonical interrupts in  21 residues: 3,7,7,4 
Helix H (Z) 
extent of coiled coil packing 4- 26:H 
sequence KKSAWATVISALATVISALATVISAWATV 
register   gabcdefgabcdefgabcdefgabcd 
partner -----!YW!YW-!YW!YW-!-W------W 
knobtype -----442344-444444-4-4------2 
repeats 0 non-canonical interrupts in  23 residues: 1,7,7,7,1 
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Table 5.  Analysis of the 8 deepest water binding sites defined in Supplementary Figure 58, and aggregated 
bound time of unique water molecules in the MD simulation of the K2-CCTM-VbIc octamer. Every site is 
populated by a water in > 92% of all simulation frames. Waters do not transverse the structure quickly and 
remain bound at these major water sites for extended period of time. Single unique water molecules may rapidly 
fluctuate in and out of a specific water site (designated by a 2 Å radius), but the aggregate time spend at each of 
these sites by a single water molecule is extensive. Each of these sites are only occupied by 5 to 13 unique water 
molecules. All water sites have a single water molecule that is resident for a total aggregated time of at least 500 
ns, with 750.5 ns being the average longest aggregate residency time, and 1015.0 ns being the longest. All sites 
have at least 4 unique waters that spend >100 ns in aggregate bound. 

Water site 
Total occupancy 

Total 
binding-

unbinding 
events 

Events 
dwelling  
>45 ns 

Unique 
waters  
bound 

Aggregated bound time of 
top 3 unique waters  Transient waters 

(ns) (%) (ns) (%) (ns) (%) 

2A 1997 99.8 86 15 10 
874 
206 
204 

43.7 
12.5 
10.3 

3 <0.1 

2B 1841 92 485 10 12 
580 
385 
264 

29 
19.3 
13.2 

3 <0.1 

3A 1998 99.9 61 16 8 
583 
440 
373 

29.1 
22 

18.6 
0 0 

3B 1956 87.8 397 11 10 
818 
762 
211 

40.9 
38.1 
10.6 

6 0.1 

4A 1988 99.4 116 14 10 
1015 
266 
133 

50.7 
13.3 
6.7 

2 0.1 

4B 1831 91.6 65 11 5 
648 
445 
370 

32.4 
22.3 
18.5 

1 <0.1 

5A 1987 99.3 277 15 13 
537 
354 
292 

26.8 
17.7 
14.6 

5 <0.1 

5B 1998 98.8 137 13 7 
805 
651 
294 

40.2 
32.5 
14.7 

2 <0.1% 
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Movie Captions 

Movie 1. 
500 ns molecular dynamics simulation of CC-Type2-(TaId)5 showing water ingress into the channel. 
The peptide chains are represented with transparent ribbons, channel-lining residue side chains with 
sticks and water molecules and ions as spheres. The αHBs are oriented with the N termini of the 
helices on the left.  

Movie 2. 
500 ns molecular dynamics simulation of CC-Type2-(LaIdSg)4 showing water ingress into the 
channel. The peptide chains are represented with transparent ribbons, channel-lining residue side 
chains with sticks and water molecules and ions as spheres. The αHBs are oriented with the N termini 
of the helices on the left. 

Movie 3. 
500 ns molecular dynamics simulation of CC-Type2-(TaSd)2 showing water ingress into the channel. 
The peptide chains are represented with transparent ribbons, channel-lining residue side chains with 
sticks and water molecules and ions as spheres. The αHBs are oriented with the N termini of the 
helices on the left. 

Movie 4. 
oSCR for CCTM-VbIc channels in a DPhPC membrane at -60 mV. The field of view is that shown in 
Fig. 4C.  

Movie 5. 
700 ns molecular dynamics simulation of octameric K2-CCTM-VbIc inserted in a bilayer of DPhPC. 
The peptide chains are represented with transparent ribbons, lumenal residue side chains with sticks 
and water molecules and ions as spheres, the phosphorus of the lipid bilayer is represented with blue 
spheres.  

  



 

 

46 

 

References 
 

1 Fong, J. H., Keating, A. E. & Singh, M. Predicting specificity in bZIP coiled-coil 
protein interactions. Genome Biol. 5, (2004). 

2 Thomson, A. R. et al. Computational design of water-soluble alpha-helical barrels. 
Science 346, 485-488, (2014). 

3 Šali, A. & Blundell, T. L. Comparative Protein Modelling by Satisfaction of Spatial 
Restraints. J. Mol. Biol. 234, 779-815, (1993). 

4 Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of 
Coot. Acta. Crystallogr. D 66, 486-501, (2010). 

5 Thomas, F. et al. De Novo-Designed α-Helical Barrels as Receptors for Small 
Molecules. ACS Synth. Biol. 7, 1808-1816, (2018). 

6 Olsson, M. H. M., Søndergaard, C. R., Rostkowski, M. & Jensen, J. H. PROPKA3: 
Consistent Treatment of Internal and Surface Residues in Empirical pKa Predictions. 
J. Chem. Theory Comput. 7, 525-537, (2011). 

7 AMBER 2017 (University of California, San Francisco, 2017). 
8 Maier, J. A. et al. ff14SB: Improving the Accuracy of Protein Side Chain and 

Backbone Parameters from ff99SB. J. Chem. Theory Comput. 11, 3696-3713, (2015). 
9 Salomon-Ferrer, R., Götz, A. W., Poole, D., Le Grand, S. & Walker, R. C. Routine 

Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 2. Explicit 
Solvent Particle Mesh Ewald. J. Chem. Theory Comput. 9, 3878-3888, (2013). 

10 Roe, D. R. & Cheatham, T. E. PTRAJ and CPPTRAJ: Software for Processing and 
Analysis of Molecular Dynamics Trajectory Data. J. Chem. Theory Comput. 9, 3084-
3095, (2013). 

11 Humphrey, W., Dalke, A. & Schulten, K. VMD: Visual molecular dynamics. J. Mol. 
Graph. 14, 33-38, (1996). 

12 Rao, S., Klesse, G., Stansfeld, P. J., Tucker, S. J. & Sansom, M. S. P. A BEST 
example of channel structure annotation by molecular simulation. Channels 11, 347-
353, (2017). 

13 Jo, S., Kim, T. & Im, W. Automated Builder and Database of Protein/Membrane 
Complexes for Molecular Dynamics Simulations. Plos One 2, (2007). 

14 Huang, J. et al. CHARMM36m: an improved force field for folded and intrinsically 
disordered proteins. Nat. Methods. 14, 71-73, (2017). 

15 Lomize, M. A., Pogozheva, I. D., Joo, H., Mosberg, H. I. & Lomize, A. L. OPM 
database and PPM web server: resources for positioning of proteins in membranes. 
Nucleic Acids Res. 40, D370-D376, (2012). 

16 Wood, C. W. & Woolfson, D. N. CCBuilder 2.0: Powerful and accessible coiled-coil 
modeling. Protein Sci. 27, 103-111, (2018). 

17 Jurrus, E. et al. Improvements to the APBS biomolecular solvation software suite. 
Protein Sci. 27, 112-128, (2018). 

18 Callenberg, K. M. et al. APBSmem: A Graphical Interface for Electrostatic 
Calculations at the Membrane. Plos One 5, (2010). 

19 Kučerka, N., Nieh, M.-P. & Katsaras, J. Fluid phase lipid areas and bilayer 
thicknesses of commonly used phosphatidylcholines as a function of temperature. 
Biochim. Biophys. Acta, Biomembranes 1808, 2761-2771, (2011). 



 

 

47 

 

20 Bellemare, F. & Fragata, M. Polarity Studies on the Head Group of Single-Layered 
Phosphatidylcholine-Alpha-Tocopherol Vesicles. J. Colloid. Interf. Sci. 77, 243-252, 
(1980). 

21 Kukic, P. et al. Protein Dielectric Constants Determined from NMR Chemical Shift 
Perturbations. J. Am. Chem. Soc. 135, 16968-16976, (2013). 

22 De Jesus, A. J. & Allen, T. W. The role of tryptophan side chains in membrane 
protein anchoring and hydrophobic mismatch. Biochim. Biophys. Acta, 
Biomembranes 1828, 864-876, (2013). 

23 Marcoline, F. V., Bethel, N., Guerriero, C. J., Brodsky, J. L. & Grabe, M. Membrane 
Protein Properties Revealed through Data-Rich Electrostatics Calculations. Structure 
23, 1526-1537, (2015). 

24 Swanson, J. M. J., Wagoner, J. A., Baker, N. A. & McCammon, J. A. Optimizing the 
Poisson Dielectric Boundary with Explicit Solvent Forces and Energies:  Lessons 
Learned with Atom-Centered Dielectric Functions. J. Chem. Theory Comput. 3, 170-
183, (2007). 

25 Roux, B. Valence selectivity of the gramicidin channel: A molecular dynamics free 
energy perturbation study. Biophys. J. 71, 3177-3185, (1996). 

26 Hille, B. Ion channels of excitable membranes. 3rd edn,  (Sinauer, 2001). 
27 Woolley, G. A. et al. Intrinsic rectification of ion flux in alamethicin channels: studies 

with an alamethicin dimer. Biophys. J. 73, 770-778, (1997). 
28 Dieckmann, G. R. et al. Exploration of the Structural Features Defining the 

Conduction Properties of a Synthetic Ion Channel. Biophys. J. 76, 618-630, (1999). 
29 Smart, O. S., Neduvelil, J. G., Wang, X., Wallace, B. A. & Sansom, M. S. P. HOLE: 

A program for the analysis of the pore dimensions of ion channel structural models. J. 
Mol. Graph. 14, 354-360, (1996). 

30 Noskov, S. Y., Im, W. & Roux, B. Ion Permeation through the α-Hemolysin Channel: 
Theoretical Studies Based on Brownian Dynamics and Poisson-Nernst-Plank 
Electrodiffusion Theory. Biophys. J. 87, 2299-2309, (2004). 

31 Furini, S., Zerbetto, F. & Cavalcanti, S. Application of the Poisson-Nernst-Planck 
Theory with Space-Dependent Diffusion Coefficients to KcsA. Biophys. J. 91, 3162-
3169, (2006). 

32 Liebschner, D. et al. Polder maps: improving OMIT maps by excluding bulk solvent. 
Acta. Crystallogr. D 73, 148-157, (2017). 

33 Hummer, G., Rasaiah, J. C. & Noworyta, J. P. Water conduction through the 
hydrophobic channel of a carbon nanotube. Nature 414, 188-190, (2001). 

34 Beckstein, O. & Sansom, M. S. P. Liquid-vapor oscillations of water in hydrophobic 
nanopores. Proc. Natl. Acad. Sci. U.S.A 100, 7063-7068, (2003). 

35 Aryal, P., Sansom, M. S. P. & Tucker, S. J. Hydrophobic Gating in Ion Channels. J. 
Mol. Biol. 427, 121-130, (2015). 

36 Walshaw, J. & Woolfson, D. N. SOCKET: A program for identifying and analysing 
coiled-coil motifs within protein structures. J. Mol. Biol. 307, 1427-1450, (2001). 

 




