
Bayesian Joint Modeling of Multiple Brain
Functional Networks - Supplementary

Materials

1 Steps in the Posterior Computation

Let δg,kl denote the edge inclusion indicators, with δg,kl = 1 if the edge (k, l) is included in
Gg and δg,kl = 0 otherwise. The posterior computation involves the following steps.
1. Update the scale parameters under the posterior distributions:

π
(
τ−1g,kl|δg,kl = 1, aτ , bτ

)
= Ga(aτ +

1

2
,

1

bτ + 0.5ω2
g,kl

),

π
(
(τ ∗g,kl)

−1|δg,kl = 0, λ0
)

= Inv −Gaussian(

√
λ20
ω2
g,kl

, λ20).

2. Update Ω as follows. First, partition Ω and S as:

Ωg =

(
Ωg,11 ωg,12
ωTg,12 ωg,22

)
, Sg =

(
Sg,11 sg,12
s′g,12 sg,22

.

)
Then, perform the change of variable (ωg,12, ωg,22)→ (β = ωg,12, γ = ωg,22 −ωTg,12Ω

−1
g,11ωg,12).

Subsequently, sample π(γ,β) ∼ Ga(n2 +1,
sg,22+α

2 )N(CSg,21,C), where C = [(sg,22 +α)Ω−111 +
D−1τ ]−1.
3. Update the edge inclusion indicators as follows. First compute prior inclusion proba-

bilities as θg,kl =
exp{η0,kl+ηg,kl}

1+exp{η0,kl+ηg,kl}
. Then, for l = 1, 2, . . . , p − 1 and k = l + 1, l + 2, . . . , p,

sample the edge inclusion indicators from a Bernoulli distribution having posterior inclusion

probabilities P (δg,kl = 1|·) =
π∗g,kl1θg,kl

π∗g,kl1θg,kl+π
∗
g,kl0(1−θg,kl)

, where

• π∗g,kl1 = fGa(τ
−1
g,kl; aτ , bτ )(τg,kl)

−1/2
√
σ2
21 exp{0.5 µ21

σ2
21
}

• π∗g,kl0 =
λ20
2

exp{−1
2
λ20τg,kl0}(τg,kl0)−1/2

√
σ2
20 exp{1

2

µ20
σ2
20
}

• σ22m = [(Sg(l, l) + α)Ω−1g,ll(k − 1, k − 1) + τ−1g,klm]−1,
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• µm = −(σ2
2m)[Ω−1g,ll(k − 1, ·)ωgl(−k,−l) + Sg(l, k)], m = 0, 1,

where fGa(·) denotes the probability density function of a Gamma distribution with Ωg,ll

being equal to Ωg after excluding the lth row and column, ωgl(−k,−l) denotes the lth row
of Ωg after excluding the kth and lth elements, and Ω−1g,LL(K − 1, ·) denotes the (k − 1)th

row of Ω−1g,ll(K − 1, ·) with the diagonal term excluded.
4. Update shared and differential effects as follows. First, compute the prior inclusion
probability for edge (k, l) as

θg,kl =
exp{−(ug,kl − θng,kl)}

1 + exp{−(ug,kl − θng,kl)}
=

∫ ∞
0

exp{−(ug,kl − θng,kl)}
(1 + exp{−(ug,kl − θng,kl)})2

dug,kl

≈
∫ ∞
0

∫ ∞
0

t(ug,kl; θ
n
g,kl,

π2(φ− 2)

3
σ2
φ,g,kl)π(σ2

φ,g,kl,
φ

2
,
φ

2
)dσ2

φdug,kl,

under the approximation to the logistic function where θng,kl = η0,kl + ηg,kl, and π(σ2
φ)

follows a inverse-Gamma distribution with parameters φ/2 and φ/2, with φ = 7.3. In order
to sample the common and differential effects, we perform the data augmentation described

earlier by introducing latent variables ug,kl ∼ N(η0,kl + ηg,kl, σ
2
φ,g,kl

π2(φ−2)
3

). In particular
the following sampling steps are performed sequentially:

• Sample ug,kl ∼ N(η0,kl +
∑G

g=1 ηg,kl1g=m, σ
2
φ,g,kl

π2(φ−2)
3

) with ug,kl truncated to 1 if
δg,kl = 1 or to zero if δg,kl = 0.

• Denote the prior variance for the hth cluster by σ2
h, h = 1, . . . , H. Denote the cluster

membership of the klth edge weight by ckl, where ckl ∈ {1, . . . H}. The cluster
memberships and regression coefficients are updated using a slice sampling technique
(Walker, 2007). The update steps are as follows:

1. Sample u∗g,kl ∼ Uniform(0, νg,kl)

2. Sample the stick breaking weights as: vg,h ∼ Beta(1 + ng,h,M +
∑

h′>h ng,h′),
followed by νg,h = vg,h

∏
h′<h(1−vg,h′), where ng,h is the number of edges assigned

to cluster h in platform g (Sethuraman, 1994).

3. Sample the cluster membership indicators:

(a) For each edge, calculate the atoms available to it as Akl = {h : u∗g,kl <
νg,h, h = 1, . . . , H, g = 0, . . . , G}

(b) For each edge, calculate the vector of likelihood values π∗kl = [π∗1,klI1∈Akl
, . . . , π∗H,klIH∈Akl

]

where π∗h,kl =
∏G

g=1N(ug,kl; ηg,h, σ
2
φ,g,kl

π2(φ−2)
3

)

2



(c) Calculate the normalized likelihoods πh′,kl = π∗h′,kl/
∑H

h=1 π
∗
h,kl

(d) Draw r ∼ Uniform(0, 1) and update ckl = h′ where h′ is the smallest h′ s.t.

r <
∑h′

h=1 πh,kl

4. Draw the new values for the η terms conditioned on the updated cluster mem-
berships, using a Gaussian posterior distribution.

• Update σ−2η ∼ π(σ−2η |·) ≡ Ga(aσ + 0.5(G+1)p(p−1)
2

, bσ + 0.5
∑G

m=0

∑p
l=1

∑
k<l η

2
m,kl).

• Similarly, draw σ−2φ,g,kl ∼ π(σ2
φ,g,kl | ·) ≡ Ga(φ+1

2
,
φ+(ug,kl−θng,kl)

2

2(π2(φ−2)/3) ), g = 0, 1, . . . , G, k 6=
l, k, l = 1, . . . , p.

2 Sensitivity to Choice of the Precision Parameter

The hyperparameters am and bm control the DP precision parameter, M . To examine the
sensitivity of our performance to changes in the hyperparameter am, we ran an additional
25 simulation replicates using the data generated from Erdos-Renyi random graphs with
100 nodes as in Section 4 of the main manuscript. We varied am from 0.1 to 3, and
tracked the resulting AUC for edge detection, L1 Error, and TPR/FPR for differential
edge detection. Figure 1 displays the results of these simulations. We observe that though
varying the hyperparameter has some effect on the number of clusters, the final results of
the procedure are similar. A value of am = 1 does seem to yield slightly higher AUC values,
and thus we recommend this as the default selection.

3 40 Node Simulation Results

Table 1 displays the simulation results for the 40 node simulations, and Figure 2 displays
the ROC curves.

4 Simulation Boxplots

Figures 3 and 4 display the results of the small-world network and scale-free network
simulations respectively.
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Table 1: 40 node simulation results comparing BJNL, JGL, GL, and HS. Text in bold
indicates a method was better than both competing methods as assessed through Wilcoxon
signed rank tests at α = 0.05.

AUC L1 Error × 100
BJNL JGL GL HS BJNL JGL GL HS

Erdos-Renyi
low 0.98 (0.01) 0.91 (0.03) 0.91 (0.03) 0.84 (0.05) 0.08 (0.02) 1.02 (0.15) 1.91 (0.26) 4.66 (0.62)
med 0.99 (0.01) 0.91 (0.04) 0.91 (0.04) 0.78 (0.03) 0.09 (0.02) 1.02 (0.17) 1.90 (0.27) 11.15 (0.58)
high 0.98 (0.02) 0.91 (0.03) 0.91 (0.03) 0.83 (0.06) 0.09 (0.02) 1.02 (0.18) 1.90 (0.29) 11.35 (0.78)

Small World
low 0.97 (0.01) 0.92 (0.01) 0.78 (0.02) 0.81 (0.02) 0.50 (0.05) 1.89 (0.37) 4.09 (0.27) 4.68 (0.62)
med 0.97 (0.01) 0.92 (0.01) 0.78 (0.02) 0.78 (0.03) 0.50 (0.04) 1.92 (0.41) 4.16 (0.33) 10.98 (0.53)
high 0.97 (0.01) 0.92 (0.01) 0.78 (0.02) 0.78 (0.03) 0.49 (0.05) 1.98 (0.41) 4.13 (0.33) 11.33 (0.67)

Scale Free
low 0.97 (0.01) 0.93 (0.01) 0.79 (0.02) 0.84 (0.05) 0.48 (0.03) 1.95 (0.50) 4.13 (0.33) 4.59 (0.6)
med 0.97 (0.01) 0.92 (0.01) 0.79 (0.02) 0.81 (0.02) 0.47 (0.02) 2.01 (0.52) 4.18 (0.36) 11.05 (0.51)
high 0.97 (0.01) 0.93 (0.01) 0.79 (0.02) 0.79 (0.03) 0.47 (0.03) 1.97 (0.48) 4.13 (0.36) 11.21 (0.81)

TPR FPR
BJNL JGL GL HS BJNL JGL GL HS

Erdos-Renyi
low 0.92 (0.09) 0.76 (0.12) 0.78 (0.12) 0.70 (0.12) 0.01 (0.003) 0.23 (0.05) 0.10 (0.02) 0.03 (0.01)
med 0.89 (0.07) 0.75 (0.10) 0.76 (0.12) 0.69 (0.18) 0.01 (0.003) 0.23 (0.05) 0.10 (0.02) 0.32 (0.03)
high 0.88 (0.06) 0.75 (0.08) 0.77 (0.08) 0.57 (0.17) 0.01 (0.003) 0.24 (0.05) 0.10 (0.02) 0.28 (0.03)

Small World
low 0.89 (0.10) 0.45 (0.16) 0.67 (0.16) 0.66 (0.11) 0.04 (0.01) 0.05 (0.01) 0.38 (0.02) 0.03 (0.01)
med 0.88 (0.09) 0.44 (0.11) 0.63 (0.12) 0.67 (0.11) 0.04 (0.01) 0.05 (0.01) 0.38 (0.02) 0.32 (0.03)
high 0.85 (0.07) 0.46 (0.09) 0.62 (0.10) 0.60 (0.13) 0.04 (0.01) 0.05 (0.01) 0.39 (0.02) 0.28 (0.03)

Scale Free
low 0.89 (0.09) 0.44 (0.13) 0.66 (0.17) 0.68 (0.09) 0.04 (0.01) 0.04 (0.01) 0.35 (0.02) 0.02 (0.01)
med 0.88 (0.07) 0.43 (0.11) 0.65 (0.11) 0.64 (0.08) 0.04 (0.01) 0.05 (0.01) 0.35 (0.02) 0.33 (0.03)
high 0.88 (0.07) 0.42 (0.10) 0.62 (0.09) 0.58 (0.09) 0.04 (0.01) 0.04 (0.01) 0.35 (0.02) 0.28 (0.03)

5 fMRI Data Preprocessing

Image preprocessing was performed using the AFNI software package (Cox, 1996) and
included slice-timing and motion correction, warping of brain volumes to standard Talairach
space, Gaussian spatial blurring (6mm FWHM), and signal percent scaling.

In order to minimize the effect of spurious sources of temporal correlation in the fMRI
time series, which could have negatively affected our network analysis, we performed the
following additional pre-processing steps for each subject. First, a regression model was
fit using a maximum likelihood approach with a baseline portion accounting for noise (a
second-order Legendre polynomial, modeling slow signal drifts from biological or scanner-
related confounds, plus 6 head-motion parameters) and a set of event-related regressors
representing the expected BOLD response for the following classes of stimuli: (a) correctly-
responded congruent trials, (b) correctly-responded incongruent trials, (c) commission error
trials corresponding to incorrect responses, (d) omission error trials corresponding to omit-
ted responses. Each event was modeled as a mini boxcar starting at the stimulus onset
and ending at the time of the subject’s response, followed by convolution with a gamma
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function accounting for the BOLD hemodynamic properties; if a response was not issued
within the allotted 2 second window, the trial was marked as an omission error and the
duration of the corresponding boxcar was set at 2 seconds. The residual time-series from
the regression analysis were collected, and task-related regressors, multiplied by their cor-
responding regression coefficients, were added back to them. This procedure aimed to
remove the confounding components of the BOLD time series (slow scanner-related drifts,
task-unrelated physiological variance, head motion) without also removing the component
of interest, that is, task-related variance.

As a final preprocessing step prior to the analysis, we prewhitened the time series for
each node. We fit an ARMA(1, 1) model at each node for each subject’s data and used
the residuals from these models as the corresponding node time series for the analysis.
Boxplots of the autocorrelation of the resulting prewhitened data at lags 1−6 are provided
in Figure 5 for both the passive fixation and task conditions. The values at all lags are
close to zero, which confirms that the temporal autocorrelation has been largely removed.

6 Graph Metric Description

Efficiency measures how effectively information is transmitted from node-to-node in a net-
work. Global efficiency measures information transmission across the entire graph and is
calculated by taking the average across all ROIs of the inverse shortest path lengths be-
tween ROIs. Thus, large values of global efficiency indicate that, on average, the number of
steps required to transmit information from one node to another is small. Local efficiency
measures information transmission between an ROI and its neighbors and is calculated for
each ROI by taking the average of the inverse shortest path lengths between ROIs in the
relevant neighborhood, where the relevant neighborhood is the collection of ROIs with a
connection to the selected ROI. The clustering coefficient measures the interconnectedness
of the graph and is calculated for each ROI by examining how many of its neighbors are
also neighbors to each other. Finally, characteristic path length is the average across ROIs
of the shortest path length in the networks, with smaller values indicating a more efficient
network.

7 Stationarity of MCMC Sampler

We performed Dickey-Fuller tests of stationarity to assess the convergence of the MCMC
sampler using the adf.test function in R (Dickey and Fuller, 1979). We tested the time series
of MCMC samples for each of the off-diagonal elements of the precison matrix. Rejection of
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the null hypothesis indicates that the time series of MCMC samples is stationary, suggesting
that the mean and variance have stabilized. All obtained p-values were less than 0.01,
indicating that the MCMC sampler converged. Figure 6 displays the corresponding test
statistics.

8 Credible Interval Widths for the Stroop Task Data

One advantage of the Bayesian approach is that it provides us with a measure of poste-
rior uncertainty. Figure 7 displays boxplots of the credible interval widths for the partial
correlations in the analysis of exertion versus relaxed task performance. We note that
there is a clear distinction between the credible interval widths for off-diagonal elements
corresponding to present edges versus off-diagonal elements corresponding to absent edges.
Specifically, the credible intervals corresponding to absent edges are quite narrow near zero.
This is a desirable behavior, as it indicates that the BJNL is able to clearly differentiate
between present and absent edges.

9 Stroop Task Data Goodness of Fit

To verify that the BJNL provides a good fit to the Stroop task data, we conduct a goodness
of fit analysis. We test the validity of the distributional assumptions under our proposed
approach using a chi-square goodness of fit test. We considered each observation from
both conditions, Y irt, t = 1, . . . T, r = 1, 2; i = 1, . . . , N , and calculated the quadratic
form Y ′irtΩrY irt for each subject, which should follow a chi-squared distribution with 90
degrees of freedom if the normality assumption holds. Under the chi-squared test, only a
small proportion of tests were significant for each condition (5.0% for exertion, and 6.6%
for relaxed), suggesting that the fMRI data satisfies the inherent modeling assumptions.

10 Stroop Task Data Circle Plots

Figure 8 displays circle plots of the sum of the strengths of the significant connections
between modules for the Stroop task data analysis. The first row of plots displays the
circle plots for the analysis of TASK vs. REST, and the second row displays the plots for
the analysis of EXR vs. RLX.
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Table 2: P-values for testing differences between TASK and REST in local efficiency and cluster-
ing coefficient for the nodes identified in the Khachouf (2017) study. Our analysis revealed larger
clustering coefficients for REST in all implicated regions, and larger local efficiencies for REST
in 18 of the 20 regions

AAL Region
Metric Center (t-test) Metric Distribution (ks-test)

Local Efficiency Clustering Coefficient Local Efficiency Clustering Coefficient
BJNL JGL GL BJNL JGL GL BJNL BJNL

Cingulate Ant L 0.01 0.27 0.52 <0.01 0.40 0.53 0.03 <0.01
Cingulate Ant R <0.01 0.75 0.61 <0.01 0.87 0.78 <0.01 <0.01
Cingulate Mid L 0.01 <0.01 0.94 <0.01 <0.01 0.70 0.03 <0.01
Cingulate Mid R <0.01 0.50 0.58 <0.01 0.54 0.45 <0.01 <0.01
Cingulate Post L <0.01 0.01 0.04 <0.01 0.04 0.03 0.01 <0.01
Cingulate Post R <0.01 0.55 0.12 <0.01 0.26 0.08 <0.01 <0.01

Supp Motor Area L <0.01 <0.01 0.99 <0.01 <0.01 0.85 <0.01 <0.01
Supp Motor Area R <0.01 0.35 0.94 <0.01 0.73 0.86 <0.01 <0.01

Insula L <0.01 0.13 0.34 <0.01 0.02 0.34 0.07 0.04
Insula R 0.03 0.31 0.06 <0.01 0.06 0.11 0.02 <0.01

Parietal Sup L <0.01 <0.01 0.52 <0.01 0.03 0.71 <0.01 <0.01
Parietal Sup R <0.01 0.02 0.64 <0.01 0.05 0.38 <0.01 <0.01
Parietal Inf L <0.01 0.74 0.64 <0.01 0.64 0.69 0.02 <0.01
Parietal Inf R <0.01 <0.01 0.14 <0.01 0.09 0.37 <0.01 <0.01
Thalamus L <0.01 0.70 0.68 <0.01 0.54 0.81 <0.01 <0.01
Thalamus R <0.01 0.64 <0.01 <0.01 0.69 <0.01 <0.01 <0.01

Hippocampus L <0.01 0.28 0.58 <0.01 0.71 0.61 <0.01 <0.01
Hippocampus R 0.01 0.83 0.86 <0.01 0.63 0.72 0.13 <0.01

Paracentral Lobule L <0.01 0.98 0.89 <0.01 0.36 0.57 <0.01 <0.01
Paracentral Lobule R <0.01 0.38 0.60 <0.01 0.82 0.46 <0.01 <0.01

11 Stroop Task Additional Node Analyses

Tables 2 and 3 contain the p-values for testing differences in the local efficiency and the
clustering coefficient for specific nodes in the analyses of TASK vs. REST and EXR vs.
RLX, respectively.
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Table 3: P-values for testing differences between EXR and RLX in local efficiency and clustering
coefficient for the nodes identified in the Khachouf (2017) study. Significant differences were
found in terms of mean local efficiency in the right inferior occipital node and the left caudate,
and borderline significant results were found for the left superior parietal cortex and left insula.
Similarly, we found significant differences in the mean and posterior distribution of the clustering
coefficient for the right inferior occipital node. We identified borderline significant differences in
the clustering coefficient distribution and center for the left anterior cingulate, the mean of the
clustering coefficient in the left insula, and the mean and distribution of the clustering coefficient
in the left caudate.

AAL Region
Metric Center (t-test) Metric Distribution (ks-test)

Local Efficiency Clustering Coefficient Local Efficiency Clustering Coefficient
BJNL JGL GL BJNL JGL GL BJNL BJNL

Parietal Sup L 0.10 0.37 0.97 0.33 0.36 0.70 0.36 0.42
Parietal Sup R 0.88 0.66 0.48 0.78 0.64 0.31 0.83 0.74

Supp Motor Area L 0.88 0.92 0.14 0.53 0.90 0.21 0.80 0.36
Supp Motor Area R 0.94 0.77 0.73 0.50 0.81 0.71 0.97 0.86

Cingulate Ant L 0.47 0.03 0.64 0.07 0.03 0.62 0.28 0.07
Cingulate Ant R 0.19 <0.01 0.13 0.15 <0.01 0.26 0.52 0.26
Cingulate Mid L 0.89 0.34 0.87 0.57 0.38 0.53 0.24 0.67
Cingulate Mid R 1.00 0.02 0.82 0.72 0.07 0.81 0.39 0.24

Insula L 0.07 0.21 0.82 0.08 0.21 0.65 0.24 0.15
Insula R 0.81 0.21 0.10 0.72 0.21 0.04 0.97 0.13

Caudate L 0.05 0.35 0.84 0.09 0.34 0.39 0.24 0.07
Caudate R 0.20 0.49 0.89 0.71 0.48 0.81 0.27 0.76

Occipital Sup L 0.31 0.01 0.66 0.43 0.05 0.63 0.57 0.69
Occipital Sup R 0.76 1.00 0.69 0.75 <0.01 0.77 0.71 0.93
Occipital Mid L 0.22 1.00 0.39 0.86 <0.01 0.56 0.51 0.80
Occipital Mid R 0.82 1.00 0.56 0.86 <0.01 0.46 0.91 0.93
Occipital Inf L 0.64 1.00 0.73 0.80 <0.01 0.63 0.57 0.56
Occipital Inf R 0.01 0.35 0.13 0.03 0.35 0.14 0.01 0.04

Precuneus L 0.27 0.56 0.30 0.19 0.53 0.51 0.15 0.36
Precuneus R 0.27 0.47 0.14 0.84 0.46 0.23 0.43 0.97

Paracentral Lobule L 0.70 0.54 0.93 0.68 0.56 0.98 0.54 0.21
Paracentral Lobule R 0.64 0.25 0.02 0.61 0.24 0.03 0.35 0.39

Fusiform L 0.38 0.01 0.11 0.39 0.01 0.13 0.31 0.52
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Figure 1: Performance on 25 replicates of the Erdos-Renyi simulations with 100 nodes
for different values of am. The median number of clusters across all MCMC iterations is
reported as the number of clusters.
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Figure 2: ROC curves for edge detection for the 40 node simulations. The blue, green, red, and
purple solid lines correspond to BJNL, JGL, GL, and HS respectively.
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Figure 3: Box plots of the AUC, L1 Error, and TPR/FPR for differential edge detection for
the Small-World network simulations. Within each color, the box plots are organized as: low
difference, medium difference, and high difference in edges between experimental conditions, in
that order.
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Figure 4: Box plots of the AUC, L1 Error, and TPR/FPR for differential edge detection for the
Scale-Free network simulations. Within each color, the box plots are organized as: low difference,
medium difference, and high difference in edges between experimental conditions, in that order.
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Figure 5: Boxplots of the mean ACF across subjects for the passive fixation condition (left)
and the task condition (right).
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Figure 6: Histogram of the Dickey-Fuller test statistic for the off-diagonal precision elements
(task state).
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Figure 7: Widths of credible intervals for partial correlations from the analysis of exertion
(EXR) vs. relaxed (RLX) task performance.
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Figure 8: Circle plots of the difference in partial correlations for the analyses of TASK vs. REST
and maximum exertion (EXR) vs. relaxed task performance (RLX). Line width indicates the
strength of the sum of the significant partial correlations across all network-to-network connections
obtained by adding the strengths of all significant edges. For the graphs with red (blue) edges,
this is the sum of the significant positive (negative) partial correlations between two functional
modules. Plots A and B correspond to TASK edges stronger than REST, C and D to REST edges
stronger than TASK, E and F to EXR edges stronger than RLX, and G and H to RLX edges
stronger than EXR.
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