Supplementary information

Restoring metabolism of myeloid cells reverses cognitive decline in ageing

In the format provided by the authors and unedited

Restoring metabolism of myeloid cells reverses cognitive decline in ageing

Paras S. Minhas^{1,2,3}, Amira Latif-Hernandez^{1,#}, Melanie R. McReynolds^{4,5,#}, Aarooran S. Durairaj¹, Qian Wang¹, Amanda Rubin^{1,2}, Amit U. Joshi⁶, Joy Q. He⁷, Esha Gauba¹, Ling Liu^{4,5}, Congcong Wang¹, Miles Linde⁸, Yuki Sugiura⁹, Peter K. Moon¹, Ravi Majeti⁸, Makoto Suematsu⁹, Daria Mochly-Rosen⁶, Irving L. Weissman⁷, Frank M. Longo¹, Joshua D. Rabinowitz^{4,5}, Katrin I. Andreasson^{1,10,11}

¹Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA

²Neurosciences Graduate Program, Stanford University, Stanford, CA
³Medical Scientist Training Program, Stanford University, Stanford, CA
⁴Department of Chemistry, Princeton University, Princeton, NJ
⁵Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ
⁶Department of Chemical & Systems Biology, Stanford University, Stanford, CA
⁷Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, CA
⁸Department of Hematology, Stanford University School of Medicine, Stanford, CA
⁹Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan.
¹⁰Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA

[#]These authors contributed equally

Supplementary Materials Guide:

Supplementary Figures 1a, 1b, 1c: source immunoblots Supplementary Figure 2 Supplementary Figure 3

Supplementary Figure 1a

37 -- 100

Mfn2

Actin

Supplementary Figure 1b

100-

70-50-

37-

Supplementary Figure 1c

Supplementary Figure 2. Effects of PGE₂, the EP2 agonist butaprost, and EP2 inhibitor C52 in

human MDMs. Human MDMs are from n = 6 donors (age mean \pm SE: 43 \pm 8.344 years).

a-b. Representative immunoblots and quantification of two independent experiments measuring effects of ascending doses of PGE₂ (**a**) and the EP2 agonist butaprost (**b**) at 20 h on Ser473 pAKT /total AKT in human MDMs. P < 0.0001 by one-way ANOVA; Tukey's post-hoc test *P = 0.0340, ***P = 0.006, #P < 0.0001.

c-d. Representative immunoblots and quantification of two independent experiments measuring the effect of ascending doses of PGE₂ (**c**) and the EP2 agonist butaprost (**d**) at 20 h on Ser9 pGSK3ß / total GSK3ß in human MDMs. P < 0.0001 by one-way ANOVA; Tukey's post-hoc test [#]P < 0.0001.

e-g. Representative immunoblots and quantification of time course of pAKT (Ser473) /total AKT (**e**), pGSK3ß (Ser9) / total GSK3ß (**f**), and pGYS1 (Ser641, 645, 649) /total GYS1 (**g**) from six independent experiments in huMDMs treated with butaprost (100 nM, red) or C52 (100 nM, blue) from 0h to 20 h. *P* <0.0001 by one-way ANOVA.

h. Representative immunoblot and quantification of two independent experiments measuring effect of butaprost (20h, 100nM) and the C52 (20h, 100nM) on EP2 levels in human MDMs.

Supplementary Figure 3. Experimental approach for microglial isotope labeling and gating strategy.

a. Young and aged mice were administered C52 for 10 days at 10 mg/kg/day by oral gavage. On day 10, U-₁₃C-Glucose (1g/kg by gavage) was administered for *in vivo* isotope tracing of brain microglia and peritoneal macrophages harvested 4 hours later.

b. Gating strategy for isolation of CD45^{mid}Cd11b⁺ microglia from young (3-4 mo) and aged (22-24 mo) mice.