
i
i

i
i

i
i

i
i

Bioinformatics

Sequence Analysis

Supplementary material for “Cuttlefish:
Fast, parallel, and low-memory compaction of de
Bruijn graphs from large-scale genome collections”
Jamshed Khan 1,2 and Rob Patro 1,2,∗

1Department of Computer Science, University of Maryland, College Park, MD 20742, USA and
2Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20742, USA.

∗To whom correspondence should be addressed.

1 Algorithm
1.1 Transition function (δ) of the DFA

The transition function, δ, of the automata is depicted in Fig. 1.

1.2 Computing the states of the vertices

Given a walkw(s)overG(S,k) spelling a strings∈S, ak-merx ins, an MPHFh
over the canonicalk-mers ofS, and a buckets tableB, the Process-k-mer(x,s,h,B)
algorithm checks the two incident edges of x in the walk, as well as the state of x̂
fromBusingh—makingappropriatestate transitionsfor x̂asrequired. Forbrevity,
handling of the sentinel sides are not shown, but the extension is straightforward.

For a set of stringsSwithndistinct canonicalk-mers and an MPHFhover those,
the Compute-States(S,h,n) algorithm computes the final state of each vertex
ofG(S,k), performing all the required state transitions. Before traversing over
G(S,k), it initializes the buckets tableBwith the state unvisited for each vertex.
Then for each s∈S, it initiates a walkw(s) onG(S,k), spelling s. For eachk-mer
x encountered throughw(s), the Process-k-mer(x,s,h,B) algorithm is executed.

1.3 Extracting the maximal unitigs

For a walkw(s) overG(S,k) spelling the string s∈ S, an MPHF h over the
canonical k-mers of S, and a buckets tableB containing the actual states of each
vertex inG(S,k), the algorithm Extract-Maximal-Unitigs(s,h,B) enumerates
all the maximal unitigs present inw(s). Procedures Is-Unipath-Start(x,w) and
Is-Unipath-End(x,w) checks whether the vertex for the k-mer x initiates or
terminates a maximal unitig inw, respectively – as per the conditions delineated in
Sec.?? (seemain text). ProcedureExtract-Substring(s,x,y)extracts the substring
flanked by the k-mers x and y from the string s, formatted as per the end user
requirement.

2 Proofs
Lemma 1. For a string s and an odd integer k>0, s can only be spelled by a

walkw inG(s,k) that enters and exits each vertex vi through different sides of it.

Proof. ForG(s,k), consider a walkw=(v0,e1,v1,...,ei,vi,ei+1,...,em,vm)

that spells s. Assume that ei and ei+1 are incident to the same side of vi. Without
loss of generality, say thatw enters vi through its front side svif. Then it exits vi
using the same side. There exists some (k+1)-mers x andy in s that correspond
to the edges ei and ei+1, respectively. Sincew spells s completely,wwould
spell prek(x) from vi−1, sufk(x) (or prek(y)) from vi, and sufk(y) from

vi+1. So, x andy overlap at vi with their suffix and prefix k-mers respectively,
i.e. sufk(x)=prek(y) holds.

Since w enters vi through the front with ei (i.e. x), from the definition of
incidencesidesofedges(seeSection??, main text),sufk(x)=label(vi). Andas
w exits vi through the front with ei+1 (i.e.y),prek(y)=label(vi). So we get,
sufk(x)=prek(y). Combining with sufk(x)=prek(y), we get prek(y)=
prek(y). This implies that y1=yk,...,yi=yk−i+1,...,yk=y1. As k is odd,
the (k+1)/2’th character exists in y, and for i= (k+1)/2, yi=yi holds. But a
character cannot be its own nucleotide complement, resulting into a contradiction.

Therefore, the initial assumption of ei and ei+1 to be coincident to the same
side of vi is false. Thus, ei and ei+1 must be incident to different sides of vi for
w to spell s. �

Lemma 2. For a string s and an integer k>0, a complete walk traversal
w(s) overG(s,k) contains each maximal unitig ofG(s,k) as some subpath.

Proof. Consider a maximal unitig p=(v0,e1,v1,...,em,vm) inG(s,k). A
complete walk traversalw(s)overG(s,k) is obtained through a scan over s. From
the definition of edge-centric de Bruijn graphs (see Section ??, main text),w(s)
traverses all the vertices and edges of the graph. Since p is a unitig, each of its
internal vertices vi(0<i<m) has exactly one edge on each side, and these edges
chain from v0 to vm to formp. Hence,w(s) can not visit any internal vertex ofp
without coming from v0 (or vm).w(s)must traverse v0 and then e1 (or, vm and
then em) at some point. From that point onwards, pmust be traversed entirely by
w(s), as it not possible to branch off from some vi without exhaustingp. Thus,
each maximal unitigp is contained inw(s). �

Lemma 3. For some string s and an integer k>0, the (k+1)-mers e and
e correspond to the same edge inG(s,k).

Proof. Consider a (k+1)-mer e inG(s,k). e can be expressed as e=x·nx=
ny ·y, where x=prek(e),y=sufk(e),nx=e[k+1], andny=e[1].

As e=x�y, e induces an edge between the vertices corresponding to x̂ and
ŷ. From the definition of incidence sides of edges (see Section ??, main text),
it is incident to the back of x̂ if x= x̂ holds, and is incident to the front of x̂ if x= x̂
holds otherwise.
e’s reverse complement is e=nx ·x=y·ny. As e=y�x, it induces an edge

betweenthesamepairofverticesŷandx̂.Notetheorderofthek-mersine.Theedge
is incident to the frontof x̂ ifx= x̂holds, or to thebackof x̂ ifx= x̂holdsotherwise.

So, e and e induce edges between the same pair of vertices x̂ and ŷ, and both
the edges are incident to the same side of x̂. Similarly, it can be proved that both
the edges are incident to the same side of ŷ. Therefore, these edges are actually
the same. Thus, e and e induce the same edge inG(s,k). �

© The Author 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1

i
i

i
i

i
i

i
i

2 Khan & Patro

q0

Fig. 1: Partial state-transition diagram for the automaton of a vertex. q0 is the initial state, denoting the unvisited state. The rest 25 states are represented with
the pictorial shapes as described in Fig. ?? (see main text), and we present some of the states as representatives. The ε characters in the input symbols denote
sentinel occurrences in the corresponding sides.
For example, in a complete walk overG(S,k), say an unvisited vertex vi is encountered for the first time in the subwalk (..,ei,vi,ei+1,..), and the edges incident
to the front and to the back of vi among ei and ei+1 are encoded with the characters C and G, respectively. Then vi transitions from the state q0 to a state of
the class single-in single-out with the (C,G) configuration. Then when vi is encountered next, its state is transitioned as per the rules delineated in Fig. ?? (see
main text). Say this next occurrence of vi has edges encoded by A and G at its front and back, respectively. Then vi transitions to a state of the class multi-in
single-out with the configuration (X,G). The X here means that there are 6=1 distinct edges incident to the front, and as such we do not care about what the actual
edges are — thus, we are throwing away the information of the existence of the C-encoded edge at the front of vi. Then as long as the next occurrences of vi
in the walk hasG-encoded edges at its back, irrespective of the front-incident edges, vi remains in this state. Whenever a back-incident edge is encountered with
any of the other three encodings (or ε, for a sentinel), vi transitions to the only state of the class multi-in multi-out, which is a dead-end for states.

Lemma 4. For some string s and an integer k> 0, a side of a vertex in
G(s,k) can have at most four distinct incident edges.

Proof. Without loss of generality, consider the back side svb of a vertex v in
G(s,k). From the definition of incidence sides of edges (see Section ??, main text),
we get that svb will have an incident edge for a (k+1)-mer e iff: (1)prek(e)=
label(v); or (2) sufk(e)=label(v), which is the same as sufk(e)=label(v).

Say that label(v) = lv. Recall that all our strings are over the alphabet
Σ={A,C,G,T}. For the first case, there can be at most |Σ|=4 distinct edges, the
corresponding set of (k+1)-mers beingE1={lv ·c |c∈Σ}. Similarly, there can
be at most four distinct edges for the second case, with the set of (k+1)-mers
beingE2={c·lv |c∈Σ}={c·lv |c∈Σ}.

Fromlemma3, the(k+1)-merslv ·candc·lv inducethesameedgeforsomec∈
Σ. This implies that the set of edges induced fromE1 is the same as the set induced
fromE2. Thus, avertexcanhaveatmost fourdistinctedges incident toeachside.�

Theorem 1. Cuttlefish is correct.

Proof. Cuttlefish treats each vertex v in a de Bruijn graph G(S, k) as a
deterministic finite-state automaton and computes its final state through a series
of state-transition(s), starting from the state unvisited. Proving that it correctly
computes the states of the vertices is trivial from the transition function δ of the
automata (see Supplementary Fig. 1 for a detailed visual illustration of δ). Having
computed the states, it makes another set of walks overG(S,k), and determines
the flanking vertices (w.r.t. maximal unitigs) as per the conditions delineated in
Section ?? (see main text). For an input string s∈S, each substring of it having

terminal k-mers corresponding to such flanking vertices is reported as a maximal
unitig. Since each maximal unitig of s is contained in the walk over G(S,k)
that spells s (as per lemma 2), proving that these characterized flanking vertices
actually flank the underlying maximal unitigs is sufficient to prove that Cuttlefish
reports only the correct maximal unitigs.

In the following, letw=(v0,e1,v1,...,ei,vi,ei+1,...,em,vm) be a walk over
G(S,k) spelling some s∈S. Say thatw enters vi using its side sv, and a unipath
(maximal unitig)p contains vi.

First, we show that it is not possible for Cuttlefish to assign vi as the flanking
vertex initiatingpwhen, in fact, it is not. Assume that Cuttlefish determines vi as
the flanking vertex initiatingp, whereas vi is actually not the initial vertex (inw)
ofp. Hence,p can be extended through the side sv farther, while retaining itself a
unitig. This implies that the side sv is internal top. As per the definition of unitigs
(see Section ??, main text), sv has exactly one incident edge e=(u,su,vi,sv).
Thuswmust enter vi using this edge e fromu. Similarly from the definition, su
also has only e incident to it. Now, the first three conditions for unipath initiation
state that there are 6= 1 edges incident to sv. Therefore, Cuttlefish must have
determined vi to initiate a unipath due to the last condition, i.e. it computedu
as a unipath terminating vertex. But similarly, the first three conditions for unipath
termination state that there are 6=1 edges incident to su which is not the case.
This implies that Cuttlefish determinedu as a unipath terminating vertex due
to computing vi as a unipath initiating vertex. However, this leads to a circular
reasoning, and Cuttlefish can not determine vi as a unipath initiating vertex in

i
i

i
i

i
i

i
i

Cuttlefish 3

Process-k-mer(x,s,h,B)

1 x̂←Canonical(x)
2 st←Bh(x̂)
3 if st= =State(multi-in-multi-out)
4 return

5 entrance←front if x= = x̂; back otherwise
6 efront←prev(x,s) if entrance is front,

next(x,s) otherwise
7 eback←next(x,s) if entrance is front,

prev(x,s) otherwise
// prev(x,s) and next(x,s) is the previous

and the next character of x in s

8 if st= =unvisited
9 st←state(single-in-single-out,efront,eback)

10 else
11 if st= =state(single-in-single-out,cf,cb)
12 transition st jointly based on

(efront = =cf) and (eback = =cb)
13 elseif st= =state(multi-in-single-out,cb)
14 transition st based on eback = =cb
15 else // st is state(single-in-multi-out,cf)
16 transition st based on efront = =cf

17 Bh(x̂)←st

Compute-States(S,h,n)

1 B← buckets table withn entries,
each having the unvisited state

2 for each s∈S
3 for each k-mer x in s
4 Process-k-mer(x,s,h,B)

Extract-Maximal-Unitigs(s,h,B)

1 start←φ, end←φ
2 Letw be the walk spelling s

3 for each k-mer x in s
4 if Is-Unipath-Start(x,w)
5 start←x
6 if Is-Unipath-End(x,w)
7 end←x
8 Extract-Substring(s,start,end)

this way — resulting in a contradiction. Therefore, the initial assumption of vi
being computed as a unipath initiating vertex but actually not being one is false.

Now assume that, for the walkw, Cuttlefish fails to determinevi as the initiating
vertex forp, when it actually is. We proceed to demonstrate by contradiction that
this can not happen. By definition, sv has 6=1 incident edges as p is maximal.
For Cuttlefish, all four unipath initiation conditions hold false for vi. Specifically,
due to the first three conditions holding false, the side sv has exactly one incident
edge — resulting into a contradiction. Therefore, the assumption of vi failing
to be determined as a unipath initiating vertex when it actually is must be false.

Thus, Cuttlefish determinesavertexvi tobeaflankingvertexinitiatingamaximal
unitigp in some walkw if and only if vi actually initiatesp inw. In an analogous
manner as above, it can be proven that the vertices determined as the terminating
flanking vertices actually terminate maximal unitigs, and vice versa. Hence,
Cuttlefish determines precisely the set of vertices that flank maximal unitigs.�

3 Asymptotics
3.1 Running time
Letm be the total length of the input strings, and n be the number of distinct
k-mers in the input. While the exact asymptotic complexity for the initial phase
of distinct k-mers enumeration using the KMC3 algorithm (Kokot et al., 2017) is
somewhat difficult to pin down precisely, we provide a rough upper-bound for it. It
consists of two major steps: bucketing thek-mers based on superk-mer signatures,
and then radix sorting and compacting the buckets. The internal representation
of k-mers make it possible to compare them using 64-bit machine words, i.e. 32
nucleotide-basesata time. Splitting thek-merscollection takes timeO

(
dk/32em

)
(using a constant signature length), and radix sorting the buckets take total time
O
(∑b

i=1dk/32eBi
)
=O
(
dk/32em

)
, whereb is the number of buckets, andBi

is the size of the i’th bucket. Therefore, a loose upper bound isO
(
dk/32em

)
.

Cuttlefish stores a k-mer using dk/32emachine words (of 64-bit). To use the
minimal perfect hash function (MPHF), we convert a k-mer to a 64-bit signature,
takingO

(
dk/32e

)
time, anduse this as the key tohash. Assuming that the BBHash

algorithm (Limasset et al., 2017) takesO(h) time (an expected constant) to hash
each word, the time to hash a k-mer is thenH(k)=O

(
dk/32e+h

)
. BBHash

construction algorithm requires an expected number of hashing operations linear
in the number of keysn. Thus an expected bound for the MPHF construction
time isO

(
nH(k)

)
.

Queryingandfilling thebuckets table in thevertices’statescomputation task take
timeO

(
mH(k)

)
. For the next phase of the maximal unitigs extraction, the time

complexity is asymptotically the same. Therefore, the (expected) total running
time of Cuttlefish isO

(
dk/32em+nH(k)+mH(k)

)
=O
(
(m+n)H(k)

)
.

The dependence of the running time on both the input size (m) and the variation
in the input (expressed through the number of distinct k-mers n) is exhibited
for an apes dataset, detailed in Section ?? (see main text) and illustrated in
Supplementary Figs. 2a, 2c, and 2b. The dependence on k is discussed in Sec. ??,
with benchmarking in Table ?? (see main text for both).

3.2 Memory usage

The k-mer set construction by KMC3 is done by splitting the input k-mers
collection into buckets, and then sorting and compacting the buckets. This
bucketing-based procedure lends effectively to operate under strict memory
bounds — which can be set as deemed feasible for the working platforms.

The MPHF construction by BBHash is a multi-step algorithm, assigning final
hash values to a subset of keys at each step and building a bit-arrayHprogressively
as the output data structure. The entirek-mer setK need not be present in memory,
rather the algorithm processesK chunk-by-chunk in each step. In the last step, the
total arrayH is present in memory; thus the algorithm requiresΩ(|H|)memory.
The algorithm has a parameterγ that trades-off the construction and the query
time with |H|, and we set it asγ=2. This makes |H| use ∼3.7 bits/k-mer. Each
stepd also requires an additional bit-arrayCd for the keys yet to be assigned their
final hash values. IfRd is the set of these keys, then |Cd|=γ|Rd|.R0=K, and
Rd shrinks whereasH expands in size with each step. Thus, the memory usage is
loosely bounded byO(|H|+γ|K|). Specifically in our setting, the memory usage
of the construction can be at most (3.7+2)=5.7 bits/k-mer.

Having constructed the hash function, the buckets table B is allocated as a
bit-packed array. Each vertex (canonicalk-mer) can be in one of 26 different states
(including unvisited). At least dlog226e=5 bits are necessary to represent such
a state. Thus, the buckets consume 5|K| bits in total. Therefore, the total memory
usage of the algorithm is (8.7×|K|)=O(|K|)bits; translating to roughly a byte per
distinctk-mer. This linear relationship between the memory usage and the distinct
k-mers count is illustrated for a humans and an apes dataset at Figs. 2b and 2d.

4 Results
4.1 The implied color definition in the reference de Bruijn graph

Throughout themanuscript, whenwementionthecoloreddeBruijngraph, werefer
to a very specific definition of colors. While this definition is intuitive and natural

i
i

i
i

i
i

i
i

4 Khan & Patro

when constructing the compacted colored de Bruijn graph from a set of reference
genomes, it is not the case that the Cuttlefish algorithm allows arbitrary coloring
of the k-mers in the graph, at least not without another post-processing step.
Specifically, in the definition adopted herein, the color set of a unitig is the subset
of reference strings si1,si2,...,si`∈S in which the unitig appears. This color
information is implicitly encoded in the path entries of the output GFA files (the ‘P’
entries in GFA1 and the ‘O’ entries in GFA2). As a result, all unitigs produced by
Cuttlefish are “monochromatic” under this coloring definition, as a change to the
color set internally to a unitig would imply either a branch (which would terminate
the unitig) or the start or end of some reference string and a sentinel k-mer (which
would also terminate the unitig). If one were constructing the compacted colored
de Bruijn graph from raw sequencing reads or from highly-fractured assemblies,
then one may wish to adopt a different notion of color, wherein color sets may
vary across an individual unitig. Adding such color information to the compacted
de Bruijn graph produced by Cuttlefish would be possible, but would require
further post-processing which we do not consider in this work.

4.2 Intermediate disk space usage of tools

Most of the different tools we have compared make use of intermediate disk space
during their construction of the compacted de Bruijn graph. In fact, of the tools
we have considered here, Bifrost (Holley and Melsted, 2020) is the only one that
does not make use of intermediate disk space during construction.

Of the remaining tools, disk is used for external storage in different ways.
TwoPaCo (Minkin et al., 2016) makes use of intermediate disk space to write files
containing masks of junction candidates between phases of the algorithm; these
temporary files are present during construction but removed prior to program
termination. TwoPaCo also writes down the resulting junction information in
a custom binary file, which one may or may not consider as a temporary file if the
final endpoint of the construction process is considered to be a compacted graph in
some standard output format or not e.g. (GFAv1 or GFAv2). The binary junction
file and the original input sequences are both required to produce the output in a
GFA format. Cuttlefish also makes use of intermediate disk space. It requires the
KMC3 k-mer database, and the BBHash implementation may use intermediate
disk space during the construction of the minimal perfect hash function. After the
minimalperfecthashhasbeenconstructed, neitherof these filesare required for the
remainder of the algorithm, and so can be deleted (though we provide the optional
ability for the user to specify that the minimal perfect hash function itself be
serialized to disk in case they may wish to make use of it for any purpose). Finally,
deGSM (Guo et al., 2019) also makes use of intermediate disk space, and its usage
is the most extensive of the tools considered here. During construction deGSM
requires a database of the (k+2)-mers, as well as an on-disk set of lists of the
k-mers. Also, for the phase of the algorithm in which the partial Burrows-Wheeler
Transform (BWT) (Burrows and Wheeler, 1994) is constructed, intermediate
disk space may be used depending on the command line parameters provided
by the user (intended to limit the memory usage during this part of the algorithm).

Overall, from the array of tools considered in this work, it seems that making
use of intermediate disk space as a strategy to limit memory usage is a common
and effective approach that is adopted by many tools that construct the compacted
de Bruijn graph. In fact, this is also true for tools, like BCALM (Chikhi et al.,
2014) and BCALM2 (Chikhi et al., 2016), that construct the compacted de Bruijn
graph from sequencing reads rather than from assembled sequences. In this regard,
Bifrost stands out as one of the few tools that constructs the compacted (colored) de
Bruijn graph without making use of intermediate disk space during its construction
procedure.

4.3 Comparison of computed maximal unitigs across algorithms

A straightforward correspondence between the outputs of the different tools is
not easy. Bifrost and deGSM compact the node-centric de Bruijn graph of the
references, whereas both TwoPaCo and Cuttlefish use the edge-centric variant.
Also, there are two notable non-trivial differences between the graphs compacted
by TwoPaCo and Cuttlefish. For TwoPaCo, each junction k-mer is present in
all the maximal unitigs that are incident to it, so the maximal unitigs do not form
a node (k-mer) decomposition of the original graph. Another difference is in the
handling of inverted repeats (Sutherland and Richards, 1995) with zero intervening
distance, which forms palindromic sequences. This phenomenon is surprisingly
abundant relative to the expectation, e.g. large fragments of the human X and

Y chromosomes are palindromic (Larionov et al., 2008). An example of such is
present in Fig. ??, where the sequenceGACATGTC is palindromic for the unitig
GACAT . TwoPaCo canonicalizes (k+1)-mers instead of k-mers, and fails to
capture and break such palindromic sequences, reporting the whole sequence
as one unitig. Cuttlefish, however, can naturally capture these phenomena. We
spot-checked that our output matches to TwoPaCo’s output, when junctionk-mers
are properly compacted to an individual unitig (or split into their own) and when
the palindromic sequences in TwoPaCo’s output are broken and taken as a unitig
without repeated k-mers.

4.4 Scaling of GFA-formatted outputting with k

Outputting the compacted graph in the GFA2 (and in GFA1) format takes much
longer than outputting only the unitigs for lower values ofk. At lowerk-values, the
original graph contains a much larger number of maximal unitigs than it contains
at higher k-values; e.g. the 7 humans dataset contains ∼70M maximal unitigs at k
= 23, but only ∼11M at k = 121. Therefore, the compacted graph contains a much
larger number of vertices at smaller k’s, resulting in a much higher number of
edges compared to larger k’s. For example, the compacted graph for this dataset
contains ∼141M edges at k = 121, and ∼3.5B edges at k = 23. This also increases
the length (in terms of vertex count) of the paths covering the input references. So,
the larger amount of disk-write operations required to output the larger GFA files
makes this step relatively slower at smaller values of k, and it becomes relatively
faster as k increases.

4.5 Input structure effects on Cuttlefish performance

Fig. 2 demonstrates the impacts of the genome sizes (total reference length) and
their structural variations (through distinctk-mers count) on the time and memory
consumptions of Cuttlefish.

5 Tools and datasets
For individual genome references, we used Bifrost (v1.0.5), deGSM, TwoPaCo
(v0.9.4), and Cuttlefish with the following commands:

•Bifrost build -v -r <reference_file> \
-o <output_file> -k <k-value> \
-t <threads_count>
•deGSM -k <k-value> -t <threads_count> \
-m <maximum_memory> <jellyfish_path> \
<output_file> <reference_file>
•twopaco -o <output_file> \
--tmpdir <working_directory> \
-f <filter_size> -k <k-value> \
-t <threads_count> <reference_file>
•cuttlefish build -r <reference_file> \
-k <k-value> -s <KMC_database_prefix> \
-t <threads_count> -w <working_directory> \
-f <output_type> -o <output_file> --rm

The KMC3 database to be used by Cuttlefish is produced with the following
command.

•kmc -k<k-value> -m<maximum_memory> -sm -fm \
-ci0 -t<threads_count> <reference_file>
<output_database> <working_directory>

For building compacted de Bruijn graphs with multiple input references, the
following commands have been used:

•Bifrost build -v -r <reference_list> \
-o <output_file> -k <k-value> \
-t <threads_count>
•deGSM -k <k-value> -t <threads_count> \
-m <maximum_memory> <jellyfish_path> \
<output_file> <references_dir>
•twopaco -o <output_file> \
--tmpdir <working_directory> \
-f <filter_size> -k <k-value> \
-t <threads_count> <ref_1> <ref_2> ... <ref_N>

i
i

i
i

i
i

i
i

Cuttlefish 5

Genome count

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

0

1000

2000

3000

4000

1 2 3 4 5 6 7

Human Ape

Running time

(a)

Genome count

M
ax

im
um

 m
em

or
y

(G
B

s)

0

2

4

6

8

1 2 3 4 5 6 7

Human Ape

Maximum memory usage

(b)

Genome count

G
en

om
e

le
ng

th
 (G

bp
)

5

10

15

20

25

1 2 3 4 5 6 7

Human Ape

Total genome length

(c)

Genome count

k-
m

er
 c

ou
nt

 (G
)

2

4

6

8

1 2 3 4 5 6 7

Human Ape

Distinct k-mers count

(d)

Fig.2: Inputstructureeffectsontheperformanceof Cuttlefish.Forgenomecountsvaryingfrom1to7, thecorresponding— (a) runningtimeinsecondsandthe (b) maximum
memory usage in gigabytes are reported. The corresponding (c) total length of the genomes and (d) the number distinctk-mers for each input collection are presented too.

•cuttlefish build -l <reference_list> \
-k <k-value> -s <KMC_database_prefix> \
-t <threads_count> -w <working_directory> \
-f <output_type> -o <output_file> --rm

The KMC3 database is produced with the following command:

•kmc -k<k-value> -m<maximum_memory> -sm -fm \
-ci0 -t<threads_count> @<reference_list> \
<output_database> <working_directory>

In case of deGSM, it outputs a BWT and a binary edge-sequence file, from
which the GFA output has to be generated using a utility tool called ubwt (from
the same authors). ubwt has been used with the following command.

•ubwt unipath <deGSM_BWT_file> \
-t <threads_count> -e <deGSM_edge-seq_file> \
-k <k-value> -o <output_file> -a G

Annotations of the datasets used in the benchmarks in the paper, and the
URLs from which they were obtained are available athttps://doi.org/
10.5281/zenodo.4116608.

References
Burrows, M. and Wheeler, D. (1994). A Block-sorting Lossless Data Compression

Algorithm. Digital SRC. Digital, Systems Research Center.

Chikhi, R. et al. (2014). On the representation of de bruijn graphs. In R. Sharan,
editor, Research in Computational Molecular Biology, pages 35–55, Cham. Springer
International Publishing.

Chikhi, R. et al. (2016). Compacting de bruijn graphs from sequencing data quickly and
in low memory. Bioinformatics, 32(12), i201–i208.

Guo, H. et al. (2019). deGSM: memory scalable construction of large scale de bruijn graph.
IEEE/ACM Transactions on Computational Biology and Bioinformatics, pages 1–1.

Holley, G. and Melsted, P. (2020). Bifrost: highly parallel construction and indexing of
colored and compacted de bruijn graphs. Genome Biology, 21.

Kokot, M. et al. (2017). KMC 3: counting and manipulating k-mer statistics. Bioinformatics,
33(17), 2759–2761.

Larionov, S. et al. (2008). Chromosome evolution with naked eye: palindromic context
of the life origin. Chaos, 18 1, 13105.

Limasset, A. et al. (2017). Fast and scalable minimal perfect hashing for massive key sets.
In 16th International Symposium on Experimental Algorithms (SEA 2017), volume 75 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 25:1–25:16, Dagstuhl,
Germany. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

Minkin, I. et al. (2016). TwoPaCo: an efficient algorithm to build the compacted de bruijn
graph from many complete genomes. Bioinformatics.

Sutherland, G. R. and Richards, R. I. (1995). Simple tandem DNA repeats and human
genetic disease. Proceedings of the National Academy of Sciences of the United States
of America, 92(9), 3636–3641. 7731957[pmid].

https://doi.org/10.5281/zenodo.4116608
https://doi.org/10.5281/zenodo.4116608

	Algorithm
	Transition function () of the DFA
	Computing the states of the vertices
	Extracting the maximal unitigs

	Proofs
	Asymptotics
	Running time
	Memory usage

	Results
	The implied color definition in the reference de Bruijn graph
	Intermediate disk space usage of tools
	Comparison of computed maximal unitigs across algorithms
	Scaling of GFA-formatted outputting with k
	Input structure effects on Cuttlefish performance

	Tools and datasets

