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Supplementary Methods

Parameter Optimization

We learn BMF model parameters by maximizing the likelihood function (equation 9 in manuscript).
For an efficient optimization using stochastic gradient descent, we need to be able to compute the
partial derivative of the likelihood with respect to model parameters (θ):

∂LL(Θ)

∂θ
= ∑

x∈X+

1
Z(x)(1− Z(x))

∂Z(x)
∂θ

− N+ ∑x′∈X bg pbg(x′)Z(x′)−2 × ∂Z(x′)
∂θ

∑x′∈X bg pbg(x′)(1− 1/Z(x′))
. (1)

We can compute the partial derivatives ∂Z(x)/∂θ from the partial derivatives ∂ZA(i)/∂θ and ∂ZA(L)/∂θ

according to equation 6 in the manuscript:

∂Z(x)
∂θ

=
∂ZB(x, L− 1)

∂θ
+

L−1

∑
i=0

∂ZA(x, i)
∂θ

. (2)

BMF parameters (θ) include binding energies of each domain to various k-mers as well as concentration
parameters (S, r and p).

In the following, We define θk,d as the binding energy of domain d at k-mer k. Log-likelihood derivatives
with respect to binding energies can be computed iteratively by applying the partial derivative operator
on the forward algorithm of the dynamic programming (equations 1 and 2 in the manuscript):

∂ZA(i)
∂θk,d

= cABe−EA(i)

[
∂ZB(i− k)

∂θk,d
+

i−k

∑
j=0

∂ZA(j)
∂θk,d

−
(

ZB(i− k) +
i−k

∑
j=0

ZA(j)

)
∂EA(i)
∂θk,d

]
, (3)

where
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∂EA(i)
∂θk,d

= δx(i),k δd,A , (4)

and δi,j is the Kronecker delta of i and j. Similarly we can get the derivatives with respect to ZB:

∂ZB(i)
∂θk,d

=
∂ZB(i− 1)

∂θk,d
+

i−k

∑
j=0

cB(i− k− j) e−EB(i)
(

∂ZA(j)
∂θk,d

− ZA(j)
∂EB(i)
∂θk,d

)
+ cAB e−EB(i)

(
∂ZB(i− k)

∂θk,d
− ZB(i− k)

∂EB(i)
∂θk,d

)
, (5)

where

∂EB(i)
∂θk,d

= δx(i),k δd,B . (6)

These derivatives are computed iteratively via dynamic programming similar to ZA and ZB. They are
initialized to zero for:

∂ZA(i)
∂θk,d

= 0 for all i ∈ {0, ..., k− 2} (7)

∂ZB(i)
∂θk,d

= 0 for all i ∈ {0, ..., k− 2} . (8)

Similarly, we can derive the partial derivative in respect to the concentration parameters (θc):

∂ZA(i)
∂θc

= cAB e−EA(i)

(
∂ZB(i− k)

∂θc
+

i−k

∑
j=0

∂ZA(j)
∂θc

)
, (9)

∂ZB(i)
∂θc

=
∂ZB(i− 1)

∂θc
+

i−k

∑
j=0

e−EB(i)
(

∂ZA(j)
∂θc

cB(i− k− j) + ZA(j)
∂cB(i− k− j)

∂θc

)
+

∂ZB(i− k)
∂θc

cAB + ZB(i− k)
∂cAB

∂θc
. (10)

The partial derivative ∂cB/∂θc with respect to concentration parameters S, r and p are (according to
equation 5 in the manuscript):

∂cB(d)
∂S

=
Γ(d + r)

Γ(d + 1)Γ(r)
pr(1− p)d, (11)

∂cB(d)
∂p

= S× (
r
p
− d

1− p
)× exp

(
log Γ(d + r)

− log Γ(d + 1)− log Γ(r) + d log(1− p) + r log p
)
, (12)

∂cB(d)
∂r

= S×
(
ψ(d + r) + log p− ψ(r)

)
× exp

(
log Γ(d + r)

− log Γ(d + 1)− log Γ(r) + d log(1− p) + r log p
)
, (13)
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where Γ is the gamma function and ψ is its logarithmic derivative, also known as the digamma function.
Note that for numerical accuracy, we have calculated the derivatives of the exp(log cB(d)) function,
with respect to p and r.

Overall, these equations allow us to iteratively compute for any sequence x the partial derivatives
∂ZA(i)/∂θ and ∂ZB(L)/∂θ with respect to all parameters and hence derivatives of the partition function
Z(x) and those of the likelihood.

The thermodynamic model contains a simplification. We assume that one of the domains (A) always
binds upstream of the other domain (B) and that the binding configurations A-B and B-A do not
both contribute appreciably to the binding probability. This seems like a very plausible assumption
considering that the linkers between structural domains are usually quite short, and changing the order
of binding would usually result in an impossible or much less favorable (tighter) configuration of the
RNA chain.

Calculation of motif entropy

To derive the entropy for each bipartite motif model, we calculate the weighted probability for each
base as

Pb =

∑
x∈k-mers

nb,x px + ∑
y∈k-mers

nb,y py

∑
b∈N

(
∑

x∈k-mersA

nb,x px + ∑
y∈k-mers

nb,y py
) , (14)

where N is the set of nucleotides ({A, C, G, U}). We calculate the entropy as

Entropy = − ∑
b∈N

Pb log2 Pb . (15)

To establish a baseline for the observed entropy values, we generated artificial bipartite motifs where
the k-mer probabilities are taken from the observed probabilities of an experimental set but the k-mers
were shuffled. We generated 10,000 such motifs and used the resulting entropy distribution as a
baseline for motif complexity.

Calculation of motif repetitiveness

To quantify the degree of sequence repetitiveness in BMF models, we calculate the highest average
probability of observing a repetitive 3-mer (i.e. ’AUA’, ’UUU’, or ’CGC’) as

R = max
a,b∈N

(√
pA(aba) + pA(bab))(pB(aba) + pB(bab)

)
, (16)

where N is the set of nucleotides ({A, C, G, U}), and pA and pB are BMF probabilities for the first
and second motif core respectively. To establish a baseline for the observed repetitiveness values, we
calculated this metric for 10,000 artificial bipartite motifs, generated as described above.

BMF comparison with single-occurrence motif model

To estimate the effect of considering all binding configurations and including cooperativity in BMF, we
compared its cross-validated classification performance with a spaced k-mer motif model. We created
training and test sets by splitting the HTR-SELEX data with an 80 to 20 ratio. We trained BMF with
core size 3 on the training data and used the learned models to predict the binding scores for each
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sequence in the test set. For the spaced k-mer model, we calculated enrichment factors for each spaced
k-mer in the training data and scored the test sequences by the most enriched k-mer motif. The k-mers
have 6 informative positions with the pattern 1110...0111. The length of spacers (zeros in the pattern)
vary between 0 and 6 and was chosen to match the best spacer length in the corresponding BMF model.
To compare each model’s classification power, we calculated the area under the receiver operating
characteristic curve (AUROC) for all RBPs in the dataset.

Cross-platform validation of HTR-SELEX models on RNAcompete data

We trained BMF with core sizes 3, 4, and 5, as well as iDeepE, DeepCLIP, and GraphProt models on
HTR-SELEX data. We then compared how these models perform at predicting bound fragments in
RNAcompete datasets. RNAcompete sequences were sorted by their normalized intensities and the
2000 sequences with highest scores were assigned to the positive class, while the 2000 sequences with
the lowest scores were labeled as the background set. Sequences shorter than 40 nucleotides were
padded with N to generate same-length fragments. Normalized RNAcompete data was collected from
http://hugheslab.ccbr.utoronto.ca/supplementary-data/RNAcompete_eukarya/.
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Supplementary figures
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Figure S1: BMF’s predictive performance matches between 1000 and 1500 iterations of gradient
descent. AUROC values are calculated by predicting binding sites in held-out sequences of HTR-
SELEX datasets (80%-20% split for training and testing). Stochastic gradient descent was performed for
a fixed number of 1000 and 1500 iterations respectively.
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Figure S2: BMF can reliably learn planted motifs in synthetic data. We planted AA(A/U) followed
by CC(C/G) with a distance distribution around 4 in 2000 randomly generated sequences of length
40. (A) Log-likelihood function increases over the iterations until reaching a plateau at the end of
optimization. (B) The binding energies of all 3-mers are shown over BMF iterations for both binding
domains. The 3-mers representing the implanted motifs are shown with brighter blue (first domain)
and red (second domain)dash lines. The final values retrieved after optimization is notably lower for
the highlighted 3-mers. (C) The mean (in blue) and mode (in red) of the NB distribution is shown over
BMF’s optimization iterations. The correct distance distribution is found when the LL and the energy
parameters reach their plateaus. (D), and E The distribution of final BMF parameters upon 10 random
parameter initializations and subsequent optimization. Regardless of the choice of initial parameter
values, BMF ends in the same optimum point in the parameter landscape.
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Figure S3: Experimental HTR-SELEX replicates generate the same bipartite motif models. Biparite
binding models are shown for factors in Figure 2 for which an experimental replicate was available.
The models generated for all HTR-SELEX datasets can be found in BMF GitHub repository: https:
//github.com/soedinglab/bipartite_motif_finder/blob/main/data/HTRSELEX_motifs.pdf.
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p(distance)>0
1 (non-adjacent)0 (adjacent)

Figure S4: RBPs in the same family have similar BMF motifs. BMF models are clustered according
to their sequence identity measured as pairwise Pearson correlation between 3-mer probabilities.
Two dimensional embedding is generated via tSNE [2]. RBPs are color-coded based on the domain
positioning in the NB models, as in Figure 2B, with adjacent cores colored in blue and bipartite motifs
in red. Additional information on the domain composition of each RBP is provided in Table S1.
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Figure S5: Bipartite binding behaviour can arise when building longer sequence models. Some
RBPs in the HT-SELEX dataset have adjacent cores when building BMF models with 3-mers, but show
bipartite binding for 4-mer and/or 5-mer models.
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Figure S6: Incorporating cooperativity and multivalency boosts performance of RBP binding mod-
els. AUROC values are calculated by predicting binding sites in held-out sequences of HTR-SELEX
datasets (80%-20% split for training and testing). BMF with core size 3 is compared to a single-occurence
per sequence spaced k-mer model (see supplementary methods). RBPs are color-coded based on the
domain positioning in the NB models, as in Figure 2B, with adjacent cores colored in blue and bipartite
motifs in red.
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Figure S7: Average precision (AP) scores for iDeepE, DeepCLIP, GraphProt, and BMF with motif
sizes ranging from 3 to 5. We used BMF, iDeepE, DeepCLIP, and GraphProt to identify eCLIP and
PAR-CLIP RBP binding sites based on the models trained on HTR-SELEX datasets. The tools are sorted
based on their median AP scores (red lines). The AP score for each RBP dataset is shown with a black
dot.
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Figure S8: Comparison of cross-platform AUROC values for BMF models with core sizes 3 to 5. An
increase in AUROC with increasing motif length is marked with red and a decrease with blue.
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Figure S9: Cross-platform validation of HTR-SELEX motif models used to predict binding on
RNAcompete data. We used BMF, iDeepE, DeepCLIP, and GraphProt to identify bound sequences in
RNAcompete datasets after training their motif models on HTR-SELEX data. (A) AUROC distribution
for iDeepE, DeepCLIP, GraphProt, and BMF with motif sizes ranging from 3 to 5. The tools are sorted
based on their median AUROC performance. The values for each RBP dataset is shown with a black dot.
(B) to (D) AUROC from BMF (core size 5) compared to GraphProt, iDeepE, and DeepCLIP. Statistical
significance was assessed through Wilcoxon signed-rank tests. (E) Comparison of cross-platform
AUROC values for BMF models with core sizes 3 to 5. In all plots AUROC values are averaged over all
replicate combinations wherever replicates were available.
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Figure S10: Comparison of HTR-SELEX and eCLIP BMF logos. BMF logos are sorted according to
their cross-platform AUROC performance (shown in parenthesis), which is an average between BMF
(with core size 3), Graphprot, and iDeepE. BMF logos were generated for all available replicates of
each experimental technique.
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Figure S11: Comparison of HTR-SELEX and PAR-CLIP BMF logos. BMF logos are sorted according
to their cross-platform AUROC performance (shown in parenthesis), which is an average between BMF
(with core size 3), Graphprot, and iDeepE. BMF logos were generated for all available replicates of
each experimental technique.
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Supplementary Table

Table S1: Domain architecture of RBP constructs in the HTR-SELEX dataset used to train BMF
models. Annotations are based on HMMER search [3] of the construct sequences used by Jolma et al.

RBP CONSTRUCT ARCHITECTURE 
BOLL RRM_1 
CARHSP1 CSD 
CELF1 RRM_1, RRM_1 
CELF3 RRM_1, RRM_1 
CELF4 RRM_1 
CSDA CSD 
CSTF2 CSTF2_hinge, RRM_1, CSTF_C 
CSTF2T CSTF2_hinge, RRM_1, CSTF_C 
DAZ1 RRM_1, RRM_1, RRM_5, RRM_5 
DAZ3 RRM_1 
DAZ4 RRM_1 
DAZAP1 RRM_1, RRM_1, RRM_7 
DAZL RRM_1 
ELAVL1 RRM_1, RRM_1, RRM_1, RRM_5, RRM_5 
ELAVL3 RRM_1, RRM_1, RRM_1, RRM_5, RRM_5 
ELAVL4 RRM_1, RRM_1, RRM_1, RRM_5, RRM_5 
ESRP1 RRM_1 
HEXIM1 HEXIM 
HEXIM2 HEXIM 
HNRNPA0 RRM_1, RRM_1 
HNRNPA1 RRM_1, RRM_1, HnRNPA1 
HNRNPA1L2 RRM_1, RRM_1, HnRNPA1 
HNRNPA3 RRM_1, RRM_1 
HNRNPC RRM_1 
HNRNPCL1 RRM_1 
HNRNPL RRM_5, RRM_5, RRM_1, RRM_1, RRM_8 
HNRPLL RRM_5, RRM_5, RRM_1, RRM_1, RRM_8 
IGF2BP1 KH_1, KH_1, KH_1 
KHDRBS1 KH_1 
KHDRBS2 Qua1, Sam68-YY, KH_1 
KHDRBS3 Qua1, Sam68-YY, KH_1 
LARP6 La, SUZ-C 
LARP7 RRM_3 
MEX3B KH_1, KH_1 
MEX3C KH_1, KH_1 
MEX3D KH_1, KH_1 

MKRN1 
zf-CCCH_4, zf-CCCH_4, zf-CCCH_4, zf-
CCCH, zf-CCCH, zf-CCCH, zf_CCCH_4, zf-
C3HC4, zf-RING_UBOX 

MSI1 RRM_1, RRM_1 
MSI2 RRM_1, RRM_1 
NOVA2 KH_1, KH_1 

PABPC5 RRM_1, RRM_1, RRM_1, RRM_1, RRM_5, 
RRM_5 

PCBP1 KH_1, KH_1, KH_1 

RBP CONSTRUCT ARCHITECTURE 
PUM1 PUF, PUF, PUF, PUF, PUF, PUF, PUF, PUF 
PUM2 PUF, PUF, PUF, PUF, PUF, PUF, PUF, PUF 
QKI STAR_dimer, Quaking_NLS, KH_1 
RALY RRM_1 
RBFOX1 RRM_1, Fox-1_C 
RBFOX3 Fox-1_C, RRM_1 
RBM14 RRM_1, RRM_1, RRM_5, RRM_5 
RBM24 RRM_1 
RBM28 RRM_1, RRM_1, RRM_1 
RBM38 RRM_1 
RBM4 RRM_1, RRM_1, RRM_5, RRM_5, zf-CCHC 
RBM42 RRM_1 
RBM46 RRM_1, RRM_1, RRM_1, DND1_DSRM 
RBM4B RRM_1, RRM_1, RRM_5, RRM_5, zf-CCHC 
RBM6 OCRE, G-patch 
RBMS1 RRM_1, RRM_1 
RBMS2 RRM_1, RRM_1 
RBMS3 RRM_1 
RBMY1E RRM_1 
RBMY1F RBM1CTR, RRM_1 
RBMY1J RBM1CTR, RRM_1 
RBPMS RRM_1 
RBPMS2 RRM_1 
RC3H1 ROQ_II, zf-RING_UBOX, zf-CCCH, zf-C3HC4 
RC3H2 ROQ_II, zf-CCCH, zf-RING_UBOX 
RNPC3 RRM_1 
SART3 RRM_1, RRM_1 
SNRNP70 U1snRNP70_N, RRM_1 
SNRPA RRM_1, RRM_1, RRM_5, RRM_5 
SNRPB2 RRM_1, RRM_1, RRM_5, RRM_5 
TARDBP TDP43_N, RRM_1, RRM_1 
THUMPD1 THUMP 
YBX1 CSD 
YBX2 CSD 

ZC3H10 zf-CCCH, zf-CCCH, zf-CCCH_2, zf-CCCH_2, 
zf-CCCH_2 

ZC3H12A RNase_Zc3h12a, Regnase_1_C, UBA_6 
ZC3H12B RNase_Zc3h12a 
ZC3H12C RNase_Zc3h12a 

ZC3H8 zf_CCCH_4, zf-CCCH, zf-CCCH, zf-CCCH_4, 
zf-CCCH_2, zf-CCCH_2, zf-CCCH_2 

ZCRB1 RRM_1, RRM_5, zf-CCHC 
ZFP36 zf-CCCH, zf-CCCH 
ZFR zf-met, zf-C2H2_jaz 
ZRANB2 zf-RanBP, zf-RanBP 

. .
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