Supplementary Online Content

Grossman D, Okwundu N, Bartlett EK, et al. Prognostic gene expression profiling in cutaneous melanoma: identifying the knowledge gaps and assessing the clinical benefit. *JAMA Dermatol.* Published online July 29, 2020. doi:10.1001/jamadermatol.2020.1729

eTable 1. Summary of survey responses of melanoma experts.

eTable 2. Hypotheses and potential trial designs for evaluation of GEP testing.

This supplementary material has been provided by the authors to give readers additional information about their work.

eTable 1.	. Summary o	f survey	responses	of melanoma	experts.
-----------	-------------	----------	-----------	-------------	----------

1 st round survey: Potential applications of	Perceived clinical impact			
GEP testing	Low	Medium	High	
Predict SLNB positivity in patients with T1a	20 (29%)	15 (22%)	33 (49%)	
tumors				
Predict SLNB positivity in patients with T1b	18 (27%)	17 (25%)	32 (48%)	
tumors				
Identify patients with node-negative T1b	19 (29%)	15 (23%)	32 (48%)	
tumors who should undergo more intense				
clinical and/or imaging surveillance				
Identify stage II patients who should undergo	8 (12%)	18 (27%)	40 (61%)	
more intensive clinical/imaging surveillance				
Identify stage II patients who would benefit	7 (11%)	8 (12%)	51 (77%)	
from systemic adjuvant therapy				
Identify stage IIIA patients who could	7 (11%)	17 (26%)	42 (64%)	
undergo less intensive clinical/radiologic				
surveillance				
Identify stage IIIA patients who would	7 (11%)	10 (15%)	49 (74%)	
benefit from systemic adjuvant therapy				
	D'	N 4 1	A	
1 ^a round survey: General clinical trial	Disagree	Neutral	Agree	
Should employ retrogractive comple sets	26(200/)	10 (150/)	20 (460/)	
should employ recospective sample sets	20 (3976)	10 (1376)	30 (40%)	
determine best uses of GEP testing				
Future trials should incorporate multiple	4 (6%)	17 (26%)	11 (68%)	
testing platforms	4 (070)	17 (2070)	44 (0870)	
2 nd round survey: GEP test performance	100% 95%	90% 80%	70%	
in stage I natients (for prediction of	10070 2070	2070 0070	/0/0	
distant mets)				
Minimum acceptable PPV	4 (9%) 5 (12%) 13	6 (30%) 11 (26%	(b) 10 (23%)	
Minimum acceptable NPV	5 (12%) 18 (42%)	9 (21%) 4 (9	%) 7 (16%)	
2 nd round survey: Favored trial objectives	Worth pursuing	Not worth	n pursuing	
regarding GEP testing and SLNB	25 (010	/ >	0 (100/)	
Can GEP testing reliably predict SLNB	35 (81%	o)	8 (19%)	
positivity?	21 (52)	/ >	10 (200 ()	
Is GEP testing more accurate than SLNB in	31 (72%	()	12 (28%)	
predicting recurrence or metastasis?				
2 nd round survey: Favored trial objectives				
regarding GEP testing and SLNB				
GEP testing can complement SLNB and	16 (37%)			
AJCC staging to improve prognostication				

GEP testing can replace SLNB as a staging	1 (2%)
test	
GEP testing can inform management	26 (61%)
strategies such as surveillance and adjuvant	
therapy better than SLNB	
2 nd round survey: Highest priority GEP	
testing trial objective	2 (70/)
GEP testing can replace SLNB as a staging test	3 (7%)
GEP testing can complement SLNB and	9 (23%)
AJCC staging to improve prognostication	
GEP testing can identify patients who could	12 (30%)
be spared imaging surveillance and adjuvant	
therapy	
GEP testing can identify patients who could	16 (40%)
benefit from imaging surveillance and	
adjuvant therapy	
2 nd round survey: Favored trial objective	
regarding GEP testing, imaging	
surveillance, and adjuvant therapy	
GEP testing can identify those who may	4 (10%)
benefit from these interventions	
GEP testing can identify those who may	0 (0%)
safely avoid these interventions	
Both are equally important	37 (90%)
2 nd round survey. Clinical trial	Disagree Agree
considerations regarding GEP testing.	Disagree Agree
imaging surveillance, and adjuvant	
therapy	
Prior to a trial, it is important first to	17 (41%) 24 (59%)
determine whether early detection of	
asymptomatic disease by surveillance	
imaging improves outcomes in patients	
treated with adjuvant therapy.	
GEP testing of primary tumors from stage II	13 (32%) 28 (68%)
patients from completed placebo-controlled	
trials of anti-PD1 may be sufficient to	
determine whether GEP testing could be	
used to determine which stage II patients	
may benefit from adjuvant therapy.	
2 nd round survey: Which melanoma stage	IA/B IIA IIB/C IIIA IV
does GEP testing have the greatest	
potential to impact patient management?	9 (23%) 11 (28%) 16 (40%) 3 (7%) 1 (2%)

AJCC, American Joint Committee on Cancer; GEP, gene expression profile; NPV, negative predictive value; PPV, positive predictive value; SLNB, sentinel lymph node biopsy.

^a A total of 195 melanoma experts were emailed two separate surveys. There were 78 (40%) respondents to one or both surveys. There were 73 respondents to the 1st round survey and 44 respondents to the 2nd round survey. There were 28 respondents to both surveys. This likely reflects some survey fatigue by the 1st round respondents and response to email reminders by some 2nd round respondents who did not respond to the 1st round survey. The respondents were very representative of the MPWG, with the following breakdown: 1st round: 53% dermatologists, 21% medical oncologists, and 10% surgical oncologists. A subset of the authors formulated the questions for the first-round survey, discussed results, and formulated questions for the second-round survey during two conference phone calls. For each survey question, respondents were also invited to enter free-text comments. Some individuals did not answer some of the questions in each survey.

Design type	Total N (per/arm)	Alpha (type-1 error)	Power	3-year OS	3-year OS			
Hypothesis: Using GEP test results instead of SLNB improves survival								
Superiority	808	5%	80%	85%	90%			
	(404/arm)	(two-sided)						
Superiority	1082	5%	90%	85%	90%			
	(541/arm)	(two-sided)						
Hypothesis: Survival is not worse after using GEP test results instead of SNLB								
Non-inferiority	7136	5%	90%	85%	Not worse than			
	(3518/arm)	(one-sided)			83%			
Non-inferiority	9018	5%	95%	85%	Not worse than			
	(4509/arm)	(one-sided)			83%			
Hypothesis: For stage II-IIIA patients with a high-risk GEP test result, survival is better if								
they receive ad	juvant therap	y compared to no	t receiving	gadjuvant ther	apy			
Superiority	1196	5%	80%	90%	93.4%			
	(598/arm)	(two-sided)						
Superiority	1602	5%	90%	90%	93.4%			
	(801/arm)	(two-sided)						
Hypothesis: For stage IIIB (or higher) patients with a low-risk GEP test result, survival is								
not worse if they do not receive adjuvant therapy compared to receiving adjuvant therapy								
Non-inferiority	4482	5%	90%	75%	Not worse than			
	(2241/arm)	(one-sided)			71.9%			
Non-inferiority	5644	5%	95%	75%	Not worse than			
	(2822/arm)	(one-sided)			71.9%			

eTable 2. Hypotheses and potential trial designs for evaluation of GEP testing.

OS, overall survival.

Superiority trials evaluate whether an experimental arm has better outcome(s) compared to a randomized control arm; and analyses are typically intention-to-treat, with patients analyzed based on assigned therapy. Non-inferiority trials evaluate whether an outcome(s) in an experimental arm is at least as good as a control arm; analyses are typically per protocol and require more patients. Sample size requirements obtained using https://stattools.crab.org, assuming 1:1 randomization, 3 years of accrual and an additional 4 years of follow-up, and exponential survival. Estimated sample size requirements will vary depending on the design, specified statistical tests, alpha level, power, expected event-rate, accrual rate, and follow-up time. In a trial with overall survival as the primary outcome, a Cox regression model may be used for the primary analysis and a one-sided 95% confidence interval for the hazard ratio may be calculated. A trial may be powered so that the upper limit of the confidence interval is not larger than 1.05 (indicating that the experimental arm may have no more than 5% greater hazard of death compared to the control arm). The alpha level for non-inferiority trials is often taken to be 5-10% (one-sided) and power is often 90-95%, reflecting the different objectives compared to superiority trials. The alpha and power are selected based on the specific hypothesis of the trial, and some non-inferiority trials can use smaller alpha (1% or smaller). In the non-inferiority calculations above, sample size was calculated assuming that the control and experimental arms

had the same 3-year OS as that listed for the control arm, while the values of the 3-year OS in the experimental arm denote the non- inferiority limit.