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a transparent peer review scheme. This document only contains reviewer comments and rebuttal letters 
for versions considered at Nature Communications. 

REVIEWER COMMENTS

Reviewer #1 (Remarks to the Author): 

The authors present a fascinating study of VNTR variation, which they access using a 
relatively novel analysis approach. Following recent work in pangenomic methods, they 
utilize repeat de Bruijn graphs as pangenome models (RPGGs) to describe variation in 
VNTR loci in samples with short read sequencing. To align read data, they develop a custom 
heuristic alignment method based on the exact matching of reads to walks through these 
graphs. Each sample is represented as a normalized coverage across the feature space of 
these graphs, where features are kmers or nodes in the RPGG. By embedding VNTR 
variation found in high-quality assembled genomes within their reference data structure, the 
authors are able to elucidate the nature of genomic variation in these dynamic regions and 
its impact on genome function. 

This work struck me as a very sound and straightforward take on an aspect of genome 
variation that is frequently overlooked due to the complexity of analysis of it. They also have 
the opportunity to build on human assemblies based on long reads to build their reference 
structure, which is a critical requirement for such work. 

I have a few concerns with the approach the authors took, and some confusion about 
important specifics of their method. 

I was not clear if the RPGG included the entire reference. If so, how did the authors handle 
mapping to non-VNTR regions? At the chosen kmer sizes, the graph of a human genome 
would be extremely tangled. If they do not map to the entire human reference, then 
mismapping of reads from the rest of the genome into the RPGGs could introduce strange 
artifacts. I apologize if this was made clear in the text, but I did not find it immediately 
obvious. 

The authors note, “There was little effect on downstream analysis for values of k between 17 
and 25, and so k =21 was used for all applications.” This left me curious: what happens at 
higher k? My experience with building DBGs from such regions suggests that the kmers that 
are used are extremely low, and likely to generate very tangled structures that might 
incorporate pieces of surrounding sequence. As the authors’ overall result is likely to be 
robust to this (they are projecting their samples into this feature space and comparing them 
uniformly within it) this may be unimportant. But I was left very curious what happens at 
k=31, k=47, k=63 and so forth. The statement suggests that the results change, but how? 

I found an error in the authors’ assessment of existing methods to align reads to graphs. 
They state “While several methods exist to find alignments that do not reuse cycles 
(Garrison et al. 2018; Rakocevic et al. 2019)...” However, the cited article (Garrison 2018) 
specifically demonstrates alignment to graphs with cycles and arbitrary structural variation 
(For clarity, I am the author.) One of the key experiments demonstrates that long PacBio 
reads map better to a whole genome alignment graph of seven S. cerevisiae strains that 
contains very complex structural variation than they do to a linear assembly from the 



standard reference strain. That is not to say that the method is optimal, as it is around an 
order of magnitude slower than GraphAligner, as shown in (Rautiainen, Mäkinen, and 
Marschall 2019). I suggest the authors rephrase this to indicate the shortfall while remaining 
precise about their citation, something like “While methods exist to find alignments that do 
not reuse cycles (Rakocevic et al. 2019), others allow alignment to cyclic graphs, but with 
high computational costs when the graphs are of the type we build (Garrison 2018).” 

I did not find the comparison with GraphAligner or other methods to be very convincing. 
Perhaps it should simply be removed. It does not add anything and gives the impression that 
the authors weren’t very careful. One key issue is that the authors do not verify if 
GraphAligner or their method align the simulated reads to the correct location in the graph 
they were simulated from. They simply note that GraphAligner yielded alignments at lower 
than expected identity. Could these have been mapped correctly, while those from danbing-
tk were mapped erroneously, with a high reported identity? The authors cannot exclude this. 
Also, are the settings applied to GraphAligner those recommended by the author for the 
kinds of graphs that they build? This should be indicated. 

In reflection, I worry that the authors may overstate the technical advantage of their 
approach. Was it even necessary to use a DBG, or could they have just projected their read 
sequences into a set of kmer counts? Do the authors feel they have explained the 
advantage of their model over something simpler like this? This aspect can simply be 
minimized. The authors have been pragmatic, and built a focused solution for their 
application, which is the exploration of VNTRs in the human population. It is not necessary 
for them to exhaustively compare with other tools, and an incomplete comparison is perhaps 
more confusing to readers than nothing at all, and the space could be better spent on a more 
thorough evaluation of the accuracy of their own method (e.g. a ROC curve of the alignment 
accuracy versus mapping quality). 

Overall, the authors have made a significant contribution to what will certainly be a rapidly 
developing area of study in coming years. I hope they find my comments helpful and 
continue their work on this topic. 

Erik Garrison 

Reviewer #3 (Remarks to the Author): 

The authors have responsed to the comments from the review in a comprehensive manner. 
In response to one of the comments, 
they have updated the method for defining VNTR boundaries which has improved the 
accuracy of the genotyping and has 
also resulted in a substantial change in the results. 
Specifically, many of the highlighted loci and eVNTRs have changed. This suggest that the 
robustness 
of the method can be improved. For example, if the authors were to use a different set of 
LRS assemblies to build the pangenome graphs, it is feasible that the set of VNTRs that can 
be genotyped with high confidence will change a lot. 

Also, in response to comment #29 (from the response document), the authors state that "As 
the number of included genomes increases, the probability of the boundary in one genome 
not aligning with others also increases." This indicates that the process for selecting VNTR 



boundaries is not robust to outliers and 
can adversely affect the genotyping accuracy. Does this imply that VNTR pangenome 
graphs built using hundreds of LRS assemblies (that may be available in the future) will 
actually perform worse? This problem seems similar to what has been observed in the 
context 
of read alignment to graph genomes where adding more variants to the graph can actually 
be detrimental to the alignment accuracy (see 
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-018-1595-x). Overall, this 
is a comprehensive piece of work on addressing an under-studied source of variation in 
human genomes. However, the robustness of the method (i.e. the VNTR genotyping) is still 
of some concern to me. Hopefully, this can be addressed in future work. 

Minor comment: 

I also looked at the new VNTR eQTLs reported in the paper. For the ERAP2 locus, the 
authors state that "This VNTR is a unique sequence in GRCh38 that is a 101 bp tandem 
duplication in 17/38 of the haplotypes." Does this mean that the VNTR is simply a bi-allelic 
variant or are there more than two alleles of the VNTR? To demonstrate that the VNTR is 
driving the change in gene expression, it may be feasible to test if there is SNV at the same 
locus that is also associated with the gene expression and if the association is weaker than 
the VNTR. 

Reviewer #4 (Remarks to the Author): 

The authors have performed an extensive analysis to address comments from reviewers. 
VNTR, as one of the most divergent and under-studied categories of genomic variants, is 
very difficult to be called and to be benchmarked. The authors' additional analysis is solid. 
With the following minor issues addressed, the manuscript should be good to be published. 

1. The term "read sampling bias" is not clearly explained with LSB. Although the authors 
have changed "read sampling bias" in Figure 3a, I recommend the authors review this term 
across the full text and supplementary figures. Specify/replace it if needed. 

2. To address the reviewer comment 32, the authors added a figure showing that sampling 
bias is a reason for the genotyping variation in Figure 3(a). If this indicates data quality as 
the reason for this variation, the authors could state that. 

Additionally, there is a better 30x genome of NA24385 at ENA PRJEB35491. If the authors 
would like to solve the quality problem of NA24385 they can redo their benchmarking with 
this data. 

3. Figure 3(a) right plot indicates variation per-locus in the three methods as well. It could be 
helpful for the authors to add some text and/or cases to discuss a few poorly genotyped 
locus and show why they do not work well in one method or all methods. The authors have 
already shown some factors in Supplementary Figure 28 & 29 (TR length and GC). Overall, 
a brief discussion or case analysis for VNTRs that do not work well with RPGG will help 
people to understand how difficult the VNTR calling is and to understand your method better. 

4. Reviewer comment 18 asks for the purity cutoff in TRF to be discussed. e.g. if a repeat is 



>99% pure and is short enough, it can be genotyped by GangSTR, too. Better to quantify 
how many of your VNTRs are like this. 

Text comments: 
1. On page 2 line 4, "single-molecule sequencing" should be "long-read sequencing" to 
match the abbreviation "LRS". 

2. On page 4 line 12, "sequenced by either PacBio single long read (SLR))": I recommend 
replacing "SLR" with "contiguous long read" (CLR). This is the term that PacBio is officially 
using. 

3. On page 6 line 6, the authors mentioned that alignment with cycles is "recently solved by 
GraphAligner". Actually, the sequence-graph version of ExpansionHunter (2019) also aligns 
reads to a local cycled graph. It could be nice to include this as well. 



Reviewer   #1   (Remarks   to   the   Author):   

The   authors   present   a   fascinating   study   of   VNTR   variation,   which   they   access   using   a   relatively   novel   
analysis   approach.   Following   recent   work   in   pangenomic   methods,   they   utilize   repeat   de   Bruijn   
graphs   as   pangenome   models   (RPGGs)   to   describe   variation   in   VNTR   loci   in   samples   with   short   read   
sequencing.   To   align   read   data,   they   develop   a   custom   heuristic   alignment   method   based   on   the  
exact   matching   of   reads   to   walks   through   these   graphs.   Each   sample   is   represented   as   a   normalized   
coverage   across   the   feature   space   of   these   graphs,   where   features   are   kmers   or   nodes   in   the   RPGG.   
By   embedding   VNTR   variation   found   in   high-quality   assembled   genomes   within   their   reference   data   
structure,   the   authors   are   able   to   elucidate   the   nature   of   genomic   variation   in   these   dynamic   regions   
and   its   impact   on   genome   function.   

This   work   struck   me   as   a   very   sound   and   straightforward   take   on   an   aspect   of   genome   variation   that   
is   frequently   overlooked   due   to   the   complexity   of   analysis   of   it.   They   also   have   the   opportunity   to   build   
on   human   assemblies   based   on   long   reads   to   build   their   reference   structure,   which   is   a   critical   
requirement   for   such   work.  

I   have   a   few   concerns   with   the   approach   the   authors   took,   and   some   confusion   about   important   
specifics   of   their   method.   

  Comment   1:     

I   was   not   clear   if   the   RPGG   included   the   entire   reference.   If   so,   how   did   the   authors   handle   mapping   
to   non-VNTR   regions?   At   the   chosen   kmer   sizes,   the   graph   of   a   human   genome   would   be   extremely   
tangled.     

Response   1:     

The   manuscript   states   that   the   RPGG   is   constructed   on   separate   VNTR   sequences,   indicating   that   
the   whole   reference   is   not   used:   

The  RPGGs  are  constructed  as  disjoint  bi-directional  de  Bruijn  graphs  of  each  VNTR  locus  and                 
flanking   700   bases   from   the   haplotype-resolved   assemblies.     

To  make  the  description  more  clear,  in  the  context  of  evaluating  mapping  accuracy  including  reads                 
from   elsewhere   in   the   genome,   we   have   modified   the   statement:   

Using  danbing-tk,  99.997%  of  VNTR-simulated  reads  were  aligned  with  >90%  identity.  When              
reads  from  the  entire  genome  are  considered,  for  96.6%  of  the  loci  (71,080/73,582),  danbing-tk                
can   map   >90%   of   the   reads   back   to   their   original   VNTR   regions.   

to:   

Using  danbing-tk,  99.997%  of  VNTR-simulated  reads  were  aligned  with  >90%  identity.   The              
RPGG  is  only  built  on  VNTRs  and  their  flanking  sequences,  excluding  the  rest  of  the                 
genome.  When  reads  from  the  entire  genome  are  considered,  for  96.6%  of  the  loci                
(71,080/73,582),   danbing-tk   can   map   >90%   of   the   reads   back   to   their   original   VNTR   regions.   



  

Comment   1   (continued):    If   they   do   not   map   to   the   entire   human   reference,   then   mismapping   of   
reads   from   the   rest   of   the   genome   into   the   RPGGs   could   introduce   strange   artifacts.   I   apologize   if   this   
was   made   clear   in   the   text,   but   I   did   not   find   it   immediately   obvious.   

Response   1   (continued):   

In  our  submission,  we  had  quantified  the  extent  of  mismapping  reads  into  the  RPGG  from  the  rest  of                    
the   genome,   as   stated:     

Misaligned  reads  from  either  other  VNTR  loci  or  untracked  regions  target  relatively  few  loci;                
3.6%   (2,635/73,582)   loci   have   at   least   one   read   misaligned   from   outside   the   locus.   

We   have   updated   the   text   to   more   explicitly   characterize   how   this   quantifies   mapping   artifacts:   

Misaligned  reads  from  either  other  VNTR  loci   included  in  the  RPGG  or  the  remainder  of  the                  
genome  not  included  in  the  RPGG  target  relatively  few  loci;   3.6%  (2,635/73,582)  loci  have  at                 
least   one   read   misaligned   from   outside   the   locus.     

  

Comment   2:     

The   authors   note,   “There   was   little   effect   on   downstream   analysis   for   values   of   k   between   17   and   25,   
and   so   k   =21   was   used   for   all   applications.”   This   left   me   curious:   what   happens   at   higher   k?   My   
experience   with   building   DBGs   from   such   regions   suggests   that   the   kmers   that   are   used   are   
extremely   low,   and   likely   to   generate   very   tangled   structures   that   might   incorporate   pieces   of   
surrounding   sequence.   As   the   authors’   overall   result   is   likely   to   be   robust   to   this   (they   are   projecting   
their   samples   into   this   feature   space   and   comparing   them   uniformly   within   it)   this   may   be   unimportant.  
But   I   was   left   very   curious   what   happens   at   k=31,   k=47,   k=63   and   so   forth.   The   statement   suggests   
that   the   results   change,   but   how?   

Response   2:   

Because   the   de   Bruijn   graphs   are   constructed   only   on   VNTR   loci   and   their   surrounding   sequences   
(see   response   1),    k -mers   from   distal   regions   of   the   genome   will   not   be   “tangled”   between   separate   
locus-RPGGs.    Furthermore,   as   described   in   our   methods,   we   use   our   boundary-expansion   algorithm   
to   account   for   the   local   sequence   context   of   a   VNTR   where   the   boundaries   of   the   VNTR   and   
surrounding   sequence   are   not   well   defined   (e.g.   accounting   for   pieces   of   surrounding   sequence).   

Furthermore,   as   we   previously   responded   to   this   comment,   danbing-tk   uses   de   Bruijn   graphs   to   
represent   the   repeat   structure   rather   than   the   linear   sequence   of   a   VNTR   (or   shared   linear   
orthologous   sequences,   as   commonly   done   with   pangenome   graphs).   We   refer   to   the   additional  
details   from   our   previous   response   below:   

The   aim   of   danbing-tk   is   to   accurately   represent   the   repeat   structure   of   VNTR   sequences,   
while   enabling   accurate   mapping   of   sequences   into   each   VNTR   locus.   While   larger   values   of   k   



can   help   produce   less   “tangled”   graphs,   motifs   that   are   smaller   than   the   length   of   the   k-mer   will   
be   represented   multiple   times   in   the   de   Bruijn   graph.   Furthermore,   as   k   increases   the   
pangenome   graph   will   become   similar   to   a   variation   graph   without   merging   of   similar   
sequences.   This   is   exactly   the   problem   for   representing   pangenomes   that   danbing-tk   solves   
using   repeat   graphs   (e.g.   de   Bruijn   with   smaller   k).   Our   aim   is   to   enable   measuring   
sample-specific   motif   usage,   which   will   be   hampered   the   larger   the   value   of   k.   

We   have   modified   the   manuscript   to   clarify   how   the   RPGG   is   constructed   to   highlight   how   
incorporating   pieces   of   surrounding   sequence   is   not   a   factor.   Specifically,   we   have   modified   the   
statement:   

The   RPGGs   are   constructed   as   disjoint   bi-directional   de   Bruijn   graphs   of   each   VNTR   locus   and   
flanking   700   bases   from   the   haplotype-resolved   assemblies.     

to:   

The   RPGGs    are   a   collection   of   independently   constructed    bi-directional   de   Bruijn   graphs   of   
each   VNTR   locus   and   flanking   700   bases   from   the   haplotype-resolved   assemblies.     

We   also   have   added   the   statement:   

The  RPGG  differs  from  a  standard  bi-directional  de  Bruijn  graph  because  a   k -mer  may  be                 
repeated   in   multiple   subgraphs.     

  

Comment   3:     

I   found   an   error   in   the   authors’   assessment   of   existing   methods   to   align   reads   to   graphs.   They   state   
“While   several   methods   exist   to   find   alignments   that   do   not   reuse   cycles   (Garrison   et   al.   2018;   
Rakocevic   et   al.   2019)...”   However,   the   cited   article   (Garrison   2018)   specifically   demonstrates   
alignment   to   graphs   with   cycles   and   arbitrary   structural   variation   (For   clarity,   I   am   the   author.)   One   of   
the   key   experiments   demonstrates   that   long   PacBio   reads   map   better   to   a   whole   genome   alignment   
graph   of   seven   S.   cerevisiae   strains   that   contains   very   complex   structural   variation   than   they   do   to   a   
linear   assembly   from   the   standard   reference   strain.   That   is   not   to   say   that   the   method   is   optimal,   as   it   
is   around   an   order   of   magnitude   slower   than   GraphAligner,   as   shown   in   (Rautiainen,   Mäkinen,   and   
Marschall   2019).   I   suggest   the   authors   rephrase   this   to   indicate   the   shortfall   while   remaining   precise   
about   their   citation,   something   like   “While   methods   exist   to   find   alignments   that   do   not   reuse   cycles   
(Rakocevic   et   al.   2019),   others   allow   alignment   to   cyclic   graphs,   but   with   high   computational   costs   
when   the   graphs   are   of   the   type   we   build   (Garrison   2018).”   

Response   3:   

We  have  updated  our  manuscript  with  text  similar  to  what  was  recommended,  and  also  reference                 
ExpansionHunter:   



While  methods  exist  to  find  alignments  that  do  not  reuse  cycles  (Rakocevic  et  al.  2019),  others                  
allow  alignment  to  cyclic  graphs  but  with  high  computational  costs  when  applied  to  RPGG                
(Garrison   et   al.   2018)   or   are   limited   to   alignment   in   STR   regions   (Dolzhenko   et   al.   2019).   

We  defend  our  initial  statement  as  a  difference  in  semantics  for  cycle-reuse  in  graph  alignments,                 
based  on  the  text  from  the  methods  section  from  the  vg  manuscript  (reproduced  below).  This  text                  
along  with  the  supplemental  figures  demonstrate  a  transformation  of  a  cyclical  topology  to  a                
directed-acyclic  graph  in  which  paths  from  the  original  graph  are  limited  by  expansion  parameter  in                 
the   software:   

To  avoid  the  complications  introduced  by  cycles  and  inversions,  we  transform  the  local  graph                
region  into  a  directed  acyclic  graph  (DAG)  while  maintaining  an  embedding  in  the  original,                
potentially  cyclic  bidirected  graph  (Supplementary  Figs.  3  and  4)  (Garrison,  E.,   et  al .,  2018,                
Nature   Biotechnology)   

  

Comment   4:   

I   did   not   find   the   comparison   with   GraphAligner   or   other   methods   to   be   very   convincing.   Perhaps   it   
should   simply   be   removed.   It   does   not   add   anything   and   gives   the   impression   that   the   authors   weren’t   
very   careful.   One   key   issue   is   that   the   authors   do   not   verify   if   GraphAligner   or   their   method   align   the   
simulated   reads   to   the   correct   location   in   the   graph   they   were   simulated   from.   They   simply   note   that   
GraphAligner   yielded   alignments   at   lower   than   expected   identity.   Could   these   have   been   mapped   
correctly,   while   those   from   danbing-tk   were   mapped   erroneously,   with   a   high   reported   identity?   The   
authors   cannot   exclude   this.     

Response   4:   

We   reanalyzed   the   alignment   results   from   danbing-tk   and   GraphAligner   in   a   whole-genome   error-free   
simulation   and   classified   the   alignments   as   follows   (Supplementary   Table   1).   Since   GraphAligner   
does   not   consider   paired-end   information,   read   pairs   can   fail   to   map   with   high   identity   (10.5%),   
split-align   to   different   loci   (3.2%)   or   have   a   missing   mate   (3.3%).   This   drops   the   percentage   of   read   
pairs   mapped   to   95.9%   in   GraphAligner   versus   99.96%   in   danbing-tk,   and   the   percentage   of   correctly   
mapped   read   pairs   to   81.9%   in   GraphAligner   versus   99.62%   in   danbing-tk.   

Supplementary   Table   1.    Comparison   of   alignment   statistics   between   danbing-tk   and   GraphAligner.   

  danbing-tk   GraphAligner   

Read   pairs   mapped   258516   (99.96%)   247930   (95.9%)   

Read   pairs   correctly   mapped   257638   (99.62%)   211919   (81.9%)   

Read   pairs   mismapped   878   (0.34%)   532   (0.21%)   

Read   pairs   with   low   identity   in   0   (0%)   27259   (10.5%)   



  

We   believe   that   this   analysis   is   convincing   to   show   the   performance   gap   between   danbing-tk   and  
GraphAligner.   

  

Comment   5:   

Also,   are   the   settings   applied   to   GraphAligner   those   recommended   by   the   author   for   the   kinds   of   
graphs   that   they   build?   This   should   be   indicated.   

Response   5:   

We   have   communicated   with   the   authors   of   GraphAligner.   They   suggested   trying   various   seeding   
parameters   including   --seeds-mem-count,   --seeds-mxm-length,   --try-all-seeds   and   --bandwidth.   
Based   on   our   experience,   these   parameters   can   moderately   improve   the   alignment   quality   but   the   
most   important   factor   is   --seeds-minimizer-length,   which   was   set   to   21   due   to   the    k -mer   size   of   the   
input   de   Bruijn   graph.   

  

Comment   6:   

In   reflection,   I   worry   that   the   authors   may   overstate   the   technical   advantage   of   their   approach.   Was   it   
even   necessary   to   use   a   DBG,   or   could   they   have   just   projected   their   read   sequences   into   a   set   of   
kmer   counts?   Do   the   authors   feel   they   have   explained   the   advantage   of   their   model   over   something   
simpler   like   this?   This   aspect   can   simply   be   minimized.     

Response   6 :   

It   is   highly   necessary   to   use   a   DBG.   Projecting   read   sequences   into   a    k -mer   set   is   implemented   in   the   
first   step   of   our   mapping   algorithm.   To   be   suitably   sensitive,   it   is   necessary   to   not   require   all    k -mers   
from   a   read   to   align   (e.g.   accounting   for   genetic   divergence   and   sequencing   error).    One   could   rank   
loci   by   the   number   of    k -mers   shared   with   a   read,   and   select   the   top-ranked   locus   for   the   alignment.   
However,   even   when   selecting   for   the   top-ranked   locus   using    k -mers,   too   many   reads   incorrectly   map   
and   produce   abundant   false   positives.   On   the   other   hand,   it   is   also   not   practical   to   set   a   high   
threshold   for   the   first   step   just   to   avoid   false   positives   since   sequencing   errors   and   sequence   
divergence   are   common   in   VNTR   regions.   We   therefore   added   the   threading   step   to   reduce   both   
false   positive   rate   (FPR)   and   false   negative   rate   (FNR=1−TPR)   by   leveraging   the   graph   information   to   
correct   errors   or   detect   divergence   (Supplementary   Fig.   38,   left   panel).   On   1000   Genomes   and   GTEx   

at   least   one   end   

Read   pairs   split   0   (0%)   8220   (3.2%)   

Singletons   0   (0%)   8629   (3.3%)   

Loci   with   correct   read   pairs   28468   (98.5%)   28405   (98.3%)   



datasets,   ~40%   of   reads   entered   the   first   step   are   removed   in   the   threading   step   (e.g.   they   likely   
came   from   other   regions   of   the   genome   and   spuriously   map   to   VNTR   sequences   based   on   shared   
k -mer   counts).   

Below,   we   demonstrate   the   TPR/FPR   of   alignment   when   considering   shared    k -mers   only   (w/o   
threading),   and   with   threading.   This   has   been   added   to   the   supplementary   material.     

  

Supplementary   Figure   38   (left   panel).    Comparing   the   alignment   accuracy   with   and   without   
threading.   Paired-end   150   bp   reads   were   simulated   with   or   without   SNVs   and   mapped   to   unpruned   
RPGG.   A   read   is   considered   correctly   mapped   if   its   VNTR    k -mers   are   assigned   to   the   correct   VNTR   
locus.   Each   curve   is   parameterized   by   percent   identity   threshold   (linspace   distributed   between   35%   
and   90%).   For   runs   with   threading   enabled,    cth    was   set   to   30,   and   four   nucleotide   corrections   were   
allowed.   TPR,   true   positive   rate;   FPR,   false   positive   rate.   

  

Comment   7:   

The   authors   have   been   pragmatic,   and   built   a   focused   solution   for   their   application,   which   is   the   
exploration   of   VNTRs   in   the   human   population.   It   is   not   necessary   for   them   to   exhaustively   compare   



with   other   tools,   and   an   incomplete   comparison   is   perhaps   more   confusing   to   readers   than   nothing   at   
all,   and   the   space   could   be   better   spent   on   a   more   thorough   evaluation   of   the   accuracy   of   their   own   
method   (e.g.   a   ROC   curve   of   the   alignment   accuracy   versus   mapping   quality).   

Response   7:   

The   figure   below   emphasizes   our   previous   evaluation   with   threading   enabled   (Supplementary   Fig.   38,   
right   panel).   When   there   is   no   sequencing   error   or   divergence,   >99%   of   VNTR   reads   can   be   mapped   
at   90%   identity,   while   >96%   can   be   mapped   at   85%   identity   when   there   is   a   single   SNV   in   each   read,   
i.e.   two   for   a   read   pair.   

 
Supplementary   Figure   38   (right   panel).    Evaluation   of   simulated   read   alignments.   Paired-end   150   
bp   reads   were   simulated   with   or   without   SNVs   and   mapped   to   unpruned   RPGG   with   threading   
enabled.   A   read   is   considered   correctly   mapped   if   its   VNTR    k -mers   are   assigned   to   the   correct   VNTR   
locus.   Each   curve   is   parameterized   by   percent   identity   threshold   (linspace   distributed   between   35%   
and   90%).   The    -cth    option   was   set   to   30   while   allowing   for   four   nucleotide   corrections.   TPR,   true   
positive   rate;   FPR,   false   positive   rate.   

  



Comment   8:   

Overall,   the   authors   have   made   a   significant   contribution   to   what   will   certainly   be   a   rapidly   developing   
area   of   study   in   coming   years.   I   hope   they   find   my   comments   helpful   and   continue   their   work   on   this   
topic.   

Response   8:   

We   thank   the   reviewer   for   his   comments.   The   suggestions   did   help   us   improve   our   manuscript   and   
deliver   a   clearer   message   to   the   readers.   

  

Erik   Garrison   

  

Reviewer   #3   (Remarks   to   the   Author):   

The   authors   have   responded   to   the   comments   from   the   review   in   a   comprehensive   manner.   In   
response   to   one   of   the   comments,   they   have   updated   the   method   for   defining   VNTR   boundaries   
which   has   improved   the   accuracy   of   the   genotyping   and   has   also   resulted   in   a   substantial   change   in   
the   results.   

Comment   9:   

Specifically,   many   of   the   highlighted   loci   and   eVNTRs   have   changed.   This   suggest   that   the   
robustness   of   the   method   can   be   improved.     

Response   9:   

We   acknowledge   that   the   change   in   highlighted   loci   would   cause   concern   for   the   robustness   of   the   
method,   however   while   the   accuracy   of   the   method   was   improved   for   the   first   revision,   the   majority   of   
changes   were   due   to   reporting   on   a   different   set   of   loci   between   revisions.   In   each   revision,   the   loci   
that   are   included   in   the   RPGG   are   based   on   an   alignment   quality   assessment   using   matched   short   
and   long-read   genomes.   Our   method   development   in   the   first   revision   resulted   in   a   non-uniform   
improvement   in   alignment   quality,   enabling   new   loci   to   be   included   in   the   RPGG   compared   to   the   
initial   submission.   To   limit   computational   burden,   we   chose   to   analyze   a   similar   number   of   loci   as   the   
initial   submission,   which   resulted   in   a   different   set   of   loci.   To   demonstrate   robustness   of   the   method,   
we   used   improvements   in   alignment   efficiency   to   analyze   the   complete   set   of   73,582   VNTR   loci   that   
may   be   defined   from   the   long   read   sequence   assemblies.   This   allows   us   to   evaluate   the   changes   for   
90.1%   (26,182/29,052)   of   the   loci   from   the   first   submission.     We   include   the   Vst   and   eQTL   analysis   of   
the   expanded   dataset   in   our   supplementary   material,   but   keep   the   loci   reported   on   in   the   main   
manuscript   the   same   as   in   the   initial   revision   in   order   to   focus   on   those   with   very   high   alignment   
quality.   This   analysis   is   presented   below,   and   includes:   



1. Reproduction   of   population   stratification   using   a   separate   set   of   genomes   sequenced   by   the   
1000-Genomes   project.   

2. Shown   correlation   of   population   stratification   between   revisions   of   our   method.   
3. Demonstrated   stability   of   pangenome-graph   construction   with   respect   to   inclusion   of   additional   

genomes.   
4. Shown   a   tight   agreement   between   measured   effect   sizes   for   eQTL   VNTRs   between   revisions.   

  

The   quality   of   assemblies   and   proper   annotations   of   VNTR   boundaries   are   both   crucial   to   the   
genotyping   accuracy   using   RPGG.   We   identified   VNTR   annotation   as   the   limiting   step   for   
performance;   subsequent   optimization   improved   the   alignment   quality   for   98%   (72,138/73,582)   of   the   
loci.   The   loci   chosen   in   our   first   revision   (Fig.   R1,   data   points   above   the   red   dashed   line   at   
aln- r 2 =0.96)   while   those   in   the   initial   submission   are   those   to   the   right   of   the   vertical   green   line.   We   
note   that   the   majority   of   loci   not   included   in   the   newer   version   are   because   of   an   increased   minimal   
alignment   quality   (aln- r 2 )   (Fig.   R1).     

  



Fig.   R1.    Comparison   of   aln- r 2    between   versions.   Loci   annotated   in   the   initial   manuscript   (n=84,411)   
were   intersected   with   the   loci   annotated   in   our   first   revision   (n=73,582),   leaving   a   total   of   74,125   and   
73,582   loci   in   each   version.   The   green   and   red   dashed   lines   indicate   the   filtering   threshold   in   our   
initial   submission   (0.8)   and   the   first   revision   (0.96),   respectively.   

  

To   fully   address   the   concern   of   robustness,   we   replicated   our   findings   in   highly   stratified   loci   and   
eVNTR   discoveries.     

While   the   Vst   statistic   was   highly   correlated   between   versions   ( r 2 =0.759),   the   highlighted   loci   in   our   
initial   submission   were   among   the   outliers   that   had   reduced   Vst   in   the   new   version   ( FREM1 ),   or   were   
among   the   9.9%   not   included   in   RPGG.   However,   to   demonstrate   replication   of   Vst   using   the   same   
input   RPGG   but   different   genomes,   we   computed   Vst   statistics   on   the   698   child   genomes   related   to   
the   2,504   genomes   (parental)   from   the   1000   Genomes   Project   (1KGP),   and   compared   the   statistics   
with   those   computed   from   the   2,504   genomes.   We   observed   a   high   correlation   ( r 2 =0.828)   between   
the   two   datasets   (Fig.   R2,   left),   indicating   the   robustness   of   our   method.   We   observe   that   89.2%   
(700/785)   of   the   loci   highlighted   previously   passed   the   3× std    threshold   (Vst>0.107)   in   the   replication   
set   (Fig.   R2,   right).   

  

Fig.   R2 .   Comparison   of   Vst   between   versions   and   across   datasets.   Left   panel:   the   Vst   from   our   initial   
submission   versus   the   first   revision.   Right   panel:   replication   of   Vst   on   the   698   genomes   related   to   the   
1KGP   samples.   The   2,504   1KGP   samples   were   retrieved   from   ENA   project   PRJEB31736.   The   698   
genomes   were   retrieved   from   ENA   project   PRJEB36890.   Vst   was   computed   over   the   32,138   VNTR   
loci   using   the   total    k -mer   dosage   as   proxy   for   length.   

  



Finally,   for   the   eVNTR   discoveries,   we   included   additional   2,870   loci   that   were   genotyped   in   our   initial   
manuscript   (n=29,052)   but   not   in   the   first   revision   (n=32,138).   The   correlation   between   versions   is   
0.999   (Fig   R3),   with   the   two   previously   highlighted   eVNTRs    RNASET2    and    CBY1    remaining   
significant   (p=1.9⨉10 -56    and   5.5⨉10 -11 ,   respectively).   We   have   included   a   table   of   the   eVNTRs   in   the   
expanded   set   of   loci   in   the   supplementary   material.   

  

Fig   R3 .   Correlation   of   effect   size   between   versions.   The   previous   version   includes   29,052   VNTRs.   
The   current   version   contains   35,008   VNTRs   obtained   by   augmenting   the   32,138   VNTRs   with   
additional   2,870   loci   that   were   present   in   the   previous   version   but   were   removed   in   the   first   revision   
due   to   stringent   QC   threshold.   

  

Comment   10:   

For   example,   if   the   authors   were   to   use   a   different   set   of   LRS   assemblies   to   build   the   pangenome   
graphs,   it   is   feasible   that   the   set   of   VNTRs   that   can   be   genotyped   with   high   confidence   will   change   a   
lot.   

The   annotation   of   boundaries   of   VNTR   sequences   have   the   greatest   effect   on   ability   to   genotype   
using   the   RPGG.   To   test   if   VNRT   boundaries   change   considerably   when   using   a   different   set   of   
assemblies,   we   incrementally   included   genomes   to   the   RPGG   according   to   their   respective   genome   
graph   size   (smallest   first,   beginning   with   10   genomes).   The   boundaries   of   VNTR   loci   are   stable   as   
genomes   are   added   (Supplementary   Fig.   40,   left),   with   0.13%   (97/73,582)   of   loci   changed   on   average   
(cutoff=50   bp,   Supplementary   Fig.   40,   right   panel).   Thus,   the   VNTR   loci   used   to   generate   the   RPGG,   
and   the   feasible   set   of   genotypable   VNTRs   are   highly   stable   with   the   inclusion   of   additional   genomes.   



  

Supplementary   Figure   40.   Incremental   RPGG   construction   and   change   in   boundary   
annotations .   Left   panel:   Distribution   of   boundary   change   relative   to   the   previous   iteration   of   RPGG   
construction.   Right   panel:   Number   of   loci   with   expansion   size   passing   each   threshold   (legend)   in   each   
iteration.   Δboundary   is   computed   by   summing   the   change   in   boundaries   relative   to   the   previous   
iteration   and   dividing   the   value   by   the   number   of   supporting   haplotypes.   Boundary   expansion   was   
applied   to   the   initial   set   of   84,411   loci   annotated   using   TRF.   

  

Comment   11:   

Also,   in   response   to   comment   #29   (from   the   response   document),   the   authors   state   that   "As   the   
number   of   included   genomes   increases,   the   probability   of   the   boundary   in   one   genome   not   aligning   
with   others   also   increases."   This   indicates   that   the   process   for   selecting   VNTR   boundaries   is   not   
robust   to   outliers   and   can   adversely   affect   the   genotyping   accuracy.   Does   this   imply   that   VNTR   
pangenome   graphs   built   using   hundreds   of   LRS   assemblies   (that   may   be   available   in   the   future)   will   
actually   perform   worse?     

Response   11:   

The   following   description   "As   the   number   of   included   genomes   increases,   the   probability   of   the   
boundary   in   one   genome   not   aligning   with   others   also   increases"   was   used   in   the   context   of   our   older   
boundary   alignment   approach   where   VNTR   boundaries   were   annotated   for   each   genome.   To   mitigate   
the   effect   of   outliers   on   boundary   annotations,   we   therefore   updated   the   boundary   expansion   
algorithm   to   detect   and   correct   misaligned   boundaries   based   on   the   evidence   from   multiple   
haplotypes.   We   expect   the   method   to   be   scalable   and   produce   RPGGs   with   comparable   performance   
or   better   if   future   LRS   assemblies   have   less   errors   and   sample   more   population   diversity.   

  



Comment   12:   

This   problem   seems   similar   to   what   has   been   observed   in   the   context   of   read   alignment   to   graph   
genomes   where   adding   more   variants   to   the   graph   can   actually   be   detrimental   to   the   alignment   
accuracy   (see   https://genomebiology.biomedcentral.com/articles/10.1186/s13059-018-1595-x).     

Response   12:   

We   acknowledge   that   simply   adding   all   variants   to   a   graph   can   be   detrimental,   however,   the   FORGe   
method   is   mostly   focusing   on   SNVs,   short   indels   and   leaves   out   structural   variants   in   repeat   regions   
that   usually   have   a   higher   divergence   rate.   We   believe   that   with   careful   quality   control   on   assembly   
generation,   variant   annotation   and   graph   construction,   including   more   genomes   is   likely   to   be   
beneficial   for   genotyping   in   complex   regions,   as   shown   in   our   work   and   some   others    (Li   et   al.   2020;   
Sirén   et   al.   2020) .   

  

Comment   13:   

Overall,   this   is   a   comprehensive   piece   of   work   on   addressing   an   under-studied   source   of   variation   in   
human   genomes.   However,   the   robustness   of   the   method   (i.e.   the   VNTR   genotyping)   is   still   of   some   
concern   to   me.   Hopefully,   this   can   be   addressed   in   future   work.   

Response   13:   

We   thank   the   reviewer   for   recognizing   the   challenges   in   studying   these   complex   regions,   and   we   
hope   that   our   additional   analyses   show   sufficient   robustness   to   our   methods.   

  

Minor   comment:   

Comment   14:   

I   also   looked   at   the   new   VNTR   eQTLs   reported   in   the   paper.   For   the   ERAP2   locus,   the   authors   state   
that   "This   VNTR   is   a   unique   sequence   in   GRCh38   that   is   a   101   bp   tandem   duplication   in   17/38   of   the   
haplotypes."   Does   this   mean   that   the   VNTR   is   simply   a   bi-allelic   variant   or   are   there   more   than   two   
alleles   of   the   VNTR?   To   demonstrate   that   the   VNTR   is   driving   the   change   in   gene   expression,   it   may   
be   feasible   to   test   if   there   is   SNV   at   the   same   locus   that   is   also   associated   with   the   gene   expression   
and   if   the   association   is   weaker   than   the   VNTR.   

Response   14:   

We   examined   the   association   of   chr5:96896863-96896963   VNTR   with    ERAP2    expression   within   the   
context   of   eSNP   (Supplementary   Fig.   22).   The   results   indicate   that   the   effect   of   VNTR   is   not   
independent   of   the   lead   eSNP   at   chr5:96916885   (pooled   effect   size=−0.010,   P=0.78).   The   linkage   
disequilibrium   (LD)   structure   indicates   that   the   genotype   of   the   VNTR   is   strongly   linked   to   numerous   
nearby   eSNPs   (Supplementary   Fig.   23).   Nonetheless,   we   think   it   is   worth   highlighting   this   locus   in   the   

https://paperpile.com/c/FOGmr7/gzOE+E77c
https://paperpile.com/c/FOGmr7/gzOE+E77c


main   figure   given   that   the   VNTR   sequence   is   immediately   adjacent   to   the   exon   9   of    ERAP2 ,   overlaps   
several   regulatory   features,   and   is   not   documented   in   the   GTEx    cis -eQTL   catalogue   as   a   indel   
variant.   

We   have   also   added   the   following   text   to   the   manuscript:   

Although   the   effect   is   not   independent   of   the   lead   eSNP   (Supplementary   Fig.   22-23),   the   
variant   is   missing   from   the   GTEx    cis -eQTL   catalogue   and   colocalizes   with   a   regulatory   hotspot   
with   peaks   of   histone   markers,   DNase   and   40   different   ChIP   signals.   

  

Supplementary   Figure   22.    Conditional   association   of   chr5:96896863-96896963   VNTR   with    ERAP2   
expression   over   chr5_96916885_T_C_b38.   Marginal   association   between   VNTR   and   expression   was   
performed   by   subsetting   on   samples   with   the   indicated   genotype   (subtitle)   at   the   SNP   site.   The   effect   
size   ( b )   and   P-value   ( P )   for   each   association   test   was   shown   in   each   subpanel.   The   red   dashed   line   
indicates   the   regression   line.   HOM_REF,   homozygous   reference;   HET,   heterozygous;   HOM_HET,   
homozygous   alternative.   

  



Supplementary   Figure   23 .   Linkage   disequilibrium   (LD)   between   chr5:96896863-96896963   VNTR   
and   nearby   SNPs.   The   LD   between   the   VNTR   and   each   nearby   SNP   was   computed   as   the    r 2   
between   genotype   values.   The   y-axis   indicates   the   association   P-value   with    ERAP2    expression   level.   
The   location   of   VNTR   (blue   asterisk)   and   ERAP2   gene   (blue   line)   are   highlighted.   

  

Reviewer   #4   (Remarks   to   the   Author):   

  

The   authors   have   performed   an   extensive   analysis   to   address   comments   from   reviewers.   VNTR,   as   
one   of   the   most   divergent   and   under-studied   categories   of   genomic   variants,   is   very   difficult   to   be   
called   and   to   be   benchmarked.   The   authors'   additional   analysis   is   solid.   With   the   following   minor   
issues   addressed,   the   manuscript   should   be   good   to   be   published.   

  

Comment   15:   

1.   The   term   "read   sampling   bias"   is   not   clearly   explained   with   LSB.   Although   the   authors   have   
changed   "read   sampling   bias"   in   Figure   3a,   I   recommend   the   authors   review   this   term   across   the   full   
text   and   supplementary   figures.   Specify/replace   it   if   needed.   

Response   15:   

We  thank  the  reviewer  for  pointing  out  this  confusion.  We  have  added  the  following  sentence  to  the                   
text:   

LSB  measures  the  deviation  of  an  observed  read  depth  from  the  expected  value  within  an                 
interval   (see   Methods   for   formal   definition).   

We   also   replaced   all   “read   sampling   bias”   with   “LSB”   for   consistency.   

  

Comment   16:   

2.   To   address   the   reviewer   comment   32,   the   authors   added   a   figure   showing   that   sampling   bias   is   a   
reason   for   the   genotyping   variation   in   Figure   3(a).   If   this   indicates   data   quality   as   the   reason   for   this   
variation,   the   authors   could   state   that.   

Response   16:   

Please   refer   to   Response   18   for   detailed   analyses.   

  



Comment   17:   

Additionally,   there   is   a   better   30x   genome   of   NA24385   at   ENA   PRJEB35491.   If   the   authors   would   like   
to   solve   the   quality   problem   of   NA24385   they   can   redo   their   benchmarking   with   this   data.   

Response   17:   

We   thank   the   reviewer   for   the   suggestion.   The   sequence   data   at   ENA   PRJEB35491   did   improve   the   
accuracy   for   NA24385   (from   0.62   to   0.75),   and   mildly   increased   the   overall   per-locus   accuracy   using   
RPGG   and   the   per-genome   accuracy   using   a   read   depth   approach.   

We   have   changed   the   following   text   from:   

However,  estimation  of  VNTR  length  from  read  depth  has  an  accuracy  of  0.72  (Figure  3a  left).                  
We  also  compared  the  performance  for  length  prediction  using  the  RPGG  versus              
repeat-GRCh38,  and  observed  a  58%  improvement  in  accuracy  (0.82  versus  0.52,  Figure  3a               
left,  Supplementary  Fig.  11).  The  overall  error  rate,  measured  with  mean  absolute  percentage               
error  (MAPE),  of  all  loci  (n=32,138)  are  also  significantly  lower  when  using  RPGGs               
(MAPE=0.19,  Figure  3a  right)  compared  with  the  repeat-GRCh38  (0.23,  paired   t -test  P  =               
1.7⨉10 -31 )  or  reference-aligned  read  depth  (0.21,  paired   t -test  P  =  2.9⨉10 -31 ).  Furthermore,  a               
61%  reduction  in  error  size  is  observed  for  the  6,238  loci  poorly  genotyped  (MAPE  >  0.4)  using                   
repeat-GRCh38   (Figure   3b,   MAPE=0.233   versus   0.603).   

to:   

However,  estimation  of  VNTR  length  from  read  depth  has  an  accuracy  of   0.75  (Figure  3a  left).                  
We  also  compared  the  performance  for  length  prediction  using  the  RPGG  versus              
repeat-GRCh38,  and  observed  a  58%  improvement  in  accuracy  (0.82  versus  0.52,  Figure  3a               
left,  Supplementary  Fig.  11).  The  overall  error  rate,  measured  with  mean  absolute  percentage               
error  (MAPE),  of  all  loci  (n=32,138)  are  also  significantly  lower  when  using  RPGGs               
(MAPE= 0.18 ,  Figure  3a  right)  compared  with  the  repeat-GRCh38  (0.23,  paired   t -test  P  =               
4.2⨉10 -32 )  or  reference-aligned  read  depth  ( 0.20 ,  paired   t -test  P  =   2.4⨉10 -33 ).  Furthermore,  a               
62 %  reduction  in  error  size  is  observed  for  the   6,383   loci  poorly  genotyped  (MAPE  >  0.4)  using                   
repeat-GRCh38   (Figure   3b,   MAPE= 0.235    versus    0.610 ).   

We   also   updated   Figure   3   from:   



  
to:     

  

  

Comment   18:   

3.   Figure   3(a)   right   plot   indicates   variation   per-locus   in   the   three   methods   as   well.   It   could   be   helpful   
for   the   authors   to   add   some   text   and/or   cases   to   discuss   a   few   poorly   genotyped   locus   and   show   why   
they   do   not   work   well   in   one   method   or   all   methods.   The   authors   have   already   shown   some   factors   in   
Supplementary   Figure   28   &   29   (TR   length   and   GC).   Overall,   a   brief   discussion   or   case   analysis   for   
VNTRs   that   do   not   work   well   with   RPGG   will   help   people   to   understand   how   difficult   the   VNTR   calling   
is   and   to   understand   your   method   better.   

Response   18:   



We   examined   a   number   of   different   factors   that   could   result   in   low   prediction   accuracy,   including   GC   
composition,   haplotypes   missing   from   assemblies,   motifs   unique   to   samples   (novel    k- mers),   and   
finally   LSB   estimation   error.   With   the   exception   of   LSB   estimation   error,   other   characteristics   were   not   
well   correlated   with   low   accuracy   of   length   estimation,   which   may   be   attributed   to   differences   in   
characteristics   of   datasets   between   samples.     

We   have   added   the   following   description   to   the   text:   

Loci   with   low   accuracy   in   length   estimates   from   RPGG   can   be   mostly   explained   by   the   
estimation   error   in   LSB   due   to   varying   data   quality   (r2=0.89,   Supplementary   Fig.   12;   example   
given   in   Supplementary   Fig.   13),   and   to   a   slight   degree   by   the   presence   of   a   missing   haplotype   
(Supplementary   Fig.   14),   the   fraction   of   k-mers   in   a   locus   novel   to   the   rest   of   the   samples   
(Supplementary   Fig.   15),   GC   bias   (Supplementary   Fig.   16),   and   the   difference   in   the   VNTR   GC   
content   across   samples   (Supplementary   Fig.   17)   

  

Supplementary   Figure   12 .   Correlation   between   the   estimation   error   in   VNTR   length   and   in   LSB.   
Estimation   error   in   length   was   computed   using   absolute   percentage   error,   i.e.   |1− gt/est |,   where    gt    is   
the   length   in   assembly   and    est    is   the   length   estimated   from   leave-one-out   analysis.   Similarly,   
estimation   error   in   LSB   was   computed   as   |1− gt/est |,   where    gt    is   the   ground   truth   of   the   LSB   for   the   
VNTR   locus   (Methods)   and    est    is   the   estimated   LSB   from   the   nearest   neighbor   (Methods).   Data   
points   were   accumulated   from   32,138   VNTR   loci   across   16   genomes.   



  

Supplementary   Figure   14 .   Distribution   of   length   estimation   error   for   loci   with   or   without   a   missing   
haplotype.   Density   curves   were   accumulated   from   32,138   VNTR   loci   across   16   genomes   and   each   
normalized   with   area   1.  

  

  

Supplementary   Figure   15 .   Correlation   between   length   estimation   error   and   fraction   of   novel    k -mers.   
Fraction   of   novel    k -mers   for   each   locus   in   each   genome   was   computed   as   the   percentage   of    k -mers   
missing   from   the   leave-one-out   locus-RPGG.   Data   points   were   accumulated   from   32,138   VNTR   loci   
across   16   genomes.   

  



  

Supplementary   Figure   17 .   Effect   of   GC   content   change   on   bias   and   length   estimation.   Left   panel:   
the   correlation   between   GC   content   and   LSB   in   VNTR   regions.   Middle   &   right   panels:   correlation   
between   GC   content   change   and   length   estimation   error.   GC   content   change   (delta   GC%)   was   
computed   from   the   VNTR   sequence   of   a   locus   and   the   sequence   of   its   nearest   neighbor   (same   locus   
in   another   genome)   in   leave-one-out   analysis.   The   analysis   was   restricted   to   HGSVC   samples   
(HG00514,   HG00733   and   NA19240   trios).   

Finally,   we   have   updated   the   discussion   to   state:   

Datasets   combined   from   disparate   sequencing   runs   with   batch   effects   will   affect   dosage   
estimates.   

  

Comment   19:   

4.   Reviewer   comment   18   asks   for   the   purity   cutoff   in   TRF   to   be   discussed.   e.g.   if   a   repeat   is   >99%   
pure   and   is   short   enough,   it   can   be   genotyped   by   GangSTR,   too.   Better   to   quantify   how   many   of   your   
VNTRs   are   like   this.   

Response   19:   

We   have   added   the   following   description   to   manuscript:   

This   filtering   criterion   corresponds   to   an   empirical   cutoff   of   56%   purity   and   can   retain   VNTRs  
(n=2,715,   Supplementary   Fig.   1)   that   have   nested   STR   annotations   (Supplementary   Fig.   2).   



  

Supplementary   Figure   2 .   An   example   of   multiple   STR   annotations   within   a   VNTR.   Dot   plot   was   
generated   using   exact   matching   between   9-mers   along   chr1:861277-862683.   Annotations   of   four   
STRs   (red   box;   chr1:861863-861874,   chr1:862001-862016,   chr1:862077-862088   and   
chr1:862133-862144)   and   one   VNTR   (blue   box;   chr1:861777-862183;   before   boundary   expansion)   
are   highlighted.  

  

In   supplementary   figure   1   (also   shown   below   for   illustration),   we   compared   the   tandem   repeats   in   the   
GangSTR   catalogue   and   our   VNTR   set.   The   result   (Supplementary   Fig.   1,   bottom   right)   indicates   that   
only   8.4%   (n=2715)   of   the   VNTRs   in   our   dataset   overlap   with   the   GangSTR   catalogue.   

  



  
Supplementary   Figure   1 .   Comparison   between   the   TR   database   in   GangSTR   and   this   work.    a,    Size   
distribution   of   the   TRs   annotated   in   each   study.   TRs   with   size   greater   than   150   bp   in   at   least   one   
assembly   and   with   size   greater   than   50   bp   in   hg38   are   annotated   in   this   study.   TR   sizes   above   1000   
bp,   above   50   bp   and   below   50   bp   are   not   shown   for   this   study   (left),   GangSTR   (middle)   and   
comparison   (right),   respectively.    b,    Percentage   of   overlapping   TRs   between   databases.   The   number   
of   overlapping   loci   changes   across   databases   since   multiple   loci   in   GangSTR’s   database   could   
correspond   to   only   one   locus   in   our   database.   

  

Text   comments:   

Comment   20:   

1.   On   page   2   line   4,   "single-molecule   sequencing"   should   be   "long-read   sequencing"   to   match   the   
abbreviation   "LRS".   

Response   20:   

We   have   fixed   the   error   accordingly.   

  

Comment   21:   

2.   On   page   4   line   12,   "sequenced   by   either   PacBio   single   long   read   (SLR))":   I   recommend   replacing   
"SLR"   with   "contiguous   long   read"   (CLR).   This   is   the   term   that   PacBio   is   officially   using.   

Response   21:   

We   have   corrected   the   term   accordingly.   

  



Comment   22:   

3.   On   page   6   line   6,   the   authors   mentioned   that   alignment   with   cycles   is   "recently   solved   by   
GraphAligner".   Actually,   the   sequence-graph   version   of   ExpansionHunter   (2019)   also   aligns   reads   to   
a   local   cycled   graph.   It   could   be   nice   to   include   this   as   well.     

Response   22:   

We   thank   the   reviewer   for   pointing   this   out.   We   have   update   the   text   from:   

While  methods  exist  to  find  alignments  that  do  not  reuse  cycles  (Rakocevic  et  al.  2019),                 
alignment  with  cycles  is  a  more  challenging  problem  recently  solved  by  GraphAligner              
(Rautiainen,  Mäkinen,  and  Marschall  2019)  to  map  long  reads  to  pangenome  graphs  and  by                
ExpansionHunter   (Dolzhenko   et   al.   2019)   to   map   short   reads.     

to   

While  methods  exist  to  find  alignments  that  do  not  reuse  cycles  (Rakocevic  et  al.  2019),                 
others  allow  alignment  to  cyclic  graphs  but  with  high  computational  costs  when  applied               
to  RPGG  (Garrison  et  al.  2018)  or  are  limited  to  alignment  in  STR  regions  (Dolzhenko  et                  
al.  2019) .   Efficient  alignment  with  cycles  is  a  more  challenging  problem  recently  solved  by                
GraphAligner  (Rautiainen,  Mäkinen,  and  Marschall  2019)  to  map  long  reads  to  pangenome              
graphs.   

  



REVIEWER COMMENTS

Reviewer #1 (Remarks to the Author): 

The authors have provided an excellent response to my concerns, and in doing so have 
substantially improved key parts of their argument. 

I look forward to seeing applications of their method to the difficult parts of the pangenome. 

Erik Garrison 

Reviewer #3 (Remarks to the Author): 

The authors' response to the comments is quite satisfactory. I have no further comments. 

Reviewer #4 (Remarks to the Author): 

Thank the authors for doing the extensive analysis. All my questions have been properly 
addressed. 



Response to all reviewers:

We appreciate the reviewers’ time and efforts.

Reviewer #1 (Remarks to the Author):
The authors have provided an excellent response to my concerns, and in doing so have
substantially improved key parts of their argument.
I look forward to seeing applications of their method to the difficult parts of the
pangenome.

Erik Garrison

Reviewer #3 (Remarks to the Author):
The authors' response to the comments is quite satisfactory. I have no further
comments.

Reviewer #4 (Remarks to the Author):
Thank the authors for doing the extensive analysis. All my questions have been properly
addressed.


