Patterns, Volume 2

Supplemental information

Predicting hydrogen storage in MOFs

via machine learning

Alauddin Ahmed and Donald J. Siegel

Source ¹	Available in database	Zero accessible surface area	H₂ capacity evaluated empirically	H₂ capacity evaluated with GCMC
UM+CoRE+CSD17	15,235	2,950	12,285	12,799
Mail-Order MOFs	112	4	108	112
In Silico MOFs	2,816	154	2,662	466
In Silico Surface MOFs	8, 885	283	8,602	1,058
MOF-74 Analogs	61	0	61	61
ToBaCCo	13,512	214	13,298	2,854
Zr-MOFs	204	0	204	204
NW Hypothetical MOFs	137,000	30,160	106,840	20,156
UO Hypothetical MOFs	315,615	32,993	291,507	61,247
In-house synthesized via hypothetical design	18	0	18	5
Total	493,458	66,758	426,700	98,962

Table S1. Database of MOF crystal structures, calculated crystallographic properties, and calculated usable H₂ capacities reported earlier.¹ This database is publicly available at the HyMARC Data Hub.²

Table S2. Summary of recent studies that use machine learning (ML) to predict gas adsorption in MOFs.^{3–13} ρ_{crys} , vf, gsa, vsa, pv, mpd, lcd, pld represent single crystal density, void fraction, gravimetric surface area, volumetric surface area, pore volume, maximum pore diameter, largest cavity diameter, and pore limiting diameter, respectively. R², AUE, and RMSE represent the coefficient of determination, Average Unsigned Error, and Root-Mean-Square Error, respectively. AUC = Area Under the Curve. LASSO: Least Absolute Shrinkage and Selection Operator; MLR: Multi-Linear Regression; SVM: Support Vector Machine; DT: Decision Tress; RF: Random Forest; NN: Nearest Neighbors; GBM: Gradient Boosting Method; RBF: Radial Bias Function; PCA: Principal Component Analysis; ANN: Artificial Neural Network.

Study	Gas	ML Features	ML Method	Properties Predicted	Accuracy
This work	H2	ρ _{crys} , gsa, vsa, vf, pv, lcd, pld	Extremely Randomized Trees	Deliverable H ₂ storage capacity between 5-100 bar at 77 K.	UG at PS: $R^2 = 0.997$; AUE = 0.14 wt. %; RMSE = 0.18 wt. % UV at PS: $R^2 = 0.984$; AUE = 0.97 g-H ₂ L ⁻¹ ; RMSE = 1.40 g-H ₂ L ⁻¹ UG at TPS: $R^2 = 0.997$; AUE = 0.16 wt. %; RMSE = 0.23 wt. % UV at TPS: $R^2 = 0.967$; AUE = 1.32 g-H ₂ L ⁻¹ ; RMSE = 1.92 g-H ₂ L ⁻¹
Anderson et al. (2019) ⁵	H ₂	Epsilon, temperature, pressure, ρ_{crys} , vf, vsa, mpd, lcd, alchemical catecholate site density, unit cell volume.	Neural network	Total volumetric H ₂ for pressures 0.1, 1, 5, 35, 65, and 100 bar at 77, 160, and 295 K	AUE = 0.75 - 2.93 g-H ₂ L ⁻¹
Bucior et al. (2019) ²	H₂, CH₄	Energetics of MOF-guest interactions	Multilinear regression with LASSO	H_2 : Deliverable capacity 2 and 100 bar at 77 K. CH ₄ : Deliverable capacity between 5.8 and 65 bar at 298 K	R ² = 0.96, AUE = 1.4 - 3.4 g/L, RMSE = 3.1 - 4.4 g/L
Anderson et al. (2018) ³	CO ₂	ρ _{crys} , vf, gsa, vsa, mpd, lcd, topology	MLR, SVM, DT, RF, NN, GBM	CO ₂ capture	R ² = 0.601- 0.934
Pardakhti et al (2017) ⁶	CH₄	ρ _{crys} , vf, gsa, vsa, mpd, lcd interpenetration capacity, number of interpenetration framework, 19 chemical descriptors	DT, Poisson regression, SVM, and RF	Total at 35 bar and 298 K	R ² = 0.97
Aghaji et al. (2016) ⁵	CO ₂ , CO ₂ / CH ₄	vf, gsa, lcd	DT, SVM(RBF),	Working capacity for the pressure swing between 1 and 10 atm at 298 K	AUC = 0.889 to 0.953
Fernandez & Barnard (2016) ⁶	CO ₂ , N ₂	$\rho_{crys},$ vf, gsa, vsa, mpd, lcd	PCA, k-means clustering, archetypal analysis, DT, SVM, MLL, ANN, RF	Total at 0.1 and 0.9 bar at 298 K	~94%
Ohno & Mukae (2016) ⁹	CH ₄	$\rho_{crys},$ vf, gsa, vsa, mpd, and lcd	GP regression, SVM regression, NN, and LR	Total at 35 bar and 298K.	R ² = 0.79
Simon e al. (2015) ⁸	Xe/ Kr	ρ _{crys} , vf, vsa, mpd, dpd, surface density, Voronoi energy	RF	Xe/Kr selectivity	RMSE = 2.21 for 15,000 unitless numbers between 0 and 35 R^2 not Reported
Sezginel et al. (2015) ¹¹	CH ₄	$\rho_{\text{crys}},$ vf, gsa, vsa, mpd, and lcd, pld, Q_{st}	MVL regression	Total at 298 K and pressures in 1 to 65 bar	R ² =0.3 - 0.9
Fernandez et al. (2014) ¹⁰	CO ₂	AP-RDF	SVM classification	Total at P =0.15 & 1 bar at 298 K	94.5% (classification)
Fernandez et al. (2013) ¹¹	CH4, CO2, N2	AP-RDF	PCA, MLR, and SVM regression	Total at low pressure (0.1-0.9 bar) at 298 K	~70% - ~83%
Fernandez et al. (2013) ¹²	CH₄	ρ _{crys} , vf, gsa, vsa, mpd, lcd	DT, MLR, and SVM regression	Uptake at 1, 35, and 100 bar at 298 K	~90% at 1 bar (classification);R ² (regression) = 0.85 (35bar);R ² (regression) = 0.93 (100 bar)

Supplemental Experimental Procedures

Supplemental Note S1. Grand Canonical Monte Carlo (GCMC) calculations

The pseudo-Feynman-Hibbs interatomic potential parameters of Fischer et al.^{14–16} were used to model H₂ molecules. MOF-H₂ interactions were calculated using Lorentz-Berthelot^{17,18} combination rules. MOFs were assumed to be rigid and were described using interatomic potential parameters from a generic^{19,20} force field. The RASPA package was used to evaluate H₂ uptake via Grand Canonical Monte Carlo (GCMC). All calculations were carried out using a 12 Å cut-off radius with compensating long-range corrections.^{21,22} GCMC calculations for a given T,P condition were performed using 1000 initial cycles followed by a 1000 cycle production run. Each cycle consisted of translation, insertion, and deletion moves with equal probabilities.²³ Further details can be found in our recent publication.¹

Supplemental Note S2. Metrics for ML accuracy

The coefficient of determination (R²), average unsigned error (AUE), root-mean-squared error (RMSE), and median absolute error (MAE) are used to assess the accuracy of the various ML models with respect to GCMC calculations. If the test/training set contains $n_{samples}$ and $y_{i,gcmc}$ is the GCMC calculated H₂ capacity of *i*-th sample and $y_{i,ml}$ is the corresponding ML model prediction, then R², AUE, RMSE, and MAE are defined as follows:

$$R^{2}(y_{gcmc}, y_{ml}) = \sqrt{\frac{\sum_{i=1}^{n_{samples}}(y_{i,gcmc} - y_{i,ml})^{2}}{\sum_{i=1}^{n_{samples}}(y_{i,gcmc} - \overline{y_{gcmc}})^{2}}},$$
(1)

$$AUE(y_{gcmc}, y_{ml}) = \frac{\sum_{i=0}^{n_{samples}-1} |y_{i,gcmc} - y_{i,ml}|}{n_{samples}}$$
(2)

$$RMSE(y_{gcmc}, y_{ml}) = \sqrt{\frac{\sum_{i=0}^{n_{samples-1}} (y_{i,gcmc} - y_{i,ml})^2}{n_{samples}}},$$
(3)

$$MAE(y_{gcmc}, y_{ml}) = median(|y_{1,gcmc} - y_{1,ml}|, ..., |y_{n,gcmc} - y_{n,ml}|)$$
(4)

where. $\overline{y_{gcmc}} = \left(\sum_{i=1}^{n_{samples}} y_{i,gcmc}\right)/n_{samples}$.

Kendal τ rank correlation coefficients were calculated using the scipy.stats module^{25–27} according to the definition of Kendall τ -b.^{29–31}

Table S3. H₂ storage capacities for a benchmark set of open metal site (OMS) MOFs. Calculated capacities were predicted using the pseudo-Feynman-Hibbs interatomic potential. Measured H₂ storage data was compiled from García-Holley et al.²⁴ and from earlier work performed by the present authors.¹ 'Expt.' refers to measured capacities from the literature, 'GCMC' refers to predictions from the present study.

CSD Refcode	Common name	OMS density Å ⁻³	Usable gravimetric capacity PS conditions (wt. %)		Usable v cap PS cor (g-H	olumetric acity nditions 2 L ⁻¹)
		_	Expt. ^{1,23}	GCMC	Expt. ^{1,23}	GCMC
FQIQCEN	HKUST-1	2.63×10^{-3}	2.0	2.1	17	20.6
FOPFAS	NOTT-112	9.24 × 10 ⁻⁴	5.3	3.6	24	24.3
LENKIA	Cu-MOF-74	4.91 × 10 ⁻³	1.0	1.1	13	14.8
REWNEO	NU-125	1.09 × 10 ⁻³	4.1	4.1	24	27.2
HABQUY/GAGZEV	NU-100/ PCN-610	$4.47\times10^{\text{-}4}$	10.1	10.8	35.5	37.1

Table S4. Statistics for the datasets used in this study. Skew and kurtosis were calculated using the scipy.stats module in the SciPy package.^{25–27} Skewness is calculated from the ratio of the third moment (*m*₃) and the cube of the square root of second moment (*m*₂) of a feature variable, $skew = \mu_3/\mu_2^{3/2}$, where $\mu_i = (\sum_{k=1}^{n_{samples}} (x[k] - \bar{x})^i)/n_{samples}$ is the *i*-th central moment, and \bar{x} is the mean of the feature variable.^{25–27} Kurtosis is the fourth central moment divided by the square of the second moment: $kurtosis = \mu_4/\mu_2^2$.^{25–28}

Feature	Dataset type	Minimum	Maximum	Mean	Median	% zero values	Skew	Kurtosis
	Training	0.03	5.18	0.76	0.62	0	1.84	5.64
d (a.cm ⁻³)	Test	0.03	3.97	0.76	0.61	0	1.79	4.96
(9 0111)	Unseen	0.04	4.7	0.84	0.76	0	1.37	3.81
	Training	0	9750	3112.01	3516	10	-0.16	-0.80
gsa $(m^2 a^{-1})$	Test	0	9701	3137.82	3560	10	-0.16	-0.74
(iii g)	Unseen	0	9671	2530.47	2529	13	0.16	-0.84
	Training	0	3995	1696.35	1912	10	-1.03	0.23
Vsa (m ² cm ⁻³)	Test	0	3966	1703.42	1918	10	-1.04	0.26
(Unseen	0	3482	1473.48	1736	13	-1.10	0.01
	Training	0	0.99	0.71	0.76	0	-1.38	2.19
vf	Test	0.01	0.99	0.71	0.76	0	-1.37	2.18
	Unseen	0	0.98	0.69	0.71	0	-0.70	0.34
	Training	0	35.73	1.34	1.23	0	6.97	91.45
pv (cm ³ a ⁻¹)	Test	0.01	29.82	1.37	1.24	0	7.29	89.60
(on g)	Unseen	0	24.76	1.18	0.93	0	3.22	30.16
	Training	0.4	71.6	10.14	9.2	0	2.45	11.94
lcd (Å)	Test	0.4	66.2	10.21	9.3	0	2.49	11.95
(11)	Unseen	0.4	69.9	10.41	9.4	0	1.27	3.61
	Training	0	71.5	7.86	7.5	0	2.81	19.54
pld (Å)	Test	0.1	57.7	7.91	7.6	0	2.84	18.43
(**)	Unseen	0	68	7.45	6.9	0	1.21	5.39

Figure S2. Distribution of 6 crystallographic features in 3 different datasets used in this study. (a) pore volume, (b) single crystal density, (c) void fraction, (d) gravimetric surface area, (e) volumetric surface area, and (f) largest cavity diameter.

Figure S3. Machine learning work-flow.

Table S5. Training set sizes.

Table S6. Performance of ML models in predicting usable gravimetric capacities under pressure swing conditions. R², AUE, RSME, and MAE represent the coefficient of determination, average unsigned error, root-mean-squared error, and median absolute error, respectively.

ML model	Model abbreviation	Feature scaling method	R ²	AUE (wt. %)	RMSE (wt. %)	Kendal <i>t</i>	EV	MAE
Ada Boost	AB	unscaled	0.975	0.476	0.332	0.910	0.976	0.410
Bagging with Decision Tree	B/DT	unscaled	0.997	0.141	0.037	0.959	0.997	0.110
Bagging with Random Forest	B/RF	unscaled	0.997	0.141	0.037	0.959	0.997	0.110
Boosted Decision Trees	BDT	unscaled	0.997	0.136	0.037	0.963	0.997	0.100
Decision Trees	DT	unscaled	0.995	0.180	0.065	0.949	0.995	0.100
Extremely Randomized Trees	ERT	unscaled	0.997	0.136	0.034	0.961	0.997	0.104
Gradient Boosting	GB	unscaled	0.997	0.158	0.045	0.955	0.997	0.123
K-Nearest Neighbors	K-NN	unscaled	0.983	0.346	0.226	0.900	0.983	0.260
Linear Regression	LR	unscaled	0.987	0.307	0.170	0.915	0.987	0.241
Nu-Support Vector Machine with Radial Basis Function (RBF)	Nu-SVM/RBF-							
Kernel	K	minmax scale	0.986	0.235	0.187	0.958	0.987	0.173
Random Forest	RF	unscaled	0.997	0.141	0.037	0.959	0.997	0.110
Ridge Regression	RR	unscaled	0.987	0.307	0.170	0.915	0.987	0.241
Support Vector Machine Radial Basis Function (RBF) Kernel	SVM/RBF-K	minmax scale	0.986	0.236	0.187	0.958	0.987	0.174
Support Vector Machine with Linear Kernel	SVM/L-K	minmax scale	0.986	0.306	0.187	0.920	0.986	0.224

Table S7. Performance of ML models in predicting usable volumetric capacities under pressure swing conditions. R², AUE, RSME, and MAE represent the coefficient of determination, average unsigned error, root-mean-squared error, and median absolute error, respectively.

ML model	Model abbreviation	Feature scaling method	R ²	AUE (g -H ₂ L ⁻¹)	RMSE (g -H₂ L⁻¹)	Kendal τ	EV	MAE
Ada Boost	AB	unscaled	0.936	2.258	7.732	0.873	0.938	1.983
Bagging with Decision Tree	B/DT	unscaled	0.982	1.011	2.133	0.918	0.982	0.720
Bagging with Random Forest	B/RF	unscaled	0.983	0.997	2.048	0.919	0.983	0.710
Boosted Decision Trees	BDT	unscaled	0.983	0.979	2.104	0.922	0.983	0.700
Decision Trees	DT	unscaled	0.971	1.298	3.568	0.895	0.971	0.900
Extremely Randomized Trees	ERT	unscaled	0.984	0.967	1.960	0.922	0.984	0.692
Gradient Boosting	GB	unscaled	0.980	1.104	2.454	0.911	0.980	0.829
K-Nearest Neighbors	K-NN	unscaled	0.913	2.378	10.517	0.794	0.913	1.760
Linear Regression	LR	unscaled	0.917	2.403	10.045	0.829	0.917	1.981
Nu-Support Vector Machine with Radial Basis Function (RBF)	Nu-SVM/RBF-							
Kernel	К	minmax scale	0.949	1.899	6.137	0.858	0.951	1.549
Random Forest	RF	unscaled	0.982	1.011	2.156	0.918	0.982	0.720
Ridge Regression	RR	unscaled	0.917	2.404	10.046	0.829	0.917	1.980
Support Vector Machine Radial Basis Function (RBF) Kernel	SVM/RBF-K	minmax scale	0.951	1.836	5.957	0.863	0.954	1.468
Support Vector Machine with Linear Kernel	SVM/L-K	minmax scale	0.910	2.398	10.905	0.846	0.913	1.902

Table S8. Performance of ML models in predicting usable gravimetric capacities under temperature+pressure swing conditions. R², AUE, RSME, and MAE represent the coefficient of determination, average unsigned error, root-mean-squared error, and median absolute error, respectively.

ML model	Model abbreviation	Feature scaling method	R ²	AUE (wt. %)	RMSE (wt. %)	Kendal 7	EV	MAE
Ada Boost	AB	unscaled	0.970	0.557	0.497	0.939	0.970	0.459
Bagging with Decision Tree	B/DT	unscaled	0.997	0.172	0.055	0.962	0.997	0.130
Bagging with Random Forest	B/RF	unscaled	0.997	0.171	0.054	0.961	0.997	0.130
Boosted Decision Trees	BDT	unscaled	0.997	0.165	0.051	0.963	0.997	0.127
Decision Trees	DT	unscaled	0.994	0.223	0.095	0.951	0.994	0.200
Extremely Randomized Trees	ERT	unscaled	0.997	0.163	0.053	0.966	0.997	0.100
Gradient Boosting	GB	unscaled	0.996	0.199	0.068	0.956	0.996	0.158
K-Nearest Neighbors	K-NN	unscaled	0.993	0.250	0.117	0.943	0.993	0.200
Linear Regression	LR	unscaled	0.992	0.266	0.131	0.947	0.992	0.208
Nu-Support Vector Machine with Radial Basis Function (RBF)	Nu-SVM/RBF-							
Kernel	К	minmax scale	0.991	0.285	0.155	0.952	0.991	0.217
Random Forest	RF	unscaled	0.997	0.173	0.056	0.961	0.997	0.130
Ridge Regression	RR	unscaled	0.992	0.266	0.131	0.947	0.992	0.208
Support Vector Machine Radial Basis Function (RBF) Kernel	SVM/RBF-K	minmax scale	0.991	0.283	0.155	0.952	0.991	0.215
Support Vector Machine with Linear Kernel	SVM/L-K	minmax scale	0.968	0.451	0.535	0.948	0.973	0.345

Table S9. Performance of ML models in predicting usable volumetric capacities under temperature+pressure swing condition. R², AUE, RSME, and MAE represent the coefficient of determination, average unsigned error, root-mean-squared error, and median absolute error, respectively.

ML model	Model abbreviation	Feature scaling method	R ²	AUE (wt. %)	RMSE (wt. %)	Kendal 7	EV	MAE
Ada Boost	AB	unscaled	0.911	2.387	9.954	0.752	0.912	1.877
Bagging with Decision Tree	B/DT	unscaled	0.963	1.381	4.147	0.809	0.963	0.940
Bagging with Random Forest	B/RF	unscaled	0.964	1.380	4.042	0.809	0.964	0.940
Boosted Decision Trees	BDT	unscaled	0.965	1.322	3.887	0.819	0.965	0.900
Decision Trees	DT	unscaled	0.936	1.812	7.150	0.755	0.936	1.200
Extremely Randomized Trees	ERT	unscaled	0.967	1.320	3.700	0.819	0.967	0.912
Gradient Boosting	GB	unscaled	0.955	1.572	4.953	0.785	0.955	1.126
K-Nearest Neighbors	K-NN	unscaled	0.926	2.036	8.202	0.710	0.926	1.460
Linear Regression	LR	unscaled	0.913	2.048	9.691	0.764	0.913	1.329
Nu-Support Vector Machine with Radial Basis Function (RBF)	Nu-SVM/RBF-							
Kernel	K	minmax scale	0.913	2.033	9.656	0.767	0.915	1.310
Random Forest	RF	unscaled	0.963	1.383	4.169	0.809	0.963	0.940
Ridge Regression	RR	unscaled	0.913	2.049	9.692	0.764	0.913	1.331
Support Vector Machine Radial Basis Function (RBF) Kernel	SVM/RBF-K	minmax scale	0.913	2.029	9.641	0.768	0.915	1.307
Support Vector Machine with Linear Kernel	SVM/L-K	minmax scale	0.907	2.117	10.404	0.767	0.911	1.390

Figure S4. Performance of the Extremely Randomized Trees ML algorithm with respect to GCMC calculations for predicting usable H₂ capacities in MOFs. Data is collected under TPS conditions on a test set of 24,674 MOFs. Different colors represent different categories of MOFs. Top (**a-c**) and bottom (**d-f**) panels illustrate performance for usable gravimetric and volumetric capacities, respectively. (**a**, **d**): Agreement between ML and GCMC predictions. (**b**, **e**): Difference between ML and GCMC as a function of GCMC capacity. (**c**, **f**) Distribution of differences in predictions between ML and GCMC.

Figure S5. Difference between ML and GCMC as a function of GCMC capacity for the training set of 74,201 MOFs. Performance of the Extremely Randomized Trees ML algorithm with respect to GCMC calculations for predicting usable H₂ capacities in MOFs. Data is collected under PS (**a**, **c**) and TPS (**b**,**d**). Different colors represent different categories of MOFs. Top (**a**, **b**) and bottom (**c**,**d**) panels illustrate performance for usable gravimetric and volumetric capacities, respectively.

Figure S6. Performance of Extremely Randomized Trees ML models as a function of training set size and the ratio of training to test set size. (a) Usable gravimetric and (b) volumetric H₂ capacity. 100 different training sets ranging in size between 100 and 74,021 MOFs were examined. A common set of 24,674 MOFs was used for testing. Performance is quantified using R² (left axis, black) and the average unsigned error, AUE (right axis, blue and red for UG and UV, respectively). Lines represent a power-law fit to the data.

Table S10. Parameters of the power-law fit, $\varepsilon(m) = \alpha m^{\beta} + \gamma$, where m is the size of the training dataset and ε represents the metric of accuracy (here average unsigned error or AUE). α , β , and γ are the power-law coefficient, exponent, and constant, respectively.

Condition	β (scaling factor)	α (coefficient)	γ (constant)
UG - PS	-0.43	1.19	0.13
UG - TPS	-0.37	0.92	0.16
UV - PS	-0.23	1.96	0.85
UV - TPS	-0.16	2.10	1.04

Figure S7. Relative importance of seven features in predicting H₂ storage in MOFs. ^{32,33} Features are ranked 1(most important) through 7 (least important). Four different methods were used: Pearson's correlation coefficient (r), Breiman and Fried-man's tree-based algorithm as implemented in Scikit-learn, and the permutation importance method as implemented in rfpimp package. (a) usable gravimetric and (b) volumetric capacities for PS conditions. (c) usable gravimetric and (d) volumetric capacities for TPS conditions.

 Table S11. Machine learning models generated for various combinations of features

Table S12. MOFs predicted by ML to have high capacities under PS condition and whose performance was subsequently verified with GCMC. Here NW and UO represent Northwestern University and University of Ottawa databases.

		Density	Gravimetric	Volumetric	Void	Pore volume	Largest	Pore	Usal gravim	ole ietric	Usa volum	ble ietric
Name	Source	(g cm ⁻³)	surface area (m ² g ⁻¹)	surface area (m ² cm ⁻³)	fraction	(cm ³ g ⁻	diameter (Å)	diameter (Å)	capacity (wt. %) ca		capacity (g-H₂ L⁻¹)	
									GCMC	ML	GCMC	ML
mof_7642	ToBaCCo	0.30	5561	1695	0.89	2.93	12.8	11.8	11.1	10.3	40.5	37.4
mof_7690	ToBaCCo	0.30	5715	1706	0.89	2.98	12.8	12.0	11.3	10.4	40.3	37.3
mof_7594	ToBaCCo	0.40	5070	2031	0.86	2.15	11.2	9.7	8.6	7.9	39.9	37.0
mof_7210	ToBaCCo	0.29	5936	1730	0.89	3.04	13.4	11.7	11.4	10.5	39.8	37.1
mof_7738	ToBaCCo	0.25	6054	1502	0.90	3.64	14.5	13.5	13.0	12.0	39.7	37.0
hypotheticalMOF_5045702_i_1_j_24_k_20_m_2	NW	0.31	5926	1820	0.88	2.87	16.0	11.0	10.9	10.1	39.7	37.2
str_m3_o19_o19_f0_nbo.sym.1.out	UO	0.31	5073	1583	0.90	2.88	17.7	12.9	10.8	10.1	39.7	37.1
hypotheticalMOF_5037315_i_1_j_20_k_12_m_1	NW	0.31	5818	1787	0.88	2.86	16.0	11.0	10.9	10.0	39.7	37.0
hypotheticalMOF_5037467_i_1_j_20_k_12_m_8	NW	0.31	5860	1800	0.88	2.85	16.0	11.0	10.9	10.0	39.7	37.0
str_m3_o5_o20_f0_nbo.sym.1.out	UO	0.39	4772	1882	0.87	2.22	14.1	9.6	8.7	8.1	39.7	37.2
hypotheticalMOF_5037563_i_1_j_20_k_12_m_13	NW	0.31	5897	1811	0.88	2.87	16.1	11.0	10.9	10.1	39.7	37.2
hypotheticalMOF_5038404_i_1_j_20_k_20_m_15	NW	0.31	5870	1803	0.88	2.87	16.0	11.0	10.9	10.1	39.7	37.2
hypotheticalMOF_5037379_i_1_j_20_k_12_m_4	NW	0.31	5818	1787	0.88	2.86	16.0	11.0	10.9	10.0	39.6	37.0
hypotheticalMOF_5037407_i_1_j_20_k_12_m_5	NW	0.31	5818	1787	0.88	2.86	16.0	11.0	10.9	10.0	39.6	37.0
hypotheticalMOF_5037479_i_1_j_20_k_12_m_9	NW	0.31	5818	1787	0.88	2.86	16.0	11.0	10.9	10.0	39.6	37.0
hypotheticalMOF_5055561_i_1_j_28_k_20_m_11	NW	0.31	5874	1804	0.88	2.87	16.0	11.0	10.9	10.1	39.6	37.2
hypotheticalMOF_5037439_i_1_j_20_k_12_m_7	NW	0.31	5858	1799	0.88	2.85	16.0	11.0	10.9	10.0	39.6	37.0
hypotheticalMOF_5037499_i_1_j_20_k_12_m_10	NW	0.31	5854	1798	0.88	2.85	16.0	11.0	10.9	10.0	39.6	37.0
hypotheticalMOF_5037531_i_1_j_20_k_12_m_11	NW	0.31	5818	1787	0.88	2.86	16.0	11.0	10.9	10.0	39.6	37.0
hypotheticalMOF_5037523_i_1_j_20_k_12_m_11	NW	0.31	5857	1799	0.88	2.86	16.0	11.0	10.9	10.0	39.6	37.1

Figure S8. Comparison of GCMC calculations with ML predictions for the 21,700 highest-capacity MOFs predicted by ML for PS conditions. Top (**a-c**) and bottom (**d-f**) panels illustrate the performance for gravimetric and volumetric capacities, respectively. Left panels (**a**, **d**) show the correlation between GCMC and ML capacities; the diagonal lines indicate perfect correlations. Middle panels (**b**, **e**) show the difference between GCMC and ML, where the horizontal lines represent a zero difference. Right panels (**c**, **f**) show the distribution of differences from plots **b** and **e**.

Table S13. MOFs predicted by ML to have high capacities under TPS condition and whose performance was subsequently verified with GCMC. Here UO represents the University of Ottawa database.

		Density	Gravimetric surface	Volumetric surface	Void	Pore volume	Largest cavity	Pore limiting	Usal gravim capa	ole etric city	Usa volun capa	ble netric icity
Name	Source	(g cm ^{-š})	area (m ^² g ⁻ ¹)	area (m ^² cm³)	fraction	(cm ³ g ⁻ 1)	diameter (Å)	diameter (Å)	GCMC	<u>%)</u> ML	(g-H	ML
str_m1_o1_o11_f0_pcu.sym.102.out	UO	0.45	4352	1974	0.84	1.84	12.9	10.1	10.4	9.7	53.1	48.1
str_m1_o1_o11_f0_pcu.sym.117.out	UO	0.47	4162	1977	0.83	1.74	12.8	9.9	9.9	9.0	52.8	48.0
str_m1_o1_o11_f0_pcu.sym.121.out	UO	0.47	4263	2006	0.83	1.76	12.1	10.2	10.0	9.4	52.7	48.1
str_m1_o1_o11_f0_pcu.sym.13.out	UO	0.46	4326	2005	0.83	1.79	12.7	9.9	10.1	9.3	52.6	48.0
str_m1_o1_o11_f0_pcu.sym.159.out	UO	0.58	3703	2138	0.80	1.38	10.4	8.6	8.3	7.6	52.6	48.5
str_m1_o1_o11_f0_pcu.sym.200.out	UO	0.45	4359	1978	0.84	1.84	12.9	10.1	10.3	9.6	52.6	48.1
str_m1_o1_o11_f0_pcu.sym.212.out	UO	0.60	3417	2035	0.83	1.39	12.0	10.1	8.1	7.5	52.5	48.1
str_m1_o1_o11_f0_pcu.sym.51.out	UO	0.46	4330	2007	0.83	1.79	11.9	9.9	10.1	9.3	52.5	48.1
str_m1_o1_o11_f0_pcu.sym.71.out	UO	0.45	4436	1980	0.84	1.87	13.0	10.9	10.4	9.7	52.5	48.1
str_m1_o1_o11_f0_pcu.sym.89.out	UO	0.58	3507	2043	0.83	1.42	12.4	9.8	8.2	7.7	52.5	48.1
str_m1_o1_o17_f0_pcu.sym.1.out	UO	0.46	4283	1985	0.83	1.79	11.9	9.9	10.1	9.4	52.5	48.3
str_m1_o1_o17_f0_pcu.sym.104.out	UO	0.46	4439	2032	0.83	1.82	12.5	11.0	10.2	9.6	52.4	48.2
str_m1_o1_o17_f0_pcu.sym.129.out	UO	0.60	3585	2157	0.83	1.37	14.6	9.2	7.9	7.6	52.3	48.2
str_m1_o1_o17_f0_pcu.sym.132.out	UO	0.60	3438	2048	0.83	1.39	12.7	10.8	8.0	7.8	52.3	48.3
str_m1_o1_o17_f0_pcu.sym.28.out	UO	0.57	3732	2117	0.80	1.41	13.1	10.9	8.4	7.8	52.2	48.1
str_m1_o1_o2_f0_pcu.sym.1.out	UO	0.56	3615	2011	0.83	1.49	13.1	10.8	8.5	7.9	52.2	48.4
str_m1_o1_o2_f0_pcu.sym.101.out	UO	0.56	3549	1978	0.84	1.50	12.9	10.7	8.5	7.7	52.1	48.1
str_m1_o1_o2_f0_pcu.sym.11.out	UO	0.44	4487	1986	0.84	1.89	12.4	10.3	10.4	9.7	52.0	48.2
str_m1_o1_o2_f0_pcu.sym.15.out	UO	0.41	4983	2054	0.84	2.04	12.7	9.1	11.1	10.3	52.0	48.1
str_m1_o1_o2_f0_pcu.sym.2.out	UO	0.47	4179	1977	0.83	1.75	11.9	9.8	9.8	9.0	52.0	48.0
MOF-5									7.8		51.9	

Figure S9. Comparison of GCMC calculations with ML predictions for the 7,901 highest-capacity MOFs predicted by ML for TPS conditions. Top (a-c) and bottom (d-f) panels illustrate the performance for gravimetric and volumetric capacities, respectively. Left panels (a, d) show the correlation between GCMC and ML capacities; the diagonal lines indicate perfect correlations. Middle panels (b, e) show the difference between GCMC and ML, where the horizontal lines represent a zero difference. Right panels (c, f) show the distribution of differences from plots **b** and **e**.

Table S14. Comparison between ML-predicated and GCMC-calculated H₂ capacities in unseen MOFs for PS and TPS conditions.

	Pressur	e swing	Temperature + pressure swing			
Metric	UG (wt. %)	UV (g-H ₂ L ⁻ ¹)	UG (wt. %)	$\begin{array}{c} UV\\ \left(g\text{-}H_2L^{\text{-}1}\right)\end{array}$		
Largest overprediction with respect to GCMC	1.67	3.36	0.94	4.93		
Largest underprediction with respect to GCMC	-0.96	-4.46	-1.0	-6.59		
Average unsigned error with respect to GCMC	0.24	0.66	0.24	1.28		
Standard deviation with respect to GCMC	0.20	0.53	0.17	0.99		

Supplemental references

1. Ahmed, A., Seth, S., Purewal, J., Wong-Foy, A.G., Veenstra, M., Matzger, A.J., and Siegel, D.J. (2019). Exceptional hydrogen storage achieved by screening nearly half a million metal-organic frameworks. Nat. Commun. *10*, 1568.

 Ahmed, A., and Siegel, D.J. HyMARC Sorbent Machine Learning Model: Predicting the hydrogen storage capacity of metal-organic frameworks via machine learning. https://sorbent-ml.hymarc.org/.

3. Bucior, B.J., Bobbitt, N.S., Islamoglu, T., Goswami, S., Gopalan, A., Yildirim, T., Farha, O.K., Bagheri, N., and Snurr, R.Q. Energy-based descriptors to rapidly predict hydrogen storage in metal-organic frameworks. Mol. Syst. Des. Eng. 2018. DOI 10.1039/c8me00050f.

4. Anderson, R., Rodgers, J., Argueta, E., Biong, A., and Go, D.A. (2018). Role of Pore Chemistry and Topology in the CO 2 Capture Capabilities of MOFs: From Molecular Simulation to Machine Learning. Chem. Mater *30*, 11.

5. Anderson, G., Schweitzer, B., Anderson, R., and Gómez-Gualdrón, D.A. (2019). Attainable Volumetric Targets for Adsorption-Based Hydrogen Storage in Porous Crystals: Molecular Simulation and Machine Learning. J. Phys. Chem. C *123*, 120–130.

6. Pardakhti, M., Moharreri, E., Wanik, D., Suib, S.L., and Srivastava, R. (2017). Machine Learning Using Combined Structural and Chemical Descriptors for Prediction of Methane Adsorption Performance of Metal Organic Frameworks (MOFs). ACS Comb. Sci. *19*, 640–645.

7. Aghaji, M.Z., Fernandez, M., Boyd, P.G., Daff, T.D., and Woo, T.K. (2016). Quantitative Structure – Property Relationship Models for Recognizing Metal Organic Frameworks (MOFs) with High CO 2 Working Capacity and CO2/CH4 Selectivity for Methane Purification. 4505–4511.

8. Fernandez, M., and Barnard, A.S. (2016). Geometrical Properties Can Predict CO ₂ and N ₂ Adsorption Performance of Metal–Organic Frameworks (MOFs) at Low Pressure. ACS Comb. Sci. *18*, 243–252.

9. Ohno, H., and Mukae, Y. (2016). Machine Learning Approach for Prediction and Search: Application to Methane Storage in a Metal–Organic Framework. J. Phys. Chem. C *120*, 23963–23968.

10. Simon, C.M., Kim, J., Gomez-Gualdron, D.A., Camp, J.S., Chung, Y.G., Martin, R.L., Mercado, R., Deem, M.W., Gunter, D., Haranczyk, M., et al. (2015). The materials genome in action: identifying the performance limits for methane storage. Energy Environ. Sci. 8, 1190–1199.

11. Sezginel, K.B., Uzun, A., and Keskin, S. (2015). Multivariable linear models of structural parameters to predict methane uptake in metal–organic frameworks. Chem. Eng. Sci. *124*, 125–134.

12. Fernandez, M., Woo, T.K., Wilmer, C.E., and Snurr, R.Q. (2013). Large-Scale Quantitative Structure-Property

Relationship (QSPR) Analysis of Methane Storage in Metal–Organic Frameworks. J. Phys. Chem. C 117, 7681–7689.
13. Fernandez, M., Boyd, P.G., Daff, T.D., Aghaji, M.Z., and Woo, T.K. (2014). Rapid and Accurate Machine Learning Recognition of High Performing Metal Organic Frameworks for CO 2 Capture. J. Phys. Chem. Lett. 5, 3056–3060.
14. Fischer, M., Hoffmann, F., and Fröba, M. (2009). Preferred hydrogen adsorption sites in various MOFs-A comparative computational study. ChemPhysChem 10, 2647–2657.

15. Feynman, R.P., and Hibbs, A.R. (1965). Quantum mechanics and path integrals (McGraw-Hill).

16. Ahmed, A., Liu, Y., Purewal, J., Tran, L.D., Veenstra, M., Wong-Foy, A., Matzger, A., and Siegel, D. (2017). Balancing Gravimetric and Volumetric Hydrogen Density in MOFs. Energy Environ. Sci. 10, 2459–2471.

17. Lorentz, H.A. (1881). Ueber die Anwendung des Satzes vom Virial in der kinetischen Theorie der Gase. Ann. Phys. 248, 127–136.

18. Sandler, S.I. (2006). Chemical, biochemical, and engineering thermodynamics 4th ed. (Wiley).

19. Rappe, A.K., Casewit, C.J., Colwell, K.S., Goddard, W.A., and Skiff, W.M. (1992). UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. *114*, 10024–10035.

20. Mayo, S.L., Olafson, B.D., and Goddard III, W.A. (1990). DREIDING: A Generic Force Field for Molecular Simulations. J. Phys. Chem 94, 8897–8909.

21. Allen, M.P., and Tildesley, D.J. (1989). Computer simulation of liquids (Oxford University Press).

22. Sadus, R.J. (1999). Molecular simulation of fluids: theory, algorithms, and object-orientation. (Elsevier).

23. Dubbeldam, D., Calero, S., Ellis, D.E., and Snurr, R.Q. (2016). RASPA: molecular simulation software for adsorption and diffusion in flexible nanoporous materials. Mol. Simul. *42*, 81–101.

24. García-Holley, P., Schweitzer, B., Islamoglu, T., Liu, Y., Lin, L., Rodriguez, S., Weston, M.H., Hupp, J.T., Gómez-

Gualdrón, D.A., Yildirim, T., et al. (2018). Benchmark Study of Hydrogen Storage in Metal–Organic Frameworks under Temperature and Pressure Swing Conditions. ACS Energy Lett., 748–754.

25. Zwillinger, D., Kokoska, S., Raton, B., New, L., and Washington, Y. (2000). standard probability and Statistics tables and formulae CRC.

26. Oliphant, T.E. (2007). Python for Scientific Computing. Comput. Sci. Eng. 9, 10–20.

27. Millman, K.J., and Aivazis, M. (2011). Python for Scientists and Engineers. Comput. Sci. Eng. 13, 9–12.

28. Abramowitz, M., and Stegun, I.A. (1965). Handbook of mathematical functions, with formulas, graphs, and mathematical tables, (Dover Publications).

29. Kendall, M.G. (1945). The Treatment of Ties in Ranking Problems. Biometrika 33, 239–251.

30. Kendall, M.G. (1938). A New Measure of Rank Correlation. Biometrika 30, 81–93.

31. Press, W.H. (2007). Numerical recipes : the art of scientific computing (Cambridge University Press).

32. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R.,

Dubourg, V., et al. (2011). Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 12, 2825–2830.

33. Parrt, T., and Turgutlu, K. rfpimp 1.3.4, https://github.com/parrt/random-forest-importances.