Supplemental Information for "Recovery of the gut microbiota after antibiotics depends on host diet and environmental reservoirs"

<u>Authors</u>

Katharine Michelle Ng¹, Andrés Aranda-Diaz¹, Carolina Tropini², Matthew Ryan Frankel¹, William Winter Van Treuren², Colleen O'Laughlin¹, Bryan Douglas Merrill², Feiqiao Brian Yu³, Kali Meredith Pruss², Rita Almeida Oliveira⁴, Steven Kyle Higginbottom², Norma F. Neff³, Michael Andrew Fischbach^{1,3}, Karina Bivar Xavier⁴, Justin Laine Sonnenburg^{2,3}, Kerwyn Casey Huang^{1,2,3,*}

Affiliations

¹Department of Bioengineering, Stanford University School of Medicine, Stanford, CA 94305, USA ²Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA ³Chan Zuckerberg Biohub, San Francisco, CA 94158 ⁴Instituto Gulbenkian de Ciência, Oeiras, Portugal

*Corresponding author: <u>kchuang@stanford.edu</u>

Lead author: Kerwyn Casey Huang (kchuang@stanford.edu)

Methods

Supplemental Figure Legends

Figure S1: Analyses of streptomycin- and ciprofloxacin-treated mice, related to

Figure 1.

A) Culturable bacterial densities in feces of mice treated with 5 mg ciprofloxacin/day

or 3 mg twice daily revealed a larger effect with twice daily gavaging.

- B) Computational adjustment of the Bacteroidetes:Firmicutes ratio through global rescaling of the fractional abundances of each phylum resulted in movement along principal coordinate 1.
- C) Class-level community composition in feces in two cages of ciprofloxacin-treated humanized mice demonstrates insufficiency of class-level analyses to detect cagespecific differences in composition.
- D,E) Relative abundance of S24-7 during (D) ciprofloxacin and (E) streptomycin treatment of humanized mice.

ciprofloxacin-treated humanized mice, related to Figure 2.

A,D) Alpha diversity (Faith's PD) of all bacteria in (A) streptomycin-treated humanized mice and (D) ciprofloxacin-treated humanized mice. Antibiotic treatment period marked in colored area.

- B,E) Alpha diversity (Faith's PD) of phyla Firmicutes (green) and Bacteroidetes (pink)in (B) streptomycin-treated humanized mice and (E) ciprofloxacin-treatedhumanized mice. Antibiotic treatment period marked in colored area.
- C,F) Alpha diversity (Faith's PD) of families S24-7 (purple) and Bacteroidaceae (yellow) in (C) streptomycin-treated humanized mice and (F) ciprofloxacin-treated humanized mice. Antibiotic treatment period marked in colored area.
- G) Alpha diversity (observed ASVs) of ciprofloxacin-treated humanized mice calculated using *de novo* OTU-picking instead of DADA2.

Figure S3: Comparisons of humanized and conventional mice during double treatment with ciprofloxacin, and mass spectrometry analyses of ciprofloxacintreated mice, related to Figure 3.

A) Class-level community composition in feces of humanized mice further demonstrated the robustness of humanized mice to the second treatment.

- B,D) Alpha diversity (observed ASVs) of all bacteria in (B) humanized and (D) conventional mice. The diversity decreased less in the humanized population during the second treatment than during the first.
- C) Principal coordinates analyses (PCoA) of community composition in conventional and humanized mice during ciprofloxacin treatment reveal a conserved trajectory. Analyses used weighted UniFrac distances (Methods).
- E) Normalized concentrations of ciprofloxacin in feces of conventional mice treated with ciprofloxacin.

Figure S4: Culturable loads decrease during streptomycin treatment in gnotobiotic mice monocolonized with *Bacteroides thetaiotaomicron*, and glycoside hydrolase abundances vary across *Bacteroides* spp., related to Figures 1, 3, and 4.

- A) Culturable anaerobic fecal densities in ex-germ-free mice (n = 10) colonized with *B. thetaiotaomicron* for 2 weeks prior to treatment with 20 mg streptomycin on day 0 and day 1. Bacterial loads collapsed as in humanized mice (Fig. 1B). Error bars: standard error of the mean.
- B) Presence of carbohydrate active enzymes in *Bacteroides* spp. isolated from humanized mice. Mucin enzymes were over-represented in *Bc* post-antibiotics. *Bu*: *B. uniformis*; *Bi*: *B. intestinalis*; *Bo*: *B. ovatus*; *Bs*: *B. salyersiae*; *Bv*: *B. vulgatus*; *Bc*: *B. caccae*.

Figure S5: Analyses of microbiota dynamics and trajectories during cross-housing and cohousing experiments, related to Figure 6.

A,B) Family-level community composition in feces of H2 mice mixed with H1 mice on

(A) day 0 and (B) day 1.

Figure S6: Trajectories of Bacteroidetes taxonomic classes in singly housed and cohoused conventionalized mice, related to Figure 7.

A,B) Relative abundance of the (A) *Bacteroides* genus and (B) S24-7 family in singlyand co-housed conventional mice. Antibiotic treatment period is denoted by colored rectangle. Recovery of both families in more heterogeneous in singly housed mice.

Figure 5.

- A) Culturable anaerobic (blue) and aerobic (red) fecal densities in humanized mice gavaged with antibiotics for 5 days.
- B) Family-level community composition in feces of mice in (A).

- C) Relative abundance of a *B. ovatus* ASV and the genus *Bacteroides* in clindamycintreated mice reveals domination of *B. ovatus*.
- D) A conserved core microbiota of 24 species is observed in the 10 non-ciprofloxacin treated mice across antibiotics, largely composed of *Bacteroides* and S24-7 species.

				MIC		
Source	Species	Mouse	Day	cipro	MIC strep	ResFinder
Humanized	Bacteroides vulgatus	1	0	8	>512	none
Humanized	Bacteroides vulgatus	1	4	512	>512	ermB, cfxA, tetQ
Humanized	Bacteroides vulgatus	1	12	512	>512	ermB, cfxA, tetQ
Humanized	Bacteroides caccae	1	12	64	>512	tetQ, ermF
Humanized	Bacteroides vulgatus	1	16	512	>512	cfxA, tetQ
	0					
Humanized	Bacteroides salyersiae	2	0	4	>512	none
Humanized	Bacteroides stercoris	2	0	8	>512	tetQ
Humanized	Bacteroides xylanisolvens	2	0	8	N.D.	tetQ
Humanized	Bacteroides intestinalis	2	0	2	>512	none
Humanized	Bacteroides intestinalis	2	0	4	>512	none
Humanized	Bacteroides uniformis	2	0	16	N.D.	tetQ
Humanized	Bacteroides uniformis	2	10	64	>512	tetQ
Humanized	Bacteroides uniformis	2	10	64	16	tetQ
Humanized	Bacteroides vulgatus	2	16	>512	>512	ermB, cfxA, tetQ
Humanized	Bacteroides caccae	2	22	64	>512	tetQ, ermF
Humanized	Bacteroides uniformis	2	22	64	>512	tetQ
Humanized	Bacteroides uniformis	2	22	64	N.D.	<i>tetQ</i>
					F 40	
Conventional	Bacteroides vulgatus	1	0	4	>512	none
Conventional	Bacteroides vulgatus	1	0	8	>512	none
Conventional	Bacterolaes aclaifaciens	1	0	Z	N.D.	none
Conventional	Bacterolaes uniformis	1	0	4	1	tetŲ
Conventional	Bacteroides vulgatus	1	11	4	>512	none
Conventional	Bacteroides acidifaciens	1	11	4	1	none
Conventional	Bacteroides uniformis	1	11	4	N.D.	tetŲ
Humanized H2	Bacteroides sp. D1	E1 1	11	8	16	cfxA_tet()
Humanized H2	Bacteroides sp. D1	E1.1	11	4	N D	cfxA_tet0
Humanized H2	Bacteroides salversiae	E1.1	11	4	>512	none
				-		
HMP	Bacteroides cellulosilyticus CL02T12C19			8	N.D.	
HMP	Bacteroides salyersiae CL02T12C01			32	>512	
HMP	Bacteroides stercoris CC31F			4	512	
HMP	Bacteroides vulgatus CL09T03C04			8	>512	
Type strain	Bacteroides theta VPI5482			4	256	
Type strain	Bacteroides fragilis NCTC9343			4	512	
Type strain	Bacteroides vulgatus ATCC8482			8	>512	
Type strain	Bacteroides distasonis ATCC8503			8	>512	
Type strain	Bacteroides caccae ATCC43185			32	N.D.	
Type strain	Bacteroides ovatus ATCC8483			8	512	
Type strain	Bacteroides uniformis ATCC8492			4	256	
Type strain	Bacteroides intestinalis DSM 17393			4	256	1

Table S1: Ciprofloxacin and streptomycin MICs for representative Bacteroides

isolates and type strains, related to Figures 1, 3, and 6. Columns 3 and 4 contain the

mouse number and day of fecal sample from which the isolate was obtained, where day 0 is

when antibiotic treatment commenced. N.D.: not determined. Table also includes any antibiotic resistance genes detected using ResFinder

(https://cge.cbs.dtu.dk/services/ResFinder/).