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1 Identifiability of the cSIR

Assume that the ignorability and causal consistency assumptions hold, as stated in the main
manuscript. Consider the numerator of the SIR, E [Y (T = 1)|T = 1]. Note that

E [Y (T = 1)|T = 1] = EX [E [Y (T = 1)|T = 1,X]] = EX [E [Y |T = 1,X]]

where the last equality holds by causal consistency. Similarly, for the denominator, E [Y (T = 0)|T = 1] =
EX [E [Y (T = 0)|T = 1,X]]. Now, we invoke the ignorability assumption, which states that T is
independent of Y (T = 0) conditional on X, so that
E [Y (T = 0)|T = 1,X] = E [Y (T = 0)|T = 0,X]. Thus, we have

E [Y (T = 0)|T = 1] = EX [E [Y (T = 0)|T = 0,X]] = EX [E [Y |T = 0,X]]

by applying causal consistency as above. Thus, we see that both the numerator and denominator
of the cSIR are identifiable and can be estimated with observed data.

2 Supplemental information for the simulations

Here we provide supporting information for the simulation studies presented in the main manuscript.
Table 1 shows the parameter values used to generate the simulated data under each of the four
simulation scenarios. Table 2 provides additional details of the simulation results for simulations
3 and 4 that were omitted from the main manuscript. Specifically, it shows the performance of
the methods when the value of the true SIR used to generate the table is varied. In general, these
results are consistent with the ones shown in the main manuscript, so we do not provide more
commentary on those results here.

Figure 1 shows the rate of coverage of the null SIR value, 1, for the 95% credible/confidence
interval for each method in simulations 3 and 4 as the true SIR value is increased from 1.1 to 2.
The coverage of the null gives a sense of the power of our method to detect exposure effects. For
cSIR, coverage of the null value decreases as the true SIR increases, as we would expect. We begin
to see reasonable power to detect non-null SIRs when the true SIR is above 1.5, which means we
are able to detect relatively small exposure effects. CDC’s coverage of the null value is erratic and
does not reflect trends in the true SIR, i.e., coverage of the null does not consistently decrease as
the true SIR value increases. In the main manuscript, we discussed how PR’s instability results in
highly conservative coverage, and we see that this result holds not only for the true SIR but also
for the null value.
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Table 1: Parameter values used to simulate data. The values are chosen to reflect the anticipated
magnitude and direction of the relationship between each variable and the exposure/outcome.

Sim 1 Sim 2 Sim 3 Sim 4

Exposure Model

Intercept (γ0) -1.15 0 -1.15 0
MoneyFood (γ11) 0 0.0009 0 0.0009
MoneySmoke (γ12) 0 0.015 0 0.015
P65+ (γ13) 0 0.003 0 0.003
PMale (γ14) 0 -0.001 0 -0.001
PWhite (γ15) 0 -0.01 0 -0.01
Unemploy (γ16) 0 0.004 0 0.004
Commute (γ17) 0 0.002 0 0.002
Income (γ18) 0 -0.01 0 -0.01

Outcome Model

Intercept (α0) -5.99 -5 -5 -5
Exposure (α1) 0 0 {log(1.1), log(1.2),

..., log(2)}
{log(1.1), log(1.2),

..., log(2)}
MoneyFood (α21) 0 0.007 0.007 0.007
MoneySmoke (α22) 0 0.015 0.015 0.015
P65+ (α23) 0 0.03 0.03 0.03
PMale (α24) 0 -0.001 -0.001 -0.001
PWhite (α25) 0 -0.02 -0.02 -0.02
Unemploy (α26) 0 0.004 0.004 0.004
Commute (α27) 0 0.002 0.002 0.002
Income (α28) 0 -0.005 -0.005 -0.005
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Figure 1: Trends in the rate of coverage of the null SIR as the true SIR increases in (a) simulation
3 and (b) simulation 4. This reflects the power of each method to detect exposure effects.
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Table 2: Detailed results for simulations 3 and 4 comparing the proposed cSIR method with the
standard cancer cluster SIR estimation method (CDC) and a similar Poisson regression approach
(PR). Shown are the bias in the point estimate, the coverage rate of the true SIR for 95%
confidence/credible intervals, and the width of the 95% confidence/credible intervals.

True SIR Method Bias Coverage
True SIR

CI Width

Simulation 3

1.1
CDC -0.33 0.43 0.54

PR -0.06 1.00 12.89
cSIR -0.03 0.95 0.73

1.5
CDC -0.54 0.09 0.58

PR 1.23 1.00 49.08
cSIR -0.05 0.94 0.87

2
CDC -0.84 0.00 0.60

PR 0.73 1.00 49.08
cSIR -0.07 0.93 1.02

Simulation 4

1.1
CDC 0.56 0.13 0.80

PR 0.02 1.00 14.29
CSIR -0.01 0.95 0.53

1.5
CDC 0.51 0.26 0.83

PR 3.76 0.99 112.96
CSIR -0.01 0.94 0.62

2
CDC 0.35 0.58 0.84

PR 3.26 1.00 112.96
CSIR -0.02 0.94 0.72
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3 Prediction model fitting and validation

We build the prediction models on a training set of kidney and bladder cancer incidence data from
New York (NY). The training set includes census block group (CBG) cancer incidences for all
counties in NY besides Broome county (where Endicott is located) and six counties selected to be
withheld as a test set. The six counties in the test set were specifically chosen to reflect a wide
range of of demographic features, so that we can assess whether our model performs better in areas
with particular characteristics. Specifically, we selected two highly populous counties in the New
York City area (Westchester and Orange Counties), two moderately populous counties representing
smaller cities (Saratoga and Oswego Counties), and two sparsely populated counties (Allegany and
Livingston Counties).

To the training data, we fit our multinomial regression (MR) prediction model as described in
detail in the main text, i.e.

log(πj) = Z ′
jβ + log(Pj)− log(

∑
l∈ψ(j)

eZ
′
lβPl)

The following 11 CBG-level predictors (Z) are used: percent of the population age 65+, percent
of the population male, percent of the population white, rural indicator, percent of the adult
population unemployed, average commute time, median household income, total dollars spent on
smoking products as a portion of per capita income, percent of total dollars spent on food that
was spent on food outside the home, percent of the population that reports exercising at least 2
times per week, and percent of the population working in the agriculture, mining, construction, or
manufacturing industries. Independent N(0, 1) prior distributions are placed on each component
of β. Although this prior choice may initially seem restrictive, realistically we would not expect a
one-unit increase in any of the predictor variables to increase/decrease the incidence rate by more
than a factor of exp(2) = 7.4, thus it seems reasonable to place low probability on β values larger
than 2. Very flat (non-informative) prior distributions often cause stability problems in generalized
linear models. Moreover, the large size of our training data (12, 427 CBGs) ensures that the
posterior distributions primarily reflect information in the data rather than the prior. 200,000
posterior samples of all parameters were obtained with the Markov Chain Monte Carlo sampler
following 10,000 burn-in samples. Exponentiated β point estimates (posterior means) and 95%
credible intervals are provided in Table 3. Traceplots of the posterior samples for all 11 elements
of β, shown in Figure 2 for the kidney cancer model and Figure 3 for the bladder cancer model,
demonstrate good convergence. Metropolis sampler acceptance rates were 0.29 and 0.30 for the
models.

We test the predictive accuracy of our model, and compare it to a more ad-hoc prediction
approach, which we call a rescaled Poisson regression (PR). Recall that the purpose of our prediction
model is to predict incidence at the CBG level, conditional on the observed county level incidence.
For our MR model, we perform prediction for all CBGs in a county by collecting posterior predictive
samples from a multinomial distribution with the observed county level incidence as the ‘number
of trials’ parameter and the model-predicted probabilities for the CBGs in the county as the event
probability parameters. The competing rescaled PR method instead fits a standard frequentist
Poisson regression to the CBG incidences, obtains CBG level predictions from the model, and then
rescales the predictions for all the CBGs within a county so that they sum to the observed county-
level incidence. We compare the mean square error (MSE) of the predictions from these models as
well as the proportion of observed cancer incidences falling in the 95% confidence/credible intervals
for their predictions (Coverage). We compute these model fit metrics for the CBGs in the training
set of NY data, the CBGs in the test set of the NY data, and separately for each of the individual
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Table 3: Exponentiated point estimates and 95% credible intervals (CI) for each of the predictors
in the kidney cancer and bladder cancer incidence prediction models.

Kidney Bladder
Variable Estimate 95% CI Estimate 95% CI

MoneyFood 0.9543 0.9243, 0.9848 0.9805 0.9549, 1.0066
MoneySmoke 0.9762 0.8784, 1.0819 1.0177 0.9253, 1.1185
Rural 1.0970 1.0224, 1.1779 1.0775 1.0214, 1.1364
P65Plus 1.0278 1.0247, 1.0309 1.0379 1.0354, 1.0404
PMale 0.9927 0.9865, 0.9990 1.0044 0.9992, 1.0094
PWhite 1.0045 1.0035, 1.0055 1.0113 1.0104, 1.0122
Unemploy 0.9970 0.9934, 1.0006 0.9947 0.9915, 0.9978
Commute 1.0060 1.0029, 1.0091 1.0036 1.0010, 1.0062
Income 1.0011 0.9999, 1.0023 1.0028 1.0019, 1.0038
Industry 1.0009 0.9980, 1.0039 1.0001 0.9977, 1.0025
Exercise 0.9994 0.9983, 1.0004 0.9974 0.9961, 0.9985

counties in the test set. Moreover, we have also obtained (not publicly available) census tract
level kidney and bladder cancer incidence data for the entire state of Idaho from the Cancer Data
Registry of Idaho. Although census tracts have larger populations than CBGs, we can adjust for
this through the population size offset term in the models. Thus, we also test the predictive power
of the models on the Idaho cancer data to give a sense of their external validity.

The results are shown in Table 4 for kidney cancer and Table 5 for bladder cancer. While the
MSEs are similar for the two models, our MR model always provides better coverage than the PR
model. Our MR model’s substantial improvements in uncertainty estimation for the predictions
is critical, since these uncertainties are passed into the estimation stage model and reflected in
the final effect estimates. For both models, we see similar predictive accuracy in the training and
test sets. Based on the county-specific results from the test set, there are no clear trends in the
prediction performance across county population sizes. Finally, the predictive performance for the
census tract incidences in Idaho differs considerably between the kidney and bladder cancer models.
We observe a notable increase in the MSE for the kidney cancer model in Idaho, while the bladder
cancer MSE for Idaho is on par with the MSEs from the NY data. However, for both types of
cancer, our MR model demonstrates strong coverage in the Idaho data. Because the uncertainties
from the MR prediction models are reliable and are accounted for in the cSIR estimation models,
we are not concerned about the modest decrease in predictive accuracy for the Idaho kidney cancer
data.
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Figure 2: Traceplots for the kidney cancer prediction model.

Figure 3: Traceplots for the bladder cancer prediction model.
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Table 4: Kidney cancer incidence prediction model fit comparing our proposed Bayesian
multinomial regression model (MR) and a frequentist Poisson regression model (PR). Model fit
criteria shown are (1) mean square error (MSE) of predictions and (2) proportion of incidences
falling in the 95% confidence/credible interval for their predictions (Coverage). These metrics are
evaluated separately for CBGs in the training set from NY, CBGs in the test set from NY, and
CBGs in the individual counties in the test set, and for census tract level cancer incidence data
from the state of Idaho.

Method MSE Coverage

Train MR 1.32 0.58
Train PR 1.32 0.04
Test MR 1.54 0.62
Test PR 1.56 0.05

Allegany MR 0.69 0.65
Allegany PR 0.69 0.07

Livingston MR 1.08 0.72
Livingston PR 1.08 0.02

Orange MR 1.53 0.58
Orange PR 1.52 0.07
Oswego MR 2.26 0.62
Oswego PR 2.28 0.03

Saratoga MR 1.49 0.75
Saratoga PR 1.49 0.01

Westchester MR 1.56 0.60
Westchester PR 1.59 0.05

Idaho MR 4.12 0.82
Idaho PR 4.11 0.09
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Table 5: Bladder cancer incidence prediction model fit comparing our proposed Bayesian
multinomial regression model (MR) and a frequentist Poisson regression model (PR). Model fit
criteria shown are (1) mean square error (MSE) of predictions and (2) proportion of observed
incidences falling in the 95% confidence/credible interval for their predictions (Coverage). These
metrics are evaluated separately for CBGs in the training set from NY, CBGs in the test set from
NY, and CBGs in the individual counties in the test set, and for census tract level cancer incidence
data from the state of Idaho.

Method MSE Coverage

Training set MR 2.18 0.68
Training set PR 2.18 0.03

Test set MR 2.37 0.73
Test set PR 2.38 0.04

Allegany MR 1.76 0.85
Allegany PR 1.77 0.00

Livingston MR 2.35 0.77
Livingston PR 2.38 0.05

Orange MR 2.46 0.67
Orange PR 2.48 0.03
Oswego MR 2.50 0.81
Oswego PR 2.49 0.04

Saratoga MR 3.28 0.79
Saratoga PR 3.28 0.03

Westchester MR 2.17 0.73
Westchester PR 2.19 0.05

Idaho MR 2.55 0.74
Idaho PR 2.52 0.06
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4 cSIR estimation model fitting

Recall that the cSIR estimation model is fit to the matched data and has the following form:

log(E
[
Ỹ

(b)
i

]
) = α0 + Tiα1 +X ′

iα2 + log(Pi)

where Ỹ
(b)
i is the observed cancer incidence for the exposed units and NY controls and the bth

posterior predictive sample of Yi from the prediction model for non-NY control units. For the
analysis presented in the main manuscript (A-1), we placed independentN(0, 0.5) prior distributions
on α0, α1, and the components of α2. Here we also provide the results from a sensitivity analysis
(A-2) with N(0, 1) priors.

We have 200,000 Ỹ
(b)
i posterior samples from the prediction model, and we iterate through

these to collect 200,000 posterior samples of the estimation model parameters, 150,000 of which
are discarded as burn-in and 50,000 are retained for estimation. We show here the results for the
A-1 and A-2 models fit to the 5:1 propensity score (logistic regression with linear terms) matched
data, the results from the other matched datasets are similar. The exponentiated point estimates
(posterior means) and 95% credible intervals for the coefficients in the models are shown in Table 6
and Table 7 for A-1 and A-2 respectively. The differences in the results of A-1 and A-2 are minor,
indicating little sensitivity to the variance of the prior distributions. The A-1 traceplots, shown in
Figure 4 for kidney cancer and Figure 5 for bladder cancer, demonstrate good convergence. The
A-1 Metropolis sampler acceptances rates are 0.26 and 0.30 for the models. The A-2 traceplots in
Figure 6 (kidney) and Figure 7 (bladder) also show convergence, and the Metropolis acceptance
rates are 0.35 and 0.39.

Table 6: Exponentiated point estimates and 95% credible intervals for each of the variables in the
cSIR estimation models (A-1).

Kidney Bladder
Variable Estimate 95% CI Estimate 95% CI

Intercept 1.277 0.225, 4.100 1.254 0.229, 4.020
MoneyFood 0.936 0.718, 1.201 0.847 0.654, 1.065
MoneySmoke 0.916 0.202, 2.674 1.306 0.264, 4.028
P65Plus 1.044 0.955, 1.132 1.033 0.967, 1.102
PMale 0.943 0.787, 1.132 1.034 0.877, 1.221
PWhite 0.980 0.917, 1.041 0.984 0.942, 1.046
Unemploy 1.030 0.953, 1.111 1.025 0.960, 1.101
Commute 1.023 0.926, 1.126 1.004 0.928, 1.086
Income 1.010 0.942, 1.084 1.041 0.983, 1.104
Industry 0.977 0.931, 1.017 0.973 0.940, 1.007
Exercise 1.013 0.942, 1.081 0.981 0.917, 1.038
Exposure 0.748 0.299, 1.497 1.571 0.886, 2.680

We also perform a sensitivity analysis in which we omit MoneyFood, MoneySmoke, and Exercise
from the matching/adjustment set. The remaining variables represent the subset that can be easily
obtained for small areas from the census or other publicly available sources. We use 5:1 propensity
score matching from a logistic regression model with linear terms. We fit the cSIR estimation
model using the same specifications as above (A-1 priors). For both the kidney and bladder cancer
models, we observe only minor changes in the results using this subset of the confounders. The
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Table 7: Exponentiated point estimates and 95% credible intervals for each of the variables in the
cSIR estimation models (A-2).

Kidney Bladder
Variable Estimate 95% CI Estimate 95% CI

Intercept 1.645 0.128, 7.101 1.587 0.121, 7.068
MoneyFood 0.915 0.685, 1.166 0.862 0.680, 1.094
MoneySmoke 1.006 0.108, 3.876 1.439 0.196, 5.072
P65Plus 1.044 0.961, 1.127 1.035 0.958, 1.113
PMale 0.961 0.799, 1.166 1.021 0.871, 1.192
PWhite 0.983 0.932, 1.038 0.987 0.938, 1.037
Unemploy 1.028 0.955, 1.096 1.019 0.949, 1.091
Commute 1.012 0.918, 1.105 1.000 0.920, 1.082
Income 1.009 0.940, 1.082 1.033 0.978, 1.092
Industry 0.982 0.942, 1.021 0.973 0.936, 1.010
Exercise 1.013 0.955, 1.076 0.980 0.929, 1.031
Exposure 0.699 0.220, 1.579 1.643 0.903, 2.726

kidney and bladder cancer cSIR estimates and 95% credible intervals are 0.75 (0.27, 1.57) and 1.52
(0.81, 2.64), respectively.
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Figure 4: Traceplots for the kidney cancer cSIR estimation model (A-1).

Figure 5: Traceplots for the bladder cancer cSIR estimation model (A-1).

11



Figure 6: Traceplots for the kidney cancer cSIR estimation model (A-2).

Figure 7: Traceplots for the bladder cancer cSIR estimation model (A-2).
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5    Prediction Model Likelihood Details 
 
Assume for simplicity that we have 3 counties, each containing 3 census block groups 
(CBGs), for a total of 9 CBGs in the data. Letting the CBGs be indexed by 𝑗, we assume 
that the cancer incidences in the CBGs follow 𝑌#~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆#) for 𝑗 = 1,… ,9. Let CBGs  
𝑗 = {1,2,3} be nested within county 1, CBGs  𝑗 = {4,5,6} be nested within county 2, and 
CBGs 𝑗 = {7,8,9} be nested within county 3. 
 
Now we want the distribution of the CBG incidences conditional on the county 
incidence, i.e., 

𝑌;, 𝑌<, 𝑌=|? 𝑌#
=

#@;
= 𝐵 

𝑌B, 𝑌C, 𝑌D|? 𝑌#
D

#@B
= 𝐶 

𝑌F, 𝑌G, 𝑌H|? 𝑌#
H

#@F
= 𝐷 

 
We will first show that these conditional distributions are multinomial distributed. Since 
we know ∑ 𝑌#=

#@; ~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(∑ 𝜆#=
#@; ), we have that 

𝑓L𝑌; = 𝑦;, 𝑌< = 𝑦<, 𝑌= = 𝑦=N∑ 𝑌#=
#@; = 𝐵O =

𝑓L𝑌; = 𝑦;, 𝑌< = 𝑦<, 𝑌= = 𝑦= ∩ ∑ 𝑌#=
#@; = 𝐵O

𝑓L∑ 𝑌#=
#@; = 𝐵O

	

=
∏

𝑒TUV𝜆#
WV

𝑦#!
=
#@;

𝑒T∑ UVY
VZ[ L∑ 𝜆#=

#@; O\

𝐵!

	

= ]
𝐵!

𝑦;! 𝑦<! 𝑦=!
^
∏ 𝜆#

WV=
#@;

L∑ 𝜆#=
#@; O\

	

= ]
𝐵!

𝑦;! 𝑦<! 𝑦=!
^_

𝜆#
WV

L∑ 𝜆#=
#@; OWV

=

#@;

	

= 𝐵!_
1
𝑦#!

`
𝜆#

L∑ 𝜆#=
#@; O

a
WV=

#@;

 

 
Letting 𝜋# =

UV
c∑ UVY

VZ[ d
 we see that ∑ 𝜋#=

#@; = 1 and thus 𝑓L𝑌;, 𝑌<, 𝑌=N ∑ 𝑌#=
#@; = 𝐵O is a 

multinomial distribution with parameters {𝜋;, 𝜋<, 𝜋=}. Note that we can also write the 
distribution in the following way: 

𝑓L𝑌;, 𝑌<, 𝑌=N ∑ 𝑌#=
#@; = 𝐵O = 𝐵!_

1
𝑦#!

𝜋#
WV

=

#@;

=_
(𝐵!);/=

𝑦#!
𝜋#
WV

=

#@;
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Now define 𝐾; = 𝐾< = 𝐾= = 𝐵, and 𝜓(1) = 𝜓(2) = 𝜓(3) = {1,2,3}, i.e., the 𝜓(𝑗) are sets 
containing the indices of all the CBGs in same county as CBG 𝑗. Using these, we can 
write 

𝑓L𝑌;, 𝑌<, 𝑌=N ∑ 𝑌#=
#@; = 𝐵O =_

(𝐾#!);/||h(#)||

𝑦#!
𝜋#
WV

=

#@;

 

 
The same results hold for 𝑓(𝑌B, 𝑌C, 𝑌D| ∑ 𝑌#D

#@B = 𝐶) and 𝑓(𝑌F, 𝑌G, 𝑌H| ∑ 𝑌#H
#@F = 𝐷). 

 
It is trivial to show that 𝑓L𝑌;, 𝑌<, 𝑌=N ∑ 𝑌#=

#@; = 𝐵O, 𝑓(𝑌B, 𝑌C, 𝑌D| ∑ 𝑌#D
#@B = 𝐶) and 

𝑓(𝑌F, 𝑌G, 𝑌H| ∑ 𝑌#H
#@F = 𝐷) are independent when the individual 𝑌# are independent. Thus, 

the likelihood of all the data can be written as: 
 

𝑓L𝑌;, 𝑌<, 𝑌=N ∑ 𝑌#=
#@; O × 𝑓L𝑌B, 𝑌C, 𝑌DN ∑ 𝑌#D

#@B O × 𝑓L𝑌F, 𝑌G, 𝑌HN ∑ 𝑌#H
#@F O =_

(𝐾#!);/||h(#)||

𝑦#!
𝜋#
WV

H

#@;

 

 
This corresponds to the form of the likelihood appearing in the main manuscript on page 
13. We have chosen to use the 𝐾# and 𝜓(𝑗) notation for convenience in the scenario 
with differing numbers of CBGs within each county. 
 
 


