Indirect Access to Carbene Adducts of Bismuth and Antimony Substituted Phosphaketene and their Unusual Thermal Transformation to Dipnictines and [(NHC),OCP][OCP]

Jacob E. Walley,^a Levi S. Warring,^a Erik Kertész,^b Guocang Wang,^a Diane A. Dickie,^a Zoltán Benkő,^{b*} Robert J. Gilliard, Jr.^{a*}

^aDepartment of Chemistry, University of Virginia, 409 McCormick Rd, PO Box 400319, Charlottesville, USA

^b Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary

*To whom correspondence should be addressed: zbenko@mail.bme.hu; rjg8s@virginia.edu

Supporting Information

Table of Contents

NMR Spectral Data	
IR Spectral Data	
Crystal structure of compound 6	
Crystallographic Refinement Details	
Computational Details	
References	

Figure S1: ¹H NMR spectrum (500.13 MHz, C₆D₆, 298 K) of complex 1.

Figure S2: ¹³C{¹H} NMR spectrum (201.19 MHz, C₆D₆, 298 K) of complex 1.

Figure S3: ¹H NMR spectrum (500.13 MHz, C₆D₆, 298 K) of complex 2.

Figure S4: ¹³C{¹H} NMR spectrum (201.19 MHz, C₆D₆, 298 K) of complex **2**.

Figure S5: ¹H NMR spectrum (500.13 MHz, C₆D₆, 298 K) of complex **3**.

Figure S6: ${}^{13}C{}^{1}H$ NMR spectrum (201.193 MHz, C₆D₆, 298 K) of complex 3.

Figure S7: ³¹P{¹H} NMR spectrum (202.46 MHz, 298 K) of complex **3**.

Figure S8: ¹H NMR spectrum (500.13 MHz, C₆D₆, 298 K) of complex 4.

Figure S9: ¹³C{¹H} NMR spectrum (201.193 MHz, C₆D₆, 298 K) of complex 4.

Figure S10: ³¹P{¹H} NMR spectrum (202.46 MHz, 298 K) of complex 4.

Figure S11: ¹H NMR spectrum (500.13 MHz, C₆D₆, 298 K) of complex 5.

Figure S12: ¹³C{¹H} NMR spectrum (201.193 MHz, C₆D₆, 298 K) of complex 5.

Figure S13: ${}^{31}P{}^{1}H$ NMR spectrum (242.94 MHz, 298 K) of complex 5.

Figure S14: ¹H NMR spectrum (500.13 MHz, C_6D_6 , 298 K) of the reaction mixture after heating compound **3** at 90 °C for 24 hours.

Figure S15: ¹H NMR spectrum (500.13 MHz, C_6D_6 , 298 K) of the reaction mixture after heating compound **4** at 70 °C for 3 hours.

IR Spectral Data

Figure S16: FT-IR Spectrum of compound 3.

Figure S17: FT-IR Spectrum of compound 4.

Figure S18: FT-IR Spectrum of compound 5.

Figure S19: X-ray crystal structure of **6**. Ellipsoids represent 50% probability and all hydrogen atoms have been omitted for clarity. Selected bond lengths (Å) and angles (°): Bi1–Bi2: 2.9867(7); Bi1–C1: 2.274(13); Bi1–C7: 2.267(12); Bi2–C13: 2.261(13); Bi2–C19: 2.261(12). C1–Bi1–Bi2: 90.5(3); C7–Bi1–Bi2: 94.0(3); C7–Bi1–C1: 92.3(4); Bi1–Bi2–C13: 95.0(3); Bi1–Bi2–C19: 91.9(3); C13–Bi2–C19: 93.0(5).

Crystallographic Refinement Details

	1	2	3	4	5	6
CCDC	1962839	1962840	1962841	1962842	1976639	1962843
Chemical formula	C23H30ClN2Sb	C23H30BiClN2	C24H30N2OPSb	C24H30BiN2OP	C24H38N4O2P2	C24H20Bi2
FW (g/mol)	491.69	578.92	515.22	602.45	476.52	726.36
T (K)	100(2)	100(2)	100(2)	100(2)	100(2)	100(2)
λ (Å)	1.54178	0.71073	1.54178	1.54178	0.71073	0.71073
Crystal size (mm)	$0.063 \times 0.086 \times 0.134$	$0.075 \times 0.093 \times 0.125$	$0.027 \times 0.033 \times 0.179$	$0.046 \times 0.049 \times 0.088$	$0.168 \times 0.314 \times 0.379$	0.066 × 0.087 × 0.305
Crystal habit	colorless plate	colorless rod	yellow rod	yellow rod	orange block	yellow rod
Crystal system	triclinic	triclinic	triclinic	monoclinic	orthorhombic	monoclinic
Space group	P -1	P -1	P -1	P 2 ₁ /c	F dd2	P21
a (Å)	9.9641(14)	9.9533(12)	11.3208(7)	11.2834(3)	17.553(2)	5.9018(6)
b (Å)	10.2681(16)	10.1962(12)	13.4788(9)	18.2355(5)	22.829(2)	21.746(2)
c (Å)	10.9350(14)	11.0990(14)	17.8244(12)	23.2146(6)	13.3554(15)	16.0512(16)
a (°)	90.719(10)	91.596(4)	92.540(4)	90	90	90
β (°)	96.231(9)	95.821(4)	108.009(4)	95.508(2)	90	92.145(3)
γ (°)	93.539(11)	93.214(4)	111.776(4)	90	90	90
V (Å ³)	1109.8(3)	1118.2(2)	2362.8(3)	4754.5(2)	5351.7(10)	2058.5(4)
Z	2	2	4	8	8	4
ρ_{calc} (g/cm ³⁾	1.471	1.719	1.448	1.683	1.183	2.344
μ (mm ⁻¹)	11.024	8.013	10.023	15.313	0.189	17.078
F(000)	500	564	1048	2352	2048	1320
θ range (°)	4.07 - 68.38°	3.69 - 51.48	2.65 - 68.53	3.09 - 68.39	2.11 to 25.35	2.53 - 56.70
Index	$-11 \le h \le 11$	$-12 \le h \le 12$	$-13 \le h \le 13$	$-10 \le h \le 13$	$-20 \le h \le 21$	$-7 \le h \le 7$
ranges	$-12 \le k \le 12$	$-12 \le k \le 12$	$-16 \le k \le 16$	$-21 \le k \le 21$	$-27 \le k \le 26$	$-28 \le k \le 28$
g	$-13 \le 1 \le 12$	$-13 \le 1 \le 11$	$-19 \le 1 \le 21$	$-27 \le 1 \le 27$	$-15 \le 1 \le 16$	$-21 \le 1 \le 21$
Refins coll.	14729	18501	34781	37832	10231	36083
Ind. reflns	$4033 [R_{int} = 0.0593]$	$4264 [R_{int} = 0.0725]$	$8638 [R_{int} = 0.0681]$	$8/10 [R_{int} = 0.0899]$	2390 [R(int) = 0.0350]	$10223 [R_{int}] = 0.0667]$
Data / restraints / parameters	4033 / 0 / 250	4264/0/250	8638 / 0 / 550	8710 / 0 / 559	2390 / 23 / 218	10223/1/469
Goodness- of-fit on F ²	1.053	1.034	1.057	1.012	1.079	1.009
R ₁ [I>2σ(I)]	0.0338	0.0370	0.0604	0.0411	0.0519	0.0364
wR ₂ [all data]	0.0875	0.0673	0.1643	0.0957	0.1414	0.0705

 Table S1. Crystallographic data for 1-6.

Computational Details

The computations were carried out with the Gaussian 09 suite of programs.¹ The structures were optimized using the ω B97XD functionals. We applied the def2-SVP basis set and we validated the calculations with def2-TZVP basis set implemented in Gaussian 09. At each of the optimized structures vibrational analysis was accomplished to check whether the stationary point located is a minimum or a saddle point of the potential energy hypersurface. We neglected the solvent-effect, because toluene was used as solvent, so the gas-phase computations simulated the reaction-conditions well. For Wiberg Bond Indexes and NPA charges the NBO program version 3.1 was employed.² The plotting of the orbitals was carried out with the AVOGADRO program (www.avogadro.cc).

Figure S20. Chemical structure of NHC-carbene with Cartesian X,Y,Z-coordinates (ωb97xd def2-TZVP).

scf done: -540.723559

С	0.004640	-0.001670	0.004960
С	0.004648	0.002192	1.359943
N	1.342368	0.002239	1.744223
С	2.183472	-0.008090	0.682455
N	1.342313	-0.011877	-0.379312
С	-1.160982	0.028810	2.287777
С	1.890975	-0.055945	3.098484
С	1.406931	1.080295	3.991267
С	1.891290	0.042113	-1.733590
С	1.398154	-1.090207	-2.626367
С	-1.161127	-0.019517	-0.922910
С	1.691918	-1.428165	3.731768
С	1.702969	1.415902	-2.366757
Η	2.958374	0.081466	2.927466
Η	2.957591	-0.103706	-1.562678
Η	-2.078915	0.180943	-0.372385
Η	-1.079079	0.740598	-1.700236
Η	-1.276183	-0.986920	-1.415938
Η	-1.268784	0.997054	2.780785
Η	-2.080230	-0.164760	1.737223
Η	-1.084669	-0.731895	3.065111
Η	2.012469	-1.132842	-3.527101
Η	1.478231	-2.049061	-2.113131
Η	0.364558	-0.948352	-2.942937
Η	2.239471	1.464008	-3.315966
Η	0.652862	1.633145	-2.568407
Η	2.095505	2.190177	-1.707357

- Н 2.228094 -1.480410 4.680943
- Н 0.640148 -1.637128 3.933509
- Н 2.078310 -2.205549 3.072397
- Н 2.021857 1.118265 4.891794
- Н 1.494305 2.038435 3.477886
- Н 0.372383 0.946542 4.308227

Figure S21. Chemical structure of BiPh₂PCO with Cartesian X,Y,Z-coordinates (ω b97xd def2-TZVP with contour value 0,05).

scf	done: -113	2.699499	
С	0.178933	0.034519	-0.059512
С	0.084326	-0.111317	1.322381
С	1.249800	-0.245630	2.067207
С	2.489362	-0.225693	1.442317
С	2.574975	-0.073909	0.067404
С	1.417052	0.056237	-0.684472
Bi	-1.966500	-0.214018	2.227461
С	-2.585568	1.815068	1.510055
С	-3.942077	2.128220	1.547999
С	-4.394364	3.361651	1.102892
С	-3.491346	4.292874	0.612711
С	-2.139272	3.989494	0.572876
С	-1.686702	2.756536	1.020318

Р	-1.345979	0.381058	4.741081
Η	-4.663535	1.412952	1.930364
Η	-5.451233	3.595142	1.139115
Η	-3.840973	5.256332	0.263527
Η	-1.430604	4.716165	0.195225
Η	-0.626336	2.538060	0.988784
Η	1.199208	-0.355511	3.144630
Η	3.390247	-0.324123	2.035175
Η	3.542460	-0.052996	-0.418274
Η	1.477160	0.178728	-1.758832
Η	-0.713710	0.151040	-0.665901
С	-0.613785	1.767891	4.205453
0	-0.086683	2.742549	3.887146

Table S2. Bond length and Wiberg-bond index of characteristic bonds.

Bond	Bond lengths	Wiberg-bond index
	(Å)	
Bi-P	2,657	0,76
P-C	1,657	1,72
C-0	1,153	1,93

 Table S3. Natural charges of main atoms.

Atom	Charge
Bi	+1,01
Р	-0,14
С	+0,31
0	-0,47

Figure S22. Chemical structure of SbPh₂PCO with Cartesian X,Y,Z-coordinates (ωb97xd def2-TZVP with contour value 0,05).

scf	done: -115	8.319675	
С	0.193646	0.238025	-0.004771
С	0.084726	-0.027820	1.358975
С	1.233279	-0.352294	2.073471
С	2.467765	-0.397376	1.441994
С	2.567406	-0.121877	0.087293
С	1.427954	0.196457	-0.635619
Sb	-1.871697	-0.082962	2.249146
С	-2.548762	1.818484	1.519423
С	-3.925804	2.028303	1.483993
С	-4.447589	3.228215	1.025439
С	-3.595026	4.231699	0.591901
С	-2.223014	4.032668	0.621781
С	-1.701207	2.833112	1.082503

Р	-1.299823	0.503007	4.675085
Η	-4.606698	1.251802	1.816903
Η	-5.519928	3.376755	1.003091
Η	-3.999388	5.168941	0.230606
Η	-1.553647	4.815149	0.286603
Η	-0.627220	2.694879	1.099557
Η	1.173738	-0.561292	3.135514
Η	3.353614	-0.646825	2.012596
Η	3.531622	-0.152443	-0.404294
Η	1.498569	0.415679	-1.693793
Η	-0.684492	0.496566	-0.586690
С	-0.452451	1.828004	4.143145
0	0.149280	2.756460	3.823278

 Table S4. Bond length and Wiberg-bond index of characteristic bonds.

Bond	Bond lengths (Å)	Wiberg-bond index
Sb-P	2,551	0,79
P-C	1,662	1,70
C-0	1,152	1,94

 Table S5. Natural charges of main atoms.

Atom	Charge
Sb	+0,97
Р	-0,13
С	+0,32
0	-0,46

Figure S23. Chemical structure of NHC-BiPh₂PCO complex with carthesian X,Y,Z-coordinates (ωb97xd def2-TZVP).

scf done: -1673.457288

N	2.182473	0.937557	-0.565611
С	1.576450	-0.266264	-0.574962
N	2.590499	-1.157322	-0.549933
С	3.825456	-0.520790	-0.507149
С	3.563509	0.809505	-0.521955
С	2.326610	-2.599586	-0.542490
С	2.553637	-3.211636	0.833441
С	5.149227	-1.203330	-0.474701
С	4.528514	1.942728	-0.472558
С	1.403970	2.179281	-0.676816
С	1.521830	2.784536	-2.069252
С	3.060196	-3.343054	-1.651566
С	1.702773	3.177986	0.431593
Bi	-1.020488	-0.897046	0.264061
Р	-3.513234	-0.890805	1.504627

-4.108282 -1.534845 С 0.115626 0 -4.548537 -1.987687 -0.859959 С -1.663234 0.519447 -1.371505 -1.066932 С 0.381312 -2.621475 С -1.446876 1.187232 -3.684817 С -2.423988 2.154316 -3.506657 С -3.030146 2.295177 -2.268039 С -2.660921 1.473747 -1.211393 С -0.381183 0.575578 1.853997 С 0.767682 0.285553 2.583768 С 1.187883 1.112894 3.615805 С 0.464577 2.254704 3.925131 -0.677769 2.558576 С 3.200464 С -1.099793 2.177121 1.720612 Η 0.376798 1.847465 -0.550920 Η 1.261274 -2.664819 -0.760852 Η 5.925344 -0.487060 -0.211944 Η 5.182285 -2.000431 0.267596 Η 5.410112 -1.636354 -1.441907 4.514355 Η 2.439995 0.498514 Η 5.538922 1.577927 -0.647522 Η 4.316550 2.692776 -1.233566 Η 2.619365 -4.333835 -1.767100 Η 2.963441 -2.816261 -2.601407 4.118586 Η -3.479430 -1.432786 0.819258 Η 2.273041 -4.265586 Η 3.597537 -3.146764 1.142242

Η	1.942206	-2.708150	1.583087
Η	0.791553	3.587797	-2.174809
Η	2.512078	3.203817	-2.254457
Η	1.306833	2.035725	-2.830519
Η	0.911638	3.927886	0.448312
Η	1.717884	2.687788	1.404351
Η	2.647648	3.699107	0.277817
Η	-3.181002	1.563511	-0.265084
Η	-3.805417	3.038110	-2.124919
Η	-2.720171	2.788740	-4.332846
Η	-0.976554	1.060912	-4.652668
Η	-0.282396	-0.352341	-2.771727
Η	-2.006764	1.967137	1.638443
Η	-1.248676	3.448415	3.436446
Η	0.789351	2.905241	4.727535
Η	2.081882	0.866180	4.175838
Η	1.359671	-0.592805	2.347929

Table S6. Bond length and Wiberg-bond index of characteristic bonds.

Bond	Bond lengths (Å)	Wiberg-bond index
N1-C1	1,348	1,28
N2-C1	1,350	1,27
C1-Bi	2,801	0,26
С2-О	1,162	1,86
P-C2	1,643	1,84
Bi-P	2,784	0,54

Table S7.	. Natural	charges	of main	atoms.
-----------	-----------	---------	---------	--------

Atom or unit	Charge
N1	-0,37
N2	-0,38
C1	+0,14
C2	+0,26
0	-0,51
Р	-0,23
Bi	+1,12
Carbene	+0,19

Figure S24. Chemical structure of NHC-SbPh₂PCO complex with Cartesian X,Y,Z-coordinates (ωb97xd def2-TZVP).

scf done: -1699.073067

- $C \quad 1.535949 \quad 2.693747 \quad 0.189223$
- C 0.740867 1.891601 -0.622081
- C -0.331840 2.483595 -1.284227
- C -0.605079 3.836049 -1.142826
- C 0.187398 4.619814 -0.317990

С	1.256607	4.043882	0.349880
Sb	1.100449	-0.210428	-1.006004
С	1.482640	-1.077587	0.939322
С	0.850604	-2.285872	1.220658
С	1.080054	-2.952613	2.414737
С	1.936571	-2.406169	3.358288
С	2.573321	-1.204453	3.090088
С	2.359577	-0.554957	1.881974
Р	3.701586	0.471619	-1.370352
С	4.060778	-1.128255	-1.278349
0	4.325002	-2.257257	-1.212887
С	-1.381438	-0.352472	-0.122339
N	-1.958837	0.218983	0.952616
С	-3.333702	0.025411	0.946227
С	-3.615656	-0.694810	-0.166681
N	-2.399415	-0.920834	-0.800266
С	-1.161020	0.883293	1.994242
С	-1.577878	2.328460	2.223008
С	-2.172985	-1.628950	-2.065543
С	-2.760180	-3.034710	-2.074137
С	-4.939406	-1.185188	-0.642479
С	-4.283633	0.560359	1.961437
С	-2.605267	-0.792756	-3.262260
С	-1.101793	0.060023	3.273222
Η	-0.159474	0.899763	1.577008
Η	-1.090292	-1.731035	-2.115000
Η	-5.736768	-0.664762	-0.115094

Η	-5.086635	-1.004791	-1.706809
Η	-5.066694	-2.254485	-0.464708
Η	-4.435816	1.634330	1.841272
Η	-5.250988	0.072656	1.856656
Η	-3.939554	0.384368	2.979098
Η	-2.324309	-3.594190	-2.902398
Η	-2.523760	-3.559915	-1.147958
Η	-3.841051	-3.036237	-2.210427
Η	-2.337841	-1.307227	-4.186072
Η	-3.681976	-0.618589	-3.275000
Η	-2.100450	0.173789	-3.253888
Η	-0.379175	0.511099	3.954332
Н	-2.062441	0.016919	3.787787
Η	-0.769165	-0.954986	3.059133
Н	-0.808279	2.825711	2.814041
Η	-1.663008	2.858660	1.274650
Η	-2.518708	2.411700	2.767283
Η	2.906616	0.354998	1.670213
Н	3.255508	-0.778443	3.815634
Η	2.114352	-2.919191	4.295131
Η	0.589026	-3.898540	2.608224
Η	0.159870	-2.716385	0.502884
Η	2.396329	2.274225	0.695362
Η	1.886411	4.649774	0.989675
Η	-0.023400	5.675295	-0.200120
Η	-1.439625	4.276961	-1.674391
Η	-0.974579	1.882445	-1.918752

Bond	Bond lengths	Wiberg-bond index
	(Å)	
N1-C1	1,347	1,28
N2-C1	1,349	1,27
C1-Sb	2,638	0,32
C2-O	1,161	1,87
P-C2	1,642	1,82
Sb-P	2,714	0,55

 Table S8. Bond length and Wiberg-bond index of characteristic bonds.

Table S9. Natural charges of main atoms.

Atom or unit	Charge
N1	-0,38
N2	-0,37
C1	+0,17
C2	+0,27
0	-0,51
Р	-0,23
Sb	+1,06
Carbene	+0,23

Figure S25. Chemical structure of NHC-C(O)PBiPh₂ complex with Cartesian X,Y,Z-coordinates (ωb97xd def2-TZVP).

scf done: -1673.469611

С	3.260243	-1.908602	1.567785
С	3.383675	-0.921309	0.593476
С	4.527893	-0.125712	0.605012
С	5.515454	-0.303832	1.563709
С	5.377302	-1.291644	2.527371
С	4.247540	-2.094818	2.526444
Bi	1.837473	-0.629560	-1.036163
С	1.577474	1.568592	-0.572297
С	1.154886	2.431517	-1.579249
С	0.942629	3.779490	-1.320617
С	1.146809	4.283264	-0.044934
С	1.562749	3.431276	0.969022
С	1.773253	2.084679	0.706185
Р	-0.154796	-1.289772	0.500521
С	-1.247919	-0.483447	-0.592019
0	-1.096070	0.034751	-1.714617
С	-2.620566	-0.261024	0.003036
N	-3.633972	-1.124702	0.063856
С	-4.729520	-0.487726	0.634798
С	-4.346413	0.786917	0.905269
N	-3.024164	0.905784	0.504192
С	-3.506768	-2.519784	-0.397946
С	-4.569823	-2.883832	-1.423973
С	-2.141940	2.093226	0.525178
С	-2.050291	2.720654	1.906315
С	-5.137016	1.880118	1.533299

-6.055851 С -1.125045 0.857520 -0.577034 С -2.531173 3.064896 С -3.433006 -3.481795 0.778014 0.972809 Η 2.051935 -2.578310 Η 0.614849 4.436897 -2.117471 Η 0.987442 5.335699 0.157239 Η 1.727831 3.817811 1.968140 Η 2.094630 1.430908 1.509070 Η 2.378736 -2.540044 1.596650 Η 4.129959 -2.865942 3.278624 6.145783 Η -1.432053 3.277648 Η 6.393805 0.330808 1.558268 4.652865 0.659673 Η -0.133858 -2.537063 -2.538548 Η -0.894020 Η -1.154423 1.699726 0.287819 -6.196467 1.633519 Η 1.505002 -4.853479 Η 2.033364 2.575585 Η -5.007014 2.825242 1.008601 Η -5.962802 -2.100798 1.332025 -6.658174 Η -0.499786 1.513221 -6.602998 Η -1.255199 -0.077323 Η -1.809986 3.881456 -0.593000 Η -2.495032 2.562017 -1.543136 -3.526064 3.487746 Η -0.425237 -1.217426 Η 3.423526 1.898791 Η -2.949716 3.269629 2.184134 -1.842423 1.962655 Η 2.662253

Η	-4.278785	-3.814816	-1.910817
Η	-5.548479	-3.043525	-0.972601
Η	-4.652115	-2.113580	-2.191115
Η	-3.226282	-4.485251	0.404504
Η	-2.622857	-3.194687	1.448438
Η	-4.367673	-3.520265	1.339024

 Table S10. Bond length and Wiberg-bond index of characteristic bonds.

Bond	Bond lengths	Wiberg-bond index
	(Å)	
N1-C1	1,332	1,30
N2-C1	1,333	1,30
C1-C2	1,513	0,93
C2-O	1,246	1,47
P-C2	1,743	1,42
Bi-P	2,601	0,91

 Table S11. Natural charges of main atoms.

Atom or unit	Charge
N1	-0,29
N2	-0,29
C1	+0,41
C2	+0,04
0	-0,68
Р	-0,24
Bi	+0,94
Carbene	+0,75

Figure S26. Chemical structure of NHC-C(O)PSbPh₂ complex with Cartesian X,Y,Z-coordinates (ω b97xd def2-TZVP).

scf done:	-1699.090604
-----------	--------------

- N -3.410275 -1.123139 -0.019538
- C -2.389142 -0.268841 -0.074650
- N -2.763583 0.880526 0.486062
- C -4.075218 0.759719 0.919726
- C -4.481236 -0.498599 0.608855
- C -1.037944 -0.477313 -0.723585
- O -0.916249 0.090641 -1.823122
- C -1.867377 2.057032 0.529138
- C -2.267412 3.069538 -0.531760
- C -4.834692 1.837447 1.609665
- C -5.806988 -1.131756 0.845933

С	-3.315553	-2.497742	-0.547057
С	-3.214664	-3.512429	0.581548
Р	0.081786	-1.340085	0.298699
Sb	2.002378	-0.677720	-1.182969
С	1.829187	1.421599	-0.676097
С	1.420207	2.328060	-1.650123
С	1.239713	3.670719	-1.344189
С	1.466173	4.126233	-0.054356
С	1.872564	3.231893	0.926603
С	2.048525	1.891052	0.617535
С	3.530503	-1.082382	0.298215
С	4.726599	-0.367356	0.248390
С	5.751898	-0.621370	1.146850
С	5.602655	-1.608993	2.109523
С	4.423344	-2.334592	2.166873
С	3.397000	-2.071583	1.269423
С	-4.416951	-2.801068	-1.551850
С	-1.741931	2.638907	1.927519
Η	1.223935	1.984044	-2.658882
Η	0.919911	4.361346	-2.115461
Η	1.331735	5.174551	0.184290
Η	2.055857	3.580276	1.936415
Η	2.359815	1.202575	1.394640
Η	2.477334	-2.641276	1.343131
Η	4.297175	-3.105681	2.917525
Η	6.401163	-1.810464	2.812949
Η	6.670357	-0.049124	1.093764

Η	4.862072	0.412503	-0.494188
Η	-2.363321	-2.505213	-1.076376
Η	-0.889387	1.661136	0.259269
Η	-5.895920	1.597190	1.614897
Η	-4.510612	1.958600	2.644230
Η	-4.718350	2.796537	1.107249
Η	-5.709576	-2.127213	1.276760
Η	-6.381953	-0.528831	1.545656
Η	-6.384695	-1.217033	-0.075505
Η	-1.537232	3.878308	-0.535555
Η	-2.257597	2.598610	-1.514370
Η	-3.253957	3.497928	-0.344646
Η	-0.898699	3.329417	1.926587
Η	-2.628244	3.191794	2.237871
Η	-1.532385	1.855502	2.656662
Η	-4.164754	-3.722722	-2.076666
Η	-5.385992	-2.949592	-1.076410
Η	-4.500986	-2.004216	-2.291138
Η	-3.036198	-4.500596	0.156506
Η	-2.376977	-3.266105	1.234177
Η	-4.129165	-3.563151	1.174084

 Table S12. Bond length and Wiberg-bond index of characteristic bonds.

Bond	Bond lengths	Wiberg-bond index
	(Å)	
N1-C1	1,333	1,30
N2-C1	1,333	1,30
C1-C2	1,513	0,93
C2-O	1,244	1,48
P-C2	1,745	1,41
Sb-P	2,515	0,92

Atom or unit	Charge
N1	-0,29
N2	-0,29
C1	+0,41
C2	+0,06
0	-0,67
Р	-0,24
Sb	+0,90
Carbene	+0,76

 Table S13. Natural charges of main atoms.

References

1. M. J. Frisch, G. W. T., H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09, Revision A.02, Gaussian 09, Revision A.02. *Gaussian Inc.*, *Wallingford CT* 2009.

2. Glendening, E. D.; Reed, A. E.; Carpenter, J. E.; Bohmann, J. A.; Morales, C. M.; Weinhold, F., In NBO 5.0., Theoretical Chemistry Institute, University of Wisconsin, Madison, 2001.