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1. Synthesis of pBAE polymers 

Synthesis of poly(β-amino ester)s (pBAEs) was performed via a two-step procedure, as previously 

described.[1] First, addition reaction of primary amines to an excess of diacrylates was used to 

synthesize an acrylate-terminated polymer (termed C6 polymer). Second, C6 polymer was end-capped 

with different thiol-terminated oligopeptides composed of Cys + 3 amino acids (Arg, Lys, His, Asp, or 

Glu). Synthesized structures were characterized by 1H-NMR, recorded in a 400 MHz Varian (NMR 

Instruments, Clarendon Hills, IL). The molecular weight of C6 polymer was determined by HPLC. 

C6 Polymer 

 

 32 



Figure S1: (A) Chemical structure of C6 polymer. (B) 1H-NMR of C6 polymer. 

1H-NMR (400MHz, Chloroform-d, TMS) (ppm): δ =6,41 (d, CH2=CH-), 6,15 (d, CH2=CH-), 5,87 

(d, CH2=CH-), 4.21 (br, CH2-O-C(=O)-CH=CH2), 4,11 (t, -CH2-CH2-O-), 3.64 (t, CH2-CH2-OH), 

2.79 (br, -CH2-CH2-N-), 2.46 (br, -N-CH2-CH2-C(=O)-O), 1.83 - 1.60 (br, -O-CH2-CH2-CH2-CH2-

O), 1.40- 1.18 (br, - CH2-CH2-CH2-CH2-OH, N-(CH2)2-CH2-(CH2)2-OH), 0.90 (t, CH2-CH2-CH3). 

 
 
 
 
 
 
 
 

 

Figure S2: Molecular weight of C6 Polymer was determined by HPLC. 
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C6-CR3 Polymer 

 
 
Figure S3: (A) Chemical structure of C6-CR3 polymer. (B) 1H-NMR of C6-CR3 polymer. 
 
1H-NMR (400MHz, Methanol-d4, TMS) (ppm): δ = 4.41-4.33 (br, NH2-C(=O)-CH-NH-C(=O)-CH-

NH-C(=O)-CH-NH-C(=O)-CH-CH2-, 4.16 (t, CH2-CH2-O), 3.58 (t, CH2-CH2-OH), 3.25 (br, NH2-

C(=NH)-NH-CH2-, OH-(CH2)4-CH2-N-), 3.04 (t, CH2-CH2-N-), 2.82 (dd, -CH2-S-CH2), 2.48 (br, -N-

CH2-CH2-C(=O)-O), 1.90 (m, NH2-C(=NH)-NH-(CH2)2-CH2-CH-), 1.73 (br, -O-CH2-CH2-CH2-

CH2-O), 1.69 (m, NH2-C(=NH)-NH-CH2-CH2-CH2-), 1.56 (br, -CH2-CH2-CH2-CH2-OH), 1.39 (br, -

N-(CH2)2-CH2-(CH2)2-OH), 0.88 (t, CH2-CH2-CH3). 

 

 

 

 34 



C6-CK3 Polymer 

 
 
Figure S4: (A) Chemical structure of C6-CK3 polymer. (B) 1H-NMR of C6-CK3 polymer. 
 
1H-NMR (400MHz, Methanol-d4, TMS) (ppm): δ = 4.38-4.29 (br, NH2-(CH2)4-CH-), 4.13 (t, CH2-

CH2-O-), 3.73 (br, NH2-CH-CH2-S-), 3.55 (t, CH2-CH2-OH), 2.94 (br, CH2-CH2-N-, NH2-CH2-

(CH2)3-CH-), 2.81 (dd, -CH2-S-CH2), 2.57 (br, -N-CH2-CH2-C(=O)-O), 1.85 (m, NH2-(CH2)3-CH2-

CH-), 1.74 (br, -O-CH2-CH2-CH2-CH2-O), 1.68 (m, NH2-CH2-CH2-(CH2)2-CH-), 1.54 (br, - CH2-

CH2-CH2-CH2-OH), 1.37 (br, N-(CH2)2-CH2-(CH2)2-OH), 0.88 (t, CH2-CH2-CH3). 
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C6-CH3 Polymer 

 

Figure S5: (A) Chemical structure of C6-CH3 polymer. (B) 1H-NMR of C6-CH3 polymer. 
 
1H-NMR (400MHz, Methanol-d4, TMS) (ppm): δ = 8.0-7.0 (br -N(=CH)-NH-C(=CH)-), 4.61-4.36 

(br, -CH2-CH-), 4.16 (t, CH2-CH2-O-), 3.55 (t, CH2-CH2-OH), 3.18 (t, CH2-CH2-N-), 3.06 (dd, -CH2-

CH-), 2.88 (br, OH-(CH2)4-CH2-N-), 2.82 (dd, -CH2-S-CH2-), 2.72 (br, -N-CH2-CH2-C(=O)-O), 1.75 

(br, -O-CH2-CH2-CH2-CH2-O), 1.65 (m, NH2-CH2-CH2-(CH2)2-CH-), 1.58 (br, -CH2-CH2-CH2-

CH2-OH), 1.40 (br, N-(CH2)2-CH2-(CH2)2-OH), 0.88 (t, CH2-CH2-CH3). 
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C6-CD3 Polymer 

 
 
Figure S6: (A) Chemical structure of C6-CD3 polymer. (B) 1H-NMR of C6-CD3 polymer. 
 
1H-NMR (400MHz, DMSO-d6, TMS) (ppm): δ = 4.56-4.44 (br, NH2-C(=O)-CH-NH-C(=O)-CH-

NH-C(=O)-CH-NH-C(=O)-CH-CH2-), 4.19 (br,NH2-CH-CH2-S), 4.00 (t, CH2-CH2-O), 3.34 (t, CH2-

CH2-OH), 2.98 (dd, -CH2-S-CH2), 2.57-2.48 (t, -CH-CH2-COO-), 2.40 (br, -N-CH2-CH2-C(=O)-O), 

1.60 (br, -O-CH2-CH2-CH2-CH2-O), 1.38 (br, -CH2-CH2-CH2-CH2-OH), 1.20 (br, -N-(CH2)2-CH2-

(CH2)2-OH), 0.88 (t, CH2-CH2-CH3). 

2. Synthesis of HPMA monomer 

N-(2-hydroxypropyl)methacrylamide (HPMA) monomer was synthesized by acylation of 1-

aminopropan-2-ol with methacryloyl chloride using anhydrous sodium hydrogen carbonate (NaHCO3). 

NaHCO3 was used as a base to quench HCl byproduct obtained during the HPMA synthesis. The 
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reaction was stirred in order to ensure that the two phases formed by NaHCO3 and organic DCM 

solvent were vigorously mixed. The reaction was carried out at -20 ºC and the final product was 

recrystallized from Et2O:MeOH (3:1). The chemical structure analyzed by 1H-NMR was in 

concordance with the previously described HPMA structure.[2]  

 

 

 

 

Figure S7: Synthesis of HPMA monomer. 

1H-NMR (200 MHz, CDCl3, TMS) (ppm): δ = 6.63 (s, 1H, NH), 5.71 (s, 1H, H- 3ii), 5.32 (t, 1H, H-

3i), 3.91 (m, 1H, H-6), 3.70 (d, 1H, OH), 3.46 (dq, 1H), 3.13 (m, 1H),1.94 (s, 3H, H-1), 1.16 (d, 3H, H-

7) 

IR (ATIR) ν = 659, 824, 845, 914, 1001, 1053, 1088, 1117, 1142, 1232, 1263, 1331, 1427, 1553, 1614, 

1653, 2933, 2976, 3275, 3306 cm-1 

3. Synthesis of Ma-acap-TT monomer 

Ma-acap-TT monomer was synthesized in two steps. First, Ma-acap-OH intermediate was obtained 

by acylation of aminocaproic acid with methacryloyl chloride in aqueous NaOH, in a procedure known 

as the Schotten-Baumann reaction (highly exothermic reaction). Then, Ma-acap-OH was recrystallized 

twice using EtOAc:Et2O. The intermediate Ma-acap-OH chemical composition was confirmed by 1H-

NMR and the results were in concordance with with previously described Ma-acap-OH structure by 

Šubr and colleagues.[3]  
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Once Ma-acap-OH intermediate was synthetized, Ma-acap-TT was obtained by acylation of 2-

thiazoline-2-thiol (TT) with the free carboxylic group of Ma-acap-OH using dicyclohexylcarbodiimide 

(DCC) and a catalytic amount of 4-dimethyl-aminopyridine (DMAP) in THF. The reaction was 

confirmed by the formation of white crystalline precipitate N,N’-dicyclohexylurea salt (DCU). Then, 

DCU salt was removed by filtration and the final product was recrystallized using ethanol. Chemical 

structure analysed by 1H-NMR was in concordance with previously described HPMA structure.[3] 

 

 

Figure S8: Synthesis of Ma-acap-TT monomer. 

1H-NMR (200 MHz, CDCl3, TMS) (ppm): δ = 5.86 (s, 1H, NH), 5.67 (s, 1H, H-3ii), 5.31 (t, 1H, H-3i), 

4.58 (t, 2H, H-13), 3.29 (m, 6H, H-5, H-9, H-12), 1.97 (s, 3H, H-1), 1.80 – 1.30 (m, 6H, H-6 H-7 H-8) 

IR (ATIR) ν = 677, 717, 878, 933, 1005, 1039, 1150, 1232, 1279, 1356, 1387, 1549, 1605, 1651, 1697, 

2855, 2930, 3284 cm-1 

4. Synthesis of pHPMA-TT copolymers 

HPMA (3.0 g, 20.9 mmol), Ma-acap-TT (0.7 g, 2.3 mmol), and AIBN (0.59 g, 3.6 mmol) were 

dissolved in dry DMSO (25.3 g, 17.1 mL), and allowed to polymerize by reversible addition-

fragmentation chain transfer (RAFT) reactions at 60 ºC for 6 hours under inert atmosphere. The 

presence of TT groups was confirmed by 1H-NMR. 
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Figure S9: (A) Chemical structure of pHPMA-TT polymer. (B) 1H-NMR of pHPMA-TT polymer. 
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5. Synthesis of pHPMA-TT-Mal copolymer  

 

 

Figure S10: Synthesis of pHPMA-TT-Mal polymer. 40% of TT-group from pHPMA-TT copolymer 

were modified using amino-maleimide. 

 

6. Characterization of VHPK-targeted NPs. 
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Figure S11: Characterization of VHPK-targeted NPs. (A) Hydrodynamic size, zeta-potential (Z-

Pot), and Polydispersity (PDI) of coated and non-coated pBAE NPs, and targeted and non-targeted 

pBAE NPs were determined by Dynamic Light Scattering (DLS) and Nanoparticle Tracking Analysis 

(NTA).  Results are shown as the mean ± s.e.m of triplicates. (B) Size distribution (left), bimodal 

distribution size-polydispersity (middle), and nanoparticle image (right) was determined by 

Nanoparticle Tracking Analysis. 

 

7. pHPMA coating optimization in C6-KH nanoparticles 

 Different pHPMA copolymer quantities were combined with the pBAE NPs in order to determine 

the optimal pHPMA/pBAE NP ratio (ranging from 3.12% to 50% w/w). NP synthesis was carried out 

as previously described, and their ability to deliver anti-miR-Cy3 was tested by flow cytometry.  

 

 

Figure S12: pHPMA coating optimization in C6-KH nanoparticles. Different pHPMA coating 

percentages were added over C6-KH pBAE NPs containing anti-miRNA-Cy3, ranging from 0 to 50% 

w/w. Their uptake efficiencies were analyzed by flow cytometry in iMAECs. Data are represented as 

mean ±  SEM (n = 3).  
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8. Non-selective uptake of VHPK-c-pBAE NPs in healty iMAECs 

 

Figure S13: Non-selective uptake of VHPK-c-pBAE NPs in healthy iMAECs. pBAE NPs 

containing anti-miR-Cy3 were coated with pHPMA-TT polymer (c-pBAE NP) and conjugated with 

VHPK peptide (VHPK-c-pBAE NP). Internalization efficiency was tested at 2 hours post-transfection 

using healthy iMAECs by flow cytometry. To assess VHPK-mediated internalization, the VCAM-1 

receptor in healthy iMAECs was blocked using excess VHPK peptide. Data are represented as mean ± 

SEM (n = 3). Multiple comparisons among groups were determined using one-way ANOVA followed 

by a post-hoc test. P-value: *p < 0.05, **p < 0.01, ***p < 0.001. 
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Figure S14: Mice weight monitoring after anti-miR-712 and anti-miR-SCR injection using 

VHPK-c-pBAE NP at 1 mg kg-1. n = 5, data shown as mean ± s.e.m. 

 

 

Figure S15: (A) Quality criteria of leftover (LO) smooth muscle cell-enriched layer was determined by 

analyzing PECAM-1 as an endothelial marker, SM22a as a smooth muscle cell marker and CD45 as an 

immune cell marker. Statistical significance was analyzed between PECAM-1 and SM22a markers. (B) 

miR-712 and (C) TIMP3 expression was analyzed in LO smooth muscle cell-enriched samples from 

RCA and LCA at 48 hours post-injection in PCL mice model. Data are represented as mean ±  SEM (n 
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= 4-6). Pairwise comparisons were determined using Student t-tests. P-value: *p < 0.05, **p < 0.01, 

***p < 0.001. 

 

 

Figure S16: miR-15a quantification in anti-miR-712 biodistribution study. Data are represented as 

mean ±  SEM (n = 5). Pairwise comparisons were determined using Student t-tests. P-value: *p < 0.05, 

**p < 0.01, ***p < 0.001. 

 

Primer Forward Sequence Reverse Sequence 

18S 5’-AGGAATTGACGGAAGGGCACCA-3’ 5’-GTGCAGCCCCGGACATCTAAG-3’ 

mPECAM1 5’-GCTGGTGCTCTATGCAAGC-3’ 5’-ATGGATGCTGTTGATGGTGA-3’ 

mSM22a 5’-CCTTCCAGTCCACAAACGAC-3’ 5’-GTAGGATGGACCCTTGTTGG-3’ 

mCD45 5’-CTTCAGTGGTCCCATTGTGGTG-3’ 5’-TCAGACACCTCTGTCGCCTTAG-3’ 

mTIMP3 5’-CACGGAAGCCTCTGAAAGTC-3’ 5’-TCCCACCTCTCCACAAAGTT-3’ 

mIL6 5’-TCCTCTGTGAAGTCTCCTCTCCGG-3’ 5’-TGGGACTGATGCTGGTGACAACCA-3’ 

mVCAM1 5’-GCTATGAGGATGGAAGACTCTGG-3’ 5’-ACTTGTGCAGCCACCTGAGATC-3’ 

mTNF-α 5’-TGCTGGGAAGCCTAAAAG-3’ 5’-CGAATTTTGAGAAGATGATCCTG-3’ 

 

Table S1: Primers sequences used for qPCR analysis. 
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