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1. FMRIPREP Processing Steps

Functional data were first minimally preprocessed using FMRIPREP version 1.0.7 (Esteban
et al., 2019), a Nipype (Gorgolewski et al., 2011, 2017) based tool. Each T1w (T1-weighted) vol-
ume was corrected for INU (intensity non-uniformity) using N4BiasFieldCorrection v2.1.0 (Tusti-
son et al., 2010) and skull-stripped using antsBrainExtraction v2.1.0 (using the OASIS template).
Brain surfaces were reconstructed using recon-all from FreeSurfer v6.0.0 (Dale et al., 1999), and
the brain mask estimated previously was refined with a custom variation of the method to recon-
cile ANTs-derived and FreeSurfer-derived segmentations of the cortical gray-matter of Mindbog-
gle (Klein et al., 2017). Spatial normalization to the ICBM 152 Nonlinear Asymmetrical template
version 2009c (Fonov et al., 2009) was performed through nonlinear registration with the antsReg-
istration tool of ANTs v2.1.0 (Avants et al., 2008), using brain-extracted versions of both T1w
volume and template. Brain tissue segmentation of cerebrospinal fluid (CSF), white-matter (WM),
and gray-matter (GM) was performed on the brain-extracted T1w using fast (Zhang et al., 2001;
FSL v5.0.9).

Functional data was slice time corrected using 3dTshift from AFNI v16.2.07 (Cox, 1996) and
motion corrected using mcflirt (Jenkinson et al., 2002; FSL v5.0.9). This was followed by co-
registration to the corresponding T1w using boundary-based registration (Greve and Fischl, 2009)
with 9 degrees of freedom, using bbregister (FreeSurfer v6.0.0). Motion correcting transforma-
tions, BOLD-to-T1w transformation, and T1w-to-template (MNI) warp were concatenated and
applied in a single step using antsApplyTransforms (ANTs v2.1.0) using Lanczos interpolation.

Physiological noise regressors were extracted from mean signal within CSF and WM. Frame-
wise displacement (FD; Power et al., 2014) was calculated for each functional run using the im-
plementation of Nipype.

Many internal operations of FMRIPREP use Nilearn (Abraham et al., 2014), principally within
the BOLD-processing workflow. For more details of the pipeline see http://fmriprep.readthedocs.
io/en/latest/workflows.html.

2. Relationship between In-Scanner Motion and ADHD Symptoms and Task Performance

As stated in the Main Text, we chose to not match participants in the attention-deficit/hyperactivity
disorder (ADHD) and typically developing (TD) groups on mean raw FD, quantified before mo-
tion correction, given evidence that head motion is correlated with ADHD symptomatology due
to shared genetic factors (Couvy-Duchesne et al., 2016). To determine whether this relationship
was the case in our sample, we correlated mean raw FD with ADHD symptomatology (hyper-
activity/impulsivity and inattention) and metrics of go/no-go (GNG) performance often impaired
in ADHD (commission errors [ComErr] and the log-transformed tau component of the response
time distribution) across all participants. We used the false discovery rate (FDR) correction for 4
comparisons. We found that mean raw FD was significantly correlated with symptoms of hyper-
activity/impulsivity (r = 0.29, corrected p = .016) and inattention (r = 0.30, corrected p = .016),
with a nonsignificant trend toward a correlation with GNG ComErr (r = 0.21, corrected p = .070).
Mean FD was not correlated with tau (r = 0.12, corrected p = .28). The finding that raw mean FD
was related to behavioral metrics of interest in our sample underscores the importance of allowing
group differences in raw mean FD in our participants.
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3. Motion-Related Quality Assurance

Due to the fact that we did not match groups on in-scanner motion, we took extra steps to
ensure that group differences in motion did not drive our findings. Importantly, while children with
ADHD had significantly higher mean FD than TD children before any data processing (see Table
1 in the Main Text), after processing FD significantly decreased for both ADHD and TD children
for both the scrubbed and the unscrubbed data (ADHD scrubbed: t(42) = 15.46, p < 1E-18,
mean FD post-processing = 0.018; ADHD unscrubbed: t(42) = 15.64, p < 1E-18, mean FD post-
processing = 0.018; TD scrubbed: t(42) = 18.46, p < 1E-21, mean FD post-processing = 0.015; TD
unscrubbed: t(42) = 19.03, p < 1E-21, mean FD post-processing = 0.016). The groups no longer
had significantly different FD after processing for the unscrubbed data (t(84) = 1.70, p = .092),
although they did for the scrubbed data (t(84) = 2.00, p = .048). Further, to ensure that motion
did not differentially impact the quality of the post-processed data across groups, we calculated
recommended post-processing quality control metrics (Ciric et al., 2017, 2018) using the same
264-node functional atlas (Power et al., 2011) used to develop these metrics. We calculated the
metrics separately for each group and for the scrubbed and the unscrubbed data. We compared the
groups on the relationship between residual (post-processing) motion and functional connectivity
(FC) strength (scrubbed: r = 0.144 for ADHD; r = 0.138 for TD; unscrubbed: r = 0.114 for ADHD;
r = 0.127 for TD), the percentage of FC edges significantly related to motion (scrubbed: 0.006%
for ADHD; 0% for TD; unscrubbed: 0% for ADHD; 0% for TD), and the relationship between
edge length and motion (scrubbed: r = -0.132 for ADHD; r = -0.068 for TD; unscrubbed: r =
-0.024 for ADHD; r = 0.004 for TD). Our values for percentage of FC edges related to motion
and the relationship between edge length and motion are either comparable or lower numerically
than those reported in the literature (values reported for the recommended processing pipelines: %
edges 0.28% – 10.29%; edge length-motion relationship -0.243 – -0.116), and our values for the
relationship between motion and FC strength are slightly higher (our range 0.127 – 0.144 versus
a range of 0.042 – 0.059 for the recommended processing pipelines). We note that despite our
relationship between motion and FC strength being higher, it is still quite low and comparable
across groups. See Figure S1 for depiction of quality control metrics. Critically, no brain-related
outcomes of interest were correlated with mean FD after processing (r-values ranged from -0.14 –
0.06; all p-values FDR-corrected for 6 brain-related outcomes of interest > .84).
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Figure S1: Residual effects of motion in the TD and ADHD groups after post-processing using quality metrics from
Ciric et al. (2017) for a) scrubbed and b) unscrubbed data. The top panel depicts the distribution and absolute median
correlation of quality control (QC)-functional connectivity (FC) correlations between participant motion (framewise
displacement; FD) and edge strength (r). The bottom panel depicts distant-dependent effects of motion using density
plots (x-axis: Euclidean distance between each pair of regions of interest; y-axis = QC-FC correlation of that edge
pair). Plots were generated using eXtensible Connectivity Pipeline (XCP) software (https://github.com/PennBBL/
xcpEngine; Ciric et al., 2018). Values of quality metrics in the current dataset are comparable to those reported in
Ciric et al. (2017).

In addition to calculating the above quality control metrics, we ran several sensitivity analyses
accounting for motion in different ways to ensure that the results reported in the Main Text were
not driven by our particular methodological decisions. Specifically, we: (1) included mean FD
as an additional covariate in all analyses; (2) included DVARS as an additional covariate in all
analyses; (3) conducted analyses with unscrubbed, as opposed to scrubbed, data; and (4) used
a motion-matched sample of participants. All analyses were corrected for multiple comparisons
using procedures identical to those specified in the Analyses section of the Main Text. Only results
of analyses reported as significant in the Main Text are included below. No results were found to
be significant in the sensitivity analyses that were not significant in the Main Text.

See Tables S1 and S2 for comparison of results across sensitivity analyses and below sections
for a detailed description of the results for each sensitivity analysis.

3.1. Replicating Results Controlling for Mean FD
First, we repeated analyses controlling for head motion (mean FD) in addition to mean FC

and age. Specifically, we ran one-way ANCOVAs with group as the factor and mean FC, age, and
mean FD as the covariates to compare static mean participation coefficient (PC) and within-module
degree (WD), as well as time-varying coefficient of variation of PC (CVPC) and of WD (CVWD),
across groups. Pearson’s correlations (partial correlations controlling for mean FC, age, and mean
FD) were conducted to relate graph metrics to performance on the GNG task, separately for each
group. With regard to whole-network static FC analyses, there were significant differences between
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ADHD and TD groups for mean whole-network PC (F(1,70) = 4.05, p = .048) and mean whole-
network WD (F(1,70) = 6.16, p = .016). When assessing PC of specific network pairs, there was a
significant group difference in PC between the DMN and FP networks (F(1,70) = 8.71, corrected
p = .017). All static FC group differences were consistent with analyses reported in the Main Text.
Correlations with ComErr in participants with ADHD were in the same direction as those reported
in the Main Text, although did not reach our corrected significance threshold of FDR-corrected p
< .05. Specifically, there was a trend toward whole-network PC being correlated with ComErr
(r = 0.31, corrected p = .099), as well as the DMN-SM network pair PC being correlated with
ComErr (r = 0.38, corrected p = .066). The DMN-SAL network pair PC was not correlated with
ComErr (r = 0.28, corrected p = .16), although the relationship was in the same direction. Finally,
the relationship between time-varying whole-network CVPC and ComErr was consistent with that
reported in the Main Text (r = -0.36, corrected p = .024). Notably, no results from this set of
analyses changed significantly when conducting direct comparisons between those reported in the
Main Text and here (all z-values ≤ 0.37, all p-values ≥ .71, uncorrected).

3.2. Replicating Results Controlling for DVARS
Next, we repeated analyses controlling for DVARS in addition to mean FC and age. DVARS

is a measure of the change in BOLD signal across timepoints. DVARS is high during periods of
high motion, thus it is another measure of motion artifact (Power et al., 2012). Specifically, we
ran one-way ANCOVAs with group as the factor and mean FC, age, and DVARS as the covariates
to compare static mean PC and WD, as well as time-varying CVPC and CVWD, across groups.
Pearson’s correlations (partial correlations controlling for mean FC, age, and DVARS) were con-
ducted to relate graph metrics to performance on the GNG task, separately for each group. With
regard to whole-network static FC analyses, there were significant differences between ADHD and
TD groups for mean whole-network PC (F(1,70) = 4.02, p = .049) and mean whole-network WD
(F(1,70) = 6.04, p = .016). When assessing PC of specific network pairs, there was a significant
group difference in PC between the DMN and FP networks (F(1,70) = 8.46, corrected p = .020).
All static FC group differences were consistent with analyses reported in the Main Text. Corre-
lations with ComErr in participants with ADHD were in the same direction as those reported in
the Main Text, although they did not reach our corrected significance threshold of FDR-corrected
p < .05. Specifically, there was a trend toward whole-network PC being correlated with ComErr
(r = 0.34, corrected p = .068), as well as DMN-SAL and DMN-SM network pair PC values being
correlated with ComErr (r = 0.34, corrected p = .068 and r = 0.38, corrected p = .065 respectively).
Finally, the relationship between time-varying whole-network CVPC and ComErr was consistent
with that reported in the Main Text (r = -0.39, corrected p = .012). Notably, no results from this set
of analyses changed significantly when conducting direct comparisons between those reported in
the Main Text and here (all z-values ≤ 0.11, all p-values ≥ .91, uncorrected).

3.3. Replicating Results Using Unscrubbed Data
Third, we used unscrubbed, instead of scrubbed, data as input into our analyses. For this

analysis, we used models identical to those in the Main Text that controlled for mean FC and
age for both the group difference ANCOVAs and the partial correlations with behavior. We only
conducted static FC analyses for this method, as the time-varying FC analyses reported in the
Main Text used unscrubbed data. The whole-network results were not significant, although they
were in the same direction as those reported in the Main Text. That is, participants with ADHD had
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numerically higher whole-network PC and whole-network WD than TD participants (PC: ADHD
= 0.713, TD = 0.707 [as compared to 0.717 and 0.709 with scrubbed data]; WD: ADHD = 8.45,
TD = 8.21 [as compared to 8.79 and 8.36 with scrubbed data]). Similar to the network pair analysis
in the Main Text, DMN-FP PC was significantly higher in participants with ADHD as compared
to TD participants (F(1,78) = 7.80, corrected p = .026). Additionally, correlations between brain
metrics and ComErr in participants with ADHD were in the same direction as those reported in
the Main Text, although they did not reach our significance threshold of FDR-corrected p < .05.
Specifically, the correlation between whole-network PC and ComErr was r = 0.29 (corrected p =
.13), as compared to r = 0.35 (corrected p = .049) with scrubbed data. For network pair analyses,
the correlation between DMN-SAL PC and ComErr was r = 0.30 (corrected p = .12), as compared
to r = 0.36 (corrected p = .043) with scrubbed data; and the correlation between DMN-SM PC
and ComErr was similarly r = 0.30 (corrected p = .12), as compared to r = 0.38 (corrected p =
.043) with scrubbed data. Notably, no results from this set of analyses changed significantly when
conducting direct comparisons between those reported in the Main Text and here (all z-values ≤
0.61, all p-values ≥ .54, uncorrected).

3.4. Replicating Results in a Motion-Matched Sample
Finally, we used data processing and models identical to those in the Main Text with a subsam-

ple of our participants who were matched for motion. This analysis included 29 participants with
ADHD (mean age 10.07, 12 girls, mean FD = 0.121) and 29 TD participants (mean age 10.17,
13 girls, mean FD = 0.121). Motion was not significantly different across the groups (Welch’s
t(55.74) = 0.009, p = .99). As expected, given the small sample size, results in general were not
statistically significant, although as with the other sensitivity analyses they were in the same di-
rection as those reported in the Main Text. Specifically, while there were no significant group
differences in static FC brain metrics (whole-network PC, whole-network WD, or DMN-FP PC;
all corrected p-values > .30), they were all numerically higher in ADHD, as compared to TD, par-
ticipants (whole-network PC: ADHD = 0.713, TD = 0.711; whole-network WD: ADHD = 8.57,
TD = 8.54; DMN-FP PC: ADHD = 0.370, TD = 0.358). Notably, the magnitude of correlations
between brain metrics and ComErr in the participants with ADHD were numerically larger than
those of the full sample, although with the smaller sample size they did not reach statistical sig-
nificance. Specifically, the correlation between whole-network static PC and ComErr was r = 0.41
(corrected p = .065), as compared to r = 0.35 (corrected p = .049) with the full sample. For static
network pair analyses, the correlation between DMN-SAL PC and ComErr was r = 0.37 (corrected
p = .080), as compared to r = 0.36 (corrected p = .043) with the full sample; and the correlation
between DMN-SM PC and ComErr was r = 0.42 (corrected p = .080), as compared to r = 0.38
(corrected p = .043) with the full sample. The correlation between whole-network time-varying
CVPC and ComErr was was statistically significant as in the Main Text (r = -0.51, corrected p =
.007). Notably, no results from this set of analyses changed significantly when conducting direct
comparisons between those reported in the Main Text and here (all z-values ≤ 1.21, all p-values ≥
.23, uncorrected).
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Table S1: Impact of different methods of controlling for motion on significant group differences reported in the Main
Text.

Analysis
Main Text FD DVARS Unscrubbed Matched

F (p); df =1,78 F (p); df =1,70 F (p); df =1,70 F (p); df =1,78 F (p); df =1,50
Static FC
Whole-network PC 4.08 (.047) 4.05 (.048)* 4.02 (.049)* 2.16 (.146) 0.12 (.728)
Whole-network WD 6.45 (.013) 6.16 (.016)* 6.04 (.016)* 1.73 (.192) 0.01 (.911)
DMN-FP PC 8.81 (.016) 8.71 (.017)* 8.46 (.020)* 7.80 (.026)* 3.25 (.309)

Results of significant group difference ANCOVAs covarying for mean functional connectivity (FC) and age as reported
in the Main Text, when additionally controlling for mean FD (FD) or DVARS (DVARS), when inputting unscrubbed,
instead of scrubbed, data (Unscrubbed), and when using a motion-matched subgroup of subjects (Matched). Whole-
network includes DMN, FP, SAL, SM and SUB networks. All p-values are FDR-corrected for multiple comparisons
as in the Main Text. * = consistent significant group difference when compared to main analysis (corrected p < .05).

Table S2: Impact of different methods of controlling for motion on significant correlations between brain metrics and
behavior in participants with ADHD reported in the Main Text.

Analysis
Main Text FD DVARS Unscrubbed Matched

r (p) r (p) r (p) r (p) r (p)
Static FC
Whole-network PC 0.35 (.049) 0.31 (.099)˜ 0.34 (.068)˜ 0.29 (.126) 0.41 (.065)˜
DMN-SAL PC 0.36 (.043) 0.28 (.155) 0.34 (.068)˜ 0.30 (.122) 0.37 (.080)˜
DMN-SM PC 0.38 (.043) 0.38 (.066)˜ 0.38 (.065)˜ 0.30 (.122) 0.42 (.080)˜

Time-Varying FC
Whole-network CVPC -0.41 (.008) -0.36 (.024)* -0.39 (.012)* N/A -0.51 (.007)*

Results of significant partial correlations between brain metrics and go/no-go (GNG) commission errors (ComErr)
covarying for mean functional connectivity (FC) and age as reported in the Main Text, when additionally controlling
for mean FD (FD) or DVARS (DVARS), when inputting unscrubbed, instead of scrubbed, data (Unscrubbed), and
when using a motion-matched subgroup of subjects (Matched). Whole-network includes DMN, FP, SAL, SM and
SUB networks. Unscrubbed sensitivity analysis not relevant to time-varying FC, as Main Text analyses are on un-
scrubbed data. All p-values are FDR-corrected for multiple comparisons as in the Main Text. * = consistent significant
correlation when compared to main analysis (corrected p < .05); ˜ = nonsignificant trend toward a correlation in the
same direction when compared to main analysis (corrected p < .10).

3.5. Summary of Sensitivity Analysis Findings
As stated above, we conducted a series of sensitivity analyses to ensure that the results reported

in the Main Text were not driven by head motion. Overall, results were remarkably similar when
controlling for individual subject motion (using either FD or DVARS), and generally consistent
when using unscrubbed timeseries or when including a motion-matched group of participants (Ta-
bles S1 and S2). While not all results were statistically significant, they were uniformly in the
same direction and similar in magnitude to those reported in the primary analyses in the Main
Text. As stated above in each individual section, no results from the sensitivity analyses signifi-
cantly changed from those reported in the Main Text. Thus, nonsignificant results are not likely to
have been due to significant effects of head motion artifacts in the analyses reported in the Main
Text. Instead, they are more likely to have been due to a combination of reduced degrees of free-
dom in the case of controlling for additional variables, increased noise in the unscrubbed data,
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and reduced power in the motion-matched subsample. As motion was correlated with symptoms
of ADHD in our subjects (hyperactivity/impulsivity: r = 0.29, corrected p = .016; inattention: r
= 0.30, corrected p = .016), it is likely that by covarying for mean FD or DVARS we removed
signal in addition to noise from our models. Moreover, restricting our ADHD group to one with
reduced motion in our motion-matched analysis likely resulted in a non-representative sample of
children with ADHD, which could explain the reduction in group differences we observed. Non-
significant results using the unscrubbed data could have been due to the increased noise inherent in
unscrubbed data, particularly as related to motion artifacts (Ciric et al., 2017; Parkes et al., 2018).
Critically, as it was necessary to use unscrubbed data for the time-varying FC analyses to ensure
temporal contiguity, all sensitivity analyses of the time-varying analyses that included additional
methods to control for motion remained statistically significant (all corrected p-values < .025 for
the correlation between whole-network time-varying PC and ComErr in participants with ADHD).
In other words, even though unscrubbed data is noisier and more susceptible to motion artifacts,
when carefully controlling for motion the time-varying results remained consistent. Given the con-
sistency between the above sensitivity analyses and the results reported in the Main Text, we are
confident that our findings are not spurious as a result of increased head motion in the ADHD, as
compared to the TD, participants

4. Static Functional Connectivity of non-DMN Pairs of Networks

Our main analyses focused on integration between the DMN and other networks included in
our analyses (FP, SAL, SM, and SUB). To determine whether our results were specific to the DMN,
we conducted exploratory post-hoc analyses quantifying group differences in PC, our measure of
network integration, for all non-DMN network pairs (FP-SAL, FP-SM, FP-SUB, SAL-SM, SAL-
SUB, SM-SUB). We used the same methods as described in the Analyses section of the Main
Text (one-way ANCOVAs covarying for mean FC and age to assess group differences, and partial
correlations controlling for mean FC and age to relate graph metrics to behavior). We corrected
the following tests for six comparisons (one per network pair) using an FDR correction.

We found significantly higher PC in ADHD as compared to TD participants for the FP-SM
and FP-SUB network pairs (FP-SM: mean ADHD = 0.447, mean TD = 0.428, F(1,78) = 6.37,
corrected p = .048; FP-SUB: mean ADHD = 0.416, mean TD: 0.403, F(1,78) = 6.07, corrected
p = .048), with a trend toward higher PC in ADHD for the SAL-SM network pair (mean ADHD
= 0.460, mean TD = 0.449, F(1,78) = 4.46, corrected p = .076). All other corrected p-values >
.29. While we observed no significant correlations between PC and ComErr for any of the non-
DMN network pairs, we did observe trends toward correlations between FP-SUB PC and ComErr
(r = 0.35, corrected p = .077) and between SAL-SUB PC and ComErr (r = 0.36, corrected p =
.077) in the participants with ADHD. All other corrected p-values > .32. The correlation between
SAL-SUB PC and ComErr was significantly stronger in the ADHD than in the TD participants (z =
2.67, p = .008), while there was no significant difference across groups in the correlation between
FP-SUB PC and ComErr (z = 1.25, p = .21). Finally, we observed a trend toward a correlation
in TD participants between FP-SAL PC and ComErr (r = 0.39, corrected p = .072), with all other
corrected p-values > .36. Although this relationship was not observed in the participants with
ADHD, the magnitude of the relationship did not differ between groups (z = 0.83, p = .41). Results
are summarized in Table S3.
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Table S3: Mean participation coefficient (PC) and correlations with commission errors (ComErr) for each non-DMN
network pair for ADHD and TD participants.

Networks ADHD TD
Group difference Correlations

F-value p-value ADHD ComErr TD ComErr
(df =1,78) (FDR-corr) r (FDR-corr p) r (FDR-corr p)

FP-SAL 0.458 0.457 0.05 .969 0.22 (.330) 0.39 (.072)˜
FP-SM 0.447 0.428 6.37 .048* -0.04 (.797) -0.04 (.803)
FP-SUB 0.416 0.403 6.07 .048* 0.35 (.077)˜ 0.08 (.767)
SAL-SM 0.460 0.449 4.46 .076˜ -0.19 (.362) -0.21 (.370)
SAL-SUB 0.391 0.385 1.71 .292 0.36 (.077)˜ -0.22 (.370)
SM-SUB 0.369 0.369 0.001 .969 -0.17 (.362) 0.07 (.767)

Group difference ANCOVAs and Pearson correlations covarying for mean functional connectivity (FC) and age. All
p-values are FDR-corrected for multiple comparisons. * = significant (p < .05); ˜ = nonsignificant trend (p < .10)

5. Static Functional Connectivity Using DMN Subnetworks

Some literature has demonstrated that the DMN may consist of several subnetworks that inter-
act differentially with other brain networks (Andrews-Hanna et al., 2010; Buckner and DiNicola,
2019; Dixon et al., 2017). To explore this possibility in our participants, we used community de-
tection to identify subnetworks of the predefined DMN nodes used in the main analysis (Power
et al., 2011). Consensus clustering was performed on an average network consisting of all partici-
pants (TD and ADHD combined; Lanchichinetti and Fortunato, 2012). To perform the consensus
clustering, first connectivity matrices of DMN nodes were averaged across all participants and
thresholded at 0 (i.e., only positive connections were retained). The Louvain community detection
algorithm was implemented 150 times on the average, weighted graph using a resolution parameter
(γ) ranging from 1 to 1.5 in steps of 0.25. Next, an agreement matrix was constructed, with each
cell containing the proportion of times a given pair of nodes was assigned to the same network.
The weighted agreement matrix was thresholded at 0.5, indicating that a given pair of nodes was
assigned to the same network at least 50% of the time. Finally, a consensus partition was obtained
from the agreement matrix by implementing the Louvain community detection algorithm 100 times
on the agreement matrix to obtain a single, representative partition. The Brain Connectivity Tool-
box was used to partition the DMN into subnetworks (www.brain-connectivity-toolbox.net; Ru-
binov and Sporns, 2010). A γ value of 1.25 returned 3 subnetworks, which is in line with what
previous studies have reported (Andrews-Hanna et al., 2010; Dixon et al., 2017), and thus all anal-
yses were conducted using subnetworks defined from a γ of 1.25. Following community detection,
these three DMN subnetworks, along with the 4 predefined task-relevant networks described in
the Main Text (FP, SAL, SM, and SUB), were used in analyses to probe whether different DMN
subnetworks differentially interacted with each of the task-relevant networks. To do so, we re-
peated static FC analyses investigating inter-network integration between individual network pairs
involving the DMN, separately for each DMN subnetwork. That is, we conducted one-way AN-
COVAs with group as the factor and mean FC and age as the covariates to compare mean PC of
each network pair across groups. Pearson’s correlations (partial correlations controlling for mean
FC and age) were conducted to relate PC to ComErr on the GNG task, separately for each group.
All analyses were FDR-corrected for 12 comparisons, corresponding to the number of network
pairs tested (3 DMN sub-networks x 4 task-relevant networks). Results are presented in Table S4.
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Table S4: Mean participation coefficient (PC) and correlations with commission errors (ComErr) for each DMN
subnetwork pair for ADHD and TD participants.

Networks ADHD TD
Group difference Correlations

F-value p-value ADHD ComErr TD ComErr
(df =1,78) (FDR-corr) r (FDR-corr p) r (FDR-corr p)

DMN1-FP 0.426 0.408 6.42 .058˜ 0.30 (.092)˜ -0.04 (.941)
DMN2-FP 0.449 0.424 13.08 .003* 0.35 (.058)˜ -0.03 (.941)
DMN3-FP 0.423 0.383 17.24 .001* 0.18 (.294) 0.05 (.941)
DMN1-SAL 0.348 0.347 0.01 .975 0.31 (.092)˜ -0.07 (.941)
DMN2-SAL 0.424 0.411 3.01 .173 0.48 (.016)* -0.01 (.967)
DMN3-SAL 0.378 0.350 5.70 .058˜ 0.36 (.058)˜ 0.04 (.941)
DMN1-SM 0.363 0.372 0.72 .597 0.43 (.033)* -0.03 (.941)
DMN2-SM 0.407 0.407 0.001 .975 0.37 (.058)˜ -0.09 (.941)
DMN3-SM 0.395 0.401 0.36 .733 0.27 (.112) -0.05 (.941)
DMN1-SUB 0.408 0.403 0.22 .764 0.13 (.413) -0.05 (.941)
DMN2-SUB 0.404 0.393 1.55 .372 0.30 (.092)˜ -0.06 (.941)
DMN3-SUB 0.398 0.377 4.33 .098˜ 0.21 (.214) 0.04 (.941)

Group difference ANCOVAs and partial correlations covarying for mean functional connectivity (FC) and age. All
p-values are FDR-corrected for multiple comparisons. * = significant (p < .05); ˜ = nonsignificant trend (p < .10)

While the three subnetworks of the DMN identified in our participants involved nodes that
were largely intermixed, there were some differences in node distribution (Figure S2). For exam-
ple, DMN2 involved mostly anterior and posterior medial nodes, including regions considered to
constitute the core DMN (anterior medial prefontal cortex, posterior cingulate cortex; Andrews-
Hanna et al., 2010). DMN1 and DMN3, on the other hand, involved more lateral nodes. The
nodes of DMN1 were mostly posterior and included the posterior cingulate cortex, precuneus,
lateral occipital cortex, lateral temporal cortex, and parahippocampal gyrus. These regions span
those considered to be part of multiple DMN subsystems as defined in extant literature (Andrews-
Hanna et al., 2010; Dixon et al., 2017). Similarly, the nodes of DMN3 nodes spanned multiple
DMN subsytems. Nodes of DMN3 were more distributed throughout both anterior and posterior
regions as compared to DMN1, and included lateral occipital cortex, lateral temporal cortex, tem-
poral fusiform cortex, lateral parietal cortex, anterior medial prefrontal cortex, and ventromedial
prefrontal cortex. Notably, while initial literature defining DMN subsystems observed three spa-
tially distinct subsystems (medial core, dorsal medial subsystem, and medial temporal subsystem;
Andrews-Hanna et al., 2010; Dixon et al., 2017), more recent literature has observed parallel, spa-
tially similar subsystems (Buckner and DiNicola, 2019). The DMN subsystems we observed are
more in line with parallel subsystems, although literature to date has used data from healthy young
adult participants and used different regions of interest, thus future research is needed to deter-
mine whether the differences we observed are due to methodological differences or participant
characteristics.
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DMN1
DMN2
DMN3

Figure S2: Regions of interest (ROIs) depicting the three default mode network (DMN) subnetworks. ROIs taken from
Power et al., 2011.

We assessed group differences in PC between each DMN subnetwork and the four task-related
networks. Consistent with the significant DMN-FP group difference observed when consider-
ing the DMN as a unitary network (corrected p-value = .016), we observed that participants with
ADHD had significantly higher PC between the FP network and both DMN2 (mean ADHD: 0.449,
mean TD: 0.424, F(1,78) = 13.08, corrected p = .003) and DMN3 (mean ADHD: 0.423, mean TD:
0.383, F(1,78) = 17.24, corrected p = .001), with a nonsignificant trend in the same direction be-
tween FP and DMN1 (mean ADHD: 0.426, mean TD: 0.408, F(1,78) = 6.42, corrected p = .058).
Additionally, there were nonsignificant trends toward higher PC in participants with ADHD be-
tween DMN3 and both the SAL (mean ADHD: 0.378, mean TD: 0.350, F(1,78) = 5.70, corrected
p = .058) and the SUB (mean ADHD: 0.398, mean TD: 0.377, F(1,78) = 4.33, corrected p = .098)
networks.

Next we assessed relationships between inter-network PC and ComErr on the GNG task, sep-
arately for ADHD and TD participants. In analyses for which we considered the DMN a unitary
network, we observed significant positive correlations in participants with ADHD between DMN-
SAL PC and ComErr and between DMN-SM PC and ComErr (both corrected p-values = .043).
Consistent with those results, in participants with ADHD we observed significant positive correla-
tions between DMN2-SAL PC and ComErr (r = 0.48, corrected p = .016) and between DMN1-SM
and ComErr (r = 0.43, corrected p = .033). There were nonsignificant trends in the same direction
for DMN1-SAL and DMN3-SAL PC and ComErr (r = 0.31, corrected p = .092 and r = 0.36,
corrected p = .058 respectively), as well as for DMN2-SM and ComErr (r = 0.37, corrected p =
.058). The relationship between DMN3-SM PC and ComErr was nonsignificant but in the same
direction (r = 0.27, corrected p = .11). Additionally, there were nonsignificant trends toward posi-
tive correlations with ComErr in participants with ADHD for DMN1-FP PC (r = 0.30, corrected p
= .092), DMN2-FP PC (r = 0.35, corrected p = .058), and DMN2-SUB PC (r = 0.30, corrected p
= .092). All other corrected p-values > .21. Finally, consistent with results from the Main Text in
which we considered the DMN a unitary network, there were no correlations between PC of any
network pairs and ComErr in the TD participants (all corrected p-values > .94).

11



a)

b)

*

0.40

P
ar

tic
ip

at
io

n 
C

oe
ffi

ci
en

t

0.30

0.35

0.50

0.45

DMN-SUBDMN-SMDMN-SALDMN-FP

~ *
~

~

DMN1 (TD)
DMN1 (ADHD)
DMN2 (TD)
DMN2 (ADHD)
DMN3 (TD)
DMN3 (ADHD)

C
om

m
is

si
on

 E
rr

or
 R

at
e

Participation Coefficient

1.0

0.8

0.6

0.4

0.2

0.0

DMN1-SAL

0.20 0.25 0.40 0.450.30 0.35 0.50

C
om

m
is

si
on

 E
rr

or
 R

at
e

Participation Coefficient

1.0

0.8

0.6

0.4

0.2

0.0

DMN2-SAL

0.20 0.25 0.40 0.450.30 0.35 0.50

C
om

m
is

si
on

 E
rr

or
 R

at
e

Participation Coefficient

1.0

0.8

0.6

0.4

0.2

0.0

DMN3-SAL

0.20 0.25 0.40 0.450.30 0.35 0.50

C
om

m
is

si
on

 E
rr

or
 R

at
e

Participation Coefficient

1.0

0.8

0.6

0.4

0.2

0.0

DMN1-SM

0.20 0.25 0.40 0.450.30 0.35 0.50

C
om

m
is

si
on

 E
rr

or
 R

at
e

Participation Coefficient

1.0

0.8

0.6

0.4

0.2

0.0

DMN2-SM

0.20 0.25 0.40 0.450.30 0.35 0.50

C
om

m
is

si
on

 E
rr

or
 R

at
e

Participation Coefficient

1.0

0.8

0.6

0.4

0.2

0.0

DMN3-SM

0.20 0.25 0.40 0.450.30 0.35 0.50

*~ ~

* ~

Figure S3: a) Group difference in PC separately for each DMN subnetwork pair. There was a significant group
difference between the DMN2 and DMN3 subnetworks and the FP network (corrected p = .003 and .001 respectively),
with a trend toward a group difference between the DMN1 subnetwork and the FP network (corrected p = .058). There
were additionally trends toward group differences for the DMN3-SAL and DMN3-SUB network pairs (corrected p =
.058 and .098 respectively). b) Relationships between PC and ComErr separately for the DMN-SAL and DMN-SM
network pairs, separately for each DMN subnetwork. There were significant positive correlations between DMN2-
SAL PC and DMN1-SM PC and ComErr in the participants with ADHD (corrected p = .016 and .033 respectively).
There were additionally trends toward correlations between DMN1-SAL PC, DMN3-SAL PC, and DMN2-SM PC and
ComErr in the participants with ADHD (corrected p = .092, .058, and .058 respectively). There were no relationships
between PC and ComErr in the TD participants (all FDR-corrected p-values > .94). * indicates a relationship is
significant at FDR-corrected p < .05. ˜ indicates a nonsignificant trend at FDR-corrected p < .10.

To summarize, we observed that relationships between each DMN subnetwork and the task-
relevant networks were largely consistent across subnetworks (Figure S3). While network structure
is broadly in place by childhood, changes occur into young adulthood (Grayson and Fair, 2017),
including increases in network segregation (Gu et al., 2015). Therefore, it is possible that the DMN
has not yet differentiated into distinct subnetworks by middle childhood. Additionally, extant liter-
ature in adults has found that functional connectivity patterns of the DMN reconfigure between rest
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and task contexts (Dixon et al., 2017; Fornito et al., 2012), with greater distinction between subnet-
works during task. Thus, it is possible that our network analysis, assessed during the resting state,
does not identify functionally dissociable subnetworks within the DMN. Future research quantify-
ing network organization during both rest and task performance can clarify whether reliable DMN
subnetworks can be identified in children.
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