

Supporting Information for DOI: 10.1055/s-0036-1588170 © Georg Thieme Verlag KG Stuttgart · New York 2017

Supporting Information

Phosphite-mediated Reductive Cross-Coupling of Isatins and Nitrostyrenes

Somayeh Motevalli, Jeffrey S. Johnson*

[†]Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States

jsj@unc.edu

Table of Contents	Page
Crude ¹ H NMR spectra	S2
¹ H and ¹³ C NMR spectra of new compounds	S22
HPLC traces	S86

Crude ¹H NMR spectra for the racemic reactions

¹H NMR of 4aa

¹H NMR of 4ab

¹H NMR of 4ac

¹H NMR of 4ad

¹H NMR of 4ae

¹H NMR of 4af

¹H NMR of 4ag

¹H NMR of 4ah

¹H NMR of 4ai

¹H NMR of 4aj

¹H NMR of 4ak

¹H NMR of 4ba

¹H NMR of 4ca

¹H NMR of 4da

¹H NMR of 4ea

¹H NMR of 4fa

³¹P NMR of 4fa

¹H NMR of 4ga

¹H NMR of 4ha

¹H and ¹³C NMR spectra of new compounds

¹H NMR of 4aa

¹³C NMR of 4aa

¹H NMR of 4aa (2nd diastereomer)

¹³C NMR of 4aa (2nd diastereomer)

¹H NMR of 4ab

¹³C NMR of 4ab

¹H NMR of 4ac

¹³C NMR of 4ac

¹H NMR of 4ac (2nd diastereomer)

¹³C NMR of 4ac (2nd diastereomer)

¹H NMR of 4ad

¹³C NMR of 4ad

¹³C NMR of 4ad (2nd diastereomer)

¹H NMR of 4ae

¹³C NMR of 4ae

¹H NMR of 4ae (2nd diastereomer)

¹³C NMR of 4ae (2nd diastereomer)

¹H NMR of 4af

¹³C NMR of 4af

¹H NMR of 4af (2nd diastereomer)

¹³C NMR of 4af (2nd diastereomer)

¹H NMR of 4ag

¹³C NMR of 4ag

¹H NMR of 4ag (2nd diastereomer)

¹³C NMR of 4ag (2nd diastereomer)

¹H NMR of 4ah

¹³C NMR of 4ah

¹³C NMR of 4ah (2nd diastereomer)

¹H NMR of 4ai

¹³C NMR of 4ai

¹H NMR of 4aj

¹³C NMR of 4aj

¹³C NMR of 4aj (2nd diastereomer)

¹H NMR of 4ak

¹³C NMR of 4ak

¹H NMR of 4ak (2nd diastereomer)

¹³C NMR of 4ak (2nd diastereomer)

¹H NMR of 4ba

¹³C NMR of 4ba

¹³C NMR of 4ba (2nd diastereomer)

¹H NMR of 4ca

¹³C NMR of 4ca

¹H NMR of 4ca (2nd diastereomer)

¹³C NMR of 4ca (2nd diastereomer)

¹H NMR of 4da

¹³C NMR of 4da

¹H NMR of 4ea

¹³C NMR of 4ea

¹H NMR of 4fa

¹³C NMR of 4fa

¹H NMR of 4ga

¹³C NMR of 4ga

¹³C NMR of 4ga (2nd diastereomer)

¹H NMR of 4ha

¹³C NMR of 4ha

¹H NMR

¹³C NMR

¹H NMR (2nd diastereomer)

¹³C NMR (2nd diastereomer)

HPLC trace

Chiralpak ID column, Hex/_iPrOH = 85:5, flow rate = 1.0 mL/min, λ = 210 nm.

Racemic

Ret. Time (min)	Area	% Total Area
40.647	5789817.98	48.2
54.417	6210805.99	51.7

Asymmetric

Ret. Time (min)	Peak Area	% Total Area
40.183	5797356.31	19.2
53.250	24301729.12	80.7