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Exclusion criteria details

We collected data from 297 participants on the Butterfly task, with one partici-
pant excluded for only having 18 trials of data. We then excluded 21 participants
who were more likely to switch than stay after positive feedback.

So far 275 participants remained. To further identify participants who were
not engaged in the task without excluding participants solely on a pure perfor-
mance criterion, we instead implemented the following, less stringent, conjunc-
tive exclusion criteria:

• Criterion 1. Proportion of stay trials (the participant picked the same
flower as the previous trial regardless of the butterfly) was higher than
median+ 2 ∗ sd, across the whole group.

• Criterion 2. Proportion of stay trials was lower than median − 2 ∗ sd,
across the whole group.

• Criterion 3. The number of contiguous stay trials was higher than 12
contiguous stay trials in a row.

• Criterion 4. Any number of missing trials: available data less than the
full 120 trials, indicating that participants stopped before the end of the
experiment.

• Criterion 5. Performance was not better than chance (50%): performance
was based on proportion of trials where participants correctly chose the
preferred flower of the butterfly.

We excluded participants who fit both Criterion 5 and one of Criterion 1-4.
Criteria 1-3 revealed participants who were either choosing the same action (e.g.
always choosing left) or constantly switching between the two actions without a
relationship to the butterfly on the screen or the task at all. Together, Criteria
1-4 are likely to include participants who either did not understand the instruc-
tions or were not engaged for a significant proportion of the task. Finally, we
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took the intersection with Criterion 5 (at or below chance performance), so that
we only excluded participants whose lack of understanding or disengagement
(one of Criteria 1-4) significantly impacted their performance to be at or below
chance (Criterion 5). Note that there were actually many participants who had
worse than chance performance (Criterion 5), but were not excluded because
they did not meet any of Criteria 1-4, which were indicators of not paying at-
tention/misunderstanding the task. S1 Table shows the detail breakdown of
participants’ age group for each criterion.

After applying this conjunctive criteria, we further eliminated 11 participants
for later analysis. In the end, we analyzed N = 264 participants, with 157
participants younger than 18. S1 Fig shows more detailed age group and sex
break down. As mentioned in the main text, all results remain qualitatively
similar with weaker exclusion criteria.

The exact age boundaries for the four age groups that we defined for partic-
ipants under 18 are summarized in S2 Table.

Model comparison extended

Although the α+α−βf model has better model comparison score, our analysis
focuses on the simpler α+0βf model as the winning model because (1) α− was
not recoverable and (2) α+0βf validated participants’ behavior better. This
is in following with a large literature indicating that quantitative criteria for
model comparison are not the single factor that should guide model selection
[7, 12, 13, 9].

For fitted parameters, it is important to first verify if we can recover them
from simulated data [10]. Specifically, because RL models are generative, we
can simulate artificial data from fitted parameters and fit the model on the
artificial data again to check the identifiability of the model parameters and the
robustness of the model fitting procedure.

For the α+α−βf model, we were unable to recover the α− parameter (S2A
Fig). For the α+0βf model, all three parameters could be reasonably recovered
(S2B-D Fig).

Note that this poor recoverability of α− might be primarily due to its small
values. To test this hypothesis, we fitted the α+α−βf model to participants
data, and then fixed the α+, β and f parameters, but substituted new values
for the α− parameter, sampled from a broader range (Gaussian N(0.5, 0.2)
truncated T [0.1, 0.9]). We then performed the generate and recover analysis
with this set of parameters. As shown in S3 Fig, the α− values could be well
recovered in this higher range of values.

We further validated the fitted models by visualizing the learning curves
of simulated data and comparing with participants’ data (S4 Fig). Note that
since the αβf model did not converge hierarchically (see Hierarchical model
fitting), the simulation for the αβf model came from fitting each participant
independently (i.e. flat instead of hierarchical fitting), while all the other five
model simulations came from hierarchically fitted parameters.
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Overall, the α+0β and α+0βf models both track participants’ learning curve
well throughout the experiment, whereas all the other models overshoot to var-
ious extent. This combined with the fact that α− was not recoverable suggests
that the α+α−βf model, despite having a better model comparison score (Fig
2B), had a risk of overfitting.

Since the values of the forgetting parameter are fairly small, it is not sur-
prising that the simulations of the α+0β and α+0βf models do not differ a
lot. We also note that it is possible that the forgetting parameter captures
patterns of data not readily visible in the learning curve, since delays between
same butterflies are randomized across participants.

We also performed generate and recover procedure to validate the significant
age regression coefficients from hierarchical modeling (i.e. linear and quadratic
age effects on α+ and β; Fig 4). S5 Fig shows that the posterior of the sam-
ples from the recovery matched the posterior of the samples fitted on actual
participants data fairly well for all significant age regressors.

While the generate and recover analysis so far shows good recoverability
of fitted parameters in our winning model α=0βf , we further validated model
identifiability/recoverability, i.e. we asked the question of when we generate
data from, say, Model A, whether Model A would still be the winning model
among others for explaining this data.

Since we fitted all participants jointly, the ideal analysis would be to simulate
from the fitted parameters and use all models to fit this simulated dataset hier-
archically and report WAIC. Moreover, this should be performed multiple times
[8]. However, each hierarchical fitting takes 10 hours to complete, resulting in
significant computational overhead.

Instead, we decided to reduce the amount of compute necessary by fitting
participants independently. To further reduce compute, we focused only on
the αβ, α+0β, and α+0βf models, since our model comparison results mostly
rely the identifiability of (1) asymmetric learning rates with α− = 0 and (2)
the forgetting parameter. We simulated a dataset from each of the three fitted
flat models and used all three models to fit these three datasets, again non-
hierarchically. For the data simulated from each model, we calculated the BIC
for each of the three models used for recovery and each participant separately,
and used BIC as an approximation of model evidence [6] to calculate protected
exceedance probabilities [1, 4]). The exceedance probabilities are summarized in
the following confusion matrix (S3 Table), showing great model identifiability.

We also compared all six models when fitted non-hierarchically (S6 Fig). We
used the winning model in the main text, α+0βf , as the baseline to calculate the
difference between the BIC of all other models with the α+0βf model. S6 Fig
shows that the α+0βf model is a decent model in all age groups consistently.
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Nonlinear relationship between performance and
model parameters

The model’s overall performance in this task depends nonlinearly on the in-
teraction of all parameters. To better illustrate this nonlinear relationship, we
simulated the α+α−βf model with the following parameter values: α+ (0.01,
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7), α− (0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7), β (5, 7.5,
10, 12.5, 15), and f (0, 0.05, 0.1, 0.15, 0.2). Each parameter combination is
simulated 100 times.

For simplicity of visualization, we first considered the winning model α+0βf ,
i.e. by setting α− = 0, and focus on the discrete grouping of participants. The
following heat maps (S7 Fig) show overall simulated performance change with
respect to α+ (y-axis) and β (x-axis) for different forgetting values. Indeed, as
mentioned in the discussion, increasing learning rate α+ does not always im-
prove performance; in fact, too high of a learning rate can result in suboptimal
behavior ([10]). All six age groups (four under 18, two above 18) had average
β values around 10 (from young to old: 10.12, 9.95, 10.54, 10.46, 10.85, 10.99)
and average f values around 0.05 (0.0669, 0.0555, 0.054, 0.0553, 0.0554, 0.0545),
roughly corresponding to the second subplot’s third column (S7 Fig). The aver-
age α+ values for each age group are 0.14, 0.17, 0.22, 0.22, 0.26, 0.25 (plotted on
the heat map as colored circles, darker means older age group), where higher α+

generally improves overall performance. The simulations thus show that all pa-
rameter changes with age in our sample go towards more “optimal” performance
in this task, but remain fairly far from it.

Another interesting observation is that no forgetting is not always optimal,
especially in scenarios where the learning rate is high. This is more visible in
S8 Fig, where we interchange the role of β and f from the previous heat map
(now each subplot is indexed by β values from 5 - 15 and the x-axis of each
subplot represents forgetting). This might be due to the fact that forgetting
can actually help unlearn the suboptimal win-stay/lose-shift behavior created
by high learning rates and/or highly exploitative policies.

In general, within the range of 5 - 15 for β, overall performance increases
with higher β. And the optimal α+ seems to be inversely related to β but
positively related to f .

Similar observations to α+ can be made for α−. In S9 Fig, we set f = 0
for simplicity. Each subplot corresponds to one specific combination of (α+, β)
values, where the x-axis indicates α− values and the y-axis overall performance.
We also add a vertical bar for the corresponding α+ value. For all combinations,
while increasing α− helps performance in the low range, high α− always hurts
performance. It is notable that optimal performance is rarely obtained with
symmetric values of learning rates (i.e. the peak of the curve does not match
the vertical bar). Note that since [5] employed symmetric learning rates, adult
participants with high α+ would have the same high α− in their sample, which
could also hurt performance.
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Age effects in the αβ model

In order to match the model used in [5], we also probed the age effect on model
parameters for the αβ model (see S10 Fig). We used the same hierarchical mod-
eling technique detailed in main text (see Hierarchical model fitting). Aside from
the model with quadratic age effect on α, which did not converge, all the other
models successfully converged. We found a positive linear age effect on both
alpha and beta (95% CI, α : [0.04, 0.13], β : [2.45, 6.19]), as well as a nega-
tive quadratic age effect on beta (95% CI = [−5.77,−0.44]), all corroborating
developmental results regarding the α+0βf model (Fig 4A and 4B).

However, we would also like to caution that the αβ model does not capture
participants’ behavior in our study well (see Figs 2 and S4A). This is potentially
due to the fact that the α− parameter is very small (0 in the winning model
α+0βf), and thus when fitting models with symmetric learning rates (i.e. set-
ting α+ = α−), α− drags down the α+ parameter as well, making the final
learning rate parameter α very small (group level mean for α in the αβ model
is 0.02). Since the αβ model does not capture behavior well, using it as a direct
comparison with [5] is not ideal. Therefore, in the main text (see Discussion)
we focused on the comparison of the α+ and α− (set to 0) parameters in the
α+0βf model (the winning model) to the α parameter in [5] respectively, which
still contains the same amount of information from both studies.

Saliva collection and testosterone testing

In addition to self-report measures of pubertal development, we also collected
saliva from each of our participants to quantify salivary testosterone, follow-
ing methods reported in [14]. Testosterone is a reliable measure of pubertal
status in boys and girls and is associated with changes in brain and cognition
in adolescence [3, 2]. Participants refrained from eating, drinking, or chewing
anything at least an hour before saliva collection. Participants were asked to
rinse their mouth out with water approximately 15 minutes into the session.
At least an hour into the testing session, they were asked to provide 1.8 mL of
saliva through a plastic straw into a 2 mL tube. Participants were instructed
to limit air bubbles in the sample by passively drooling into the tube, not spit-
ting. Participants were allotted 15 minutes to provide the sample. After the
participants provided 1.8 mL of saliva, or 15 minutes had passed, the sample
was immediately stored in a -20◦F freezer. The date and time were noted by the
experimenter. The participants then filled out a questionnaire of information
which might affect the hormone concentrations measured in the sample (i.e.
whether the participants had recently exercised).

Salivary testosterone was quantified using the Salimetrics Salivatory Testos-
terone ELISA (cat. no. 1-2402, Bethesda, MA). Intra- and inter- assay vari-
ability for testosterone were 3.9% and 3.4%, respectively. Samples below the
detectable range of the assay were assigned a value of 5 pg/mL, 1 pg below
the lowest detectable value. Final testosterone sample concentration data were
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cleaned with a method developed in [11]. There were no participants with any
samples above the detectable range, i.e. the measured values of the testosterone
concentration for all participants were within the range that we validated as
detectable by our technique. Within participants aged 8 to 17 only, outliers
greater than three standard deviations above the group mean were fixed to that
value, then incremented in values of +0.01 to retain the ordinality of the out-
liers. For T1 used in the manuscript, we log-transformed raw testosterone levels,
which otherwise was more skewed and did not pass normality tests.

We visualized the relationships between pubertal measures and age for our
sample of participants in S11 Fig.

Pubertal effects extended

Here we aggregate all results for pubertal effects on behavioral measures and
model parameters for participants under age 18. To control for age, participants
were broken into four equal-sized groups within each sex respectively and then
combined. We also included a table of the variance of the pubertal measures
and the correlation between the pubertal measures with age within each of the
four age groups (see S4 Table).

To better explore the effect of PDS and T1 on behavioral measures while
controlling for age, we performed the same regressions as in Fig 5 using PDS or
T1 to predict overall performance and reaction time within each of the four age
groups under 18 (see S12A and S12B Fig). We found that in the fourth age group
(age 15 - 18), PDS had a linear effect on reaction time (βPDS = −0.2, 95% CI =
[−0.36,−0.03], p = 0.02), which became marginal when correcting for multiple
comparisons (four groups, p = 0.08). This PDS effect remained when controlling
for age in the regression (multiple linear regression: βPDS = −0.2, p(T1) = 0.02,
p(age) = 0.6). T1 did not provide additional explanatory power for overall
performance in any of the four age groups under 18 (all p’s > 0.26). These
effects would not survive multiple comparison correction, and as such should be
viewed as mostly exploratory.

To test pubertal effects on model parameters in addition to age, within each
age bin, we used either PDS or T1 to predict model parameters with linear
regression. After controlling for age (S12C Fig), we did not find significant
effects of PDS on α+ in any of the four age bins (linear regression, all p’s
> 0.37). We did find a significant effect of T1 on α+ (S12D Fig) in the third
age bin (linear regression, βT1 = 0.0008, p = 0.005), but not in the other three
age bins (linear regression, all p’s > 0.17).
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