A dimeric thiourea CSA for the enantiodiscrimination of amino acid derivatives by NMR spectroscopy

Alessandra Recchimurzo, † Cosimo Micheletti, † Gloria Uccello Barretta and Federica Balzano*

Department of Chemistry and Industrial Chemistry, University of Pisa, via Moruzzi 13, 56124 Pisa, Italy. †The authors contributed equally to this work.

*federica.balzano@unipi.it

Supporting Information

Table of Contents

Nonequivalences of NH and CH protons of amino acid derivatives in the presence of DABCO	
and BTDA (Figures S1-S2).	S 3
1D-ROESY and 1D-TOCSY spectra of (S)-10/BTDA/DABCO and (R)-10/BTDA/DABCO mixtures	
(Figure S3).	S5
^1H complexation shifts of amino acid derivatives in the presence of DABCO and \textbf{BTDA}	
(Table S1).	S5
Enantiodiscrimination of 10 in the presence of BTDA and DABCO or DMAP (¹ H NMR spectra,	
Figure S4).	S6
Enantiodiscrimination of 10 in the presence of BTDA or BTDA/DABCO (¹ H NMR spectra,	
Figure S5).	S6
Stoichiometry determination for (R)-10/BTDA/DABCO and (S)-10/BTDA/DABCO (Figure S6).	S6
Enantiomeric purity determination (Table S2-S3).	S7
2D gHSQC map of racemic 10/BTDA /DABCO (Figure S7).	S8
2D gHMBC map of racemic 10/BTDA /DABCO (Figure S8).	S8
1D ROESY spectra (Figures S9-S12).	S9
¹ H NMR (600 MHz, CDCl ₃ , 25 °C) and ¹³ C{ ¹ H} NMR (150 MHz, CDCl ₃ , 25 °C) spectra of BTDA	
(Figures S13-S14).	S11
1 H NMR (600 MHz, CDCl ₃ , 25 °C) spectrum of 1-5 (30 mM) in the presence of 1 equivalent of	
BTDA (Figures S15-S19)	S13
¹ H NMR (600 MHz, CDCl ₃ , 25 °C) spectrum of 9-13 /DABCO (30 mM, 1:1) in the presence of 1	
equivalent of BTDA (Figures S20-S24)	S14

Figure S1. ¹H NMR (600 MHz, CDCl₃, 25 °C) spectral regions corresponding to NH protons of a 1-to-1 mixture of **BTDA** (30 mM)/racemic: a) **1**, b) **2**, c) **3**, d) **4**, e) **5**, and of 1-to-1-to-1 mixture **BTDA** (30 mM)/DABCO/racemic: f) **9**, g) **10**, h) **11**, i) **12**, j) **13**. *Resonance of CSA.

Figure S2. ¹H NMR (600 MHz, CDCl₃, 25 °C) spectral regions corresponding to methine protons of a 1-to-1 mixture of **BTDA** (30 mM)/racemic: a) **1**, b) **2**, c) **3**, d) **4**, e) **5**, and of 1-to-1-to-1 mixture **BTDA** (30 mM)/DABCO/racemic: f) **9**, g) **10**, h) **11**, i) **12**, j) **13**.

Figure S3. ¹H NMR (600 MHz, CDCl₃, 30 mM, 25 °C) spectral regions of **10/BTDA**/DABCO equimolar mixture (a); 1D-ROESY experiments (mix 0.4 s) with selective perturbation of CH in (*S*)-**10/BTDA**/DABCO (b) and (*R*)-**10/BTDA**/DABCO (c) equimolar mixtures; 1D-TOCSY experiment of ortho protons of substrate in (*R*)-**10/BTDA**/DABCO equimolar mixture (d).

Table S1. Complexation shifts (600 MHz, CDCl ₃ , 25 °C, $\Delta\delta$ = $\delta_{mixture} - \delta_{free}$, (ppm) of 9 -	• 13 (30
mM) in the presence of 1 equivalent of DABCO and BTDA		

Substrate	Δδ (ppm)			
	pDNB ^a	oDNB ^b	CH ^c	NH
9	-0.181 (R)	-0.204 (R)	+0.147 (R)	-0.057 (R)
	-0.092 (S)	-0.035 (S)	+0.097 (S)	-0.015 (S)
10	-0.283 (R)	-0.255 (R)	+0.174 (R)	+0.230 (R)
	-0.067 (S)	-0.008 (S)	+0.125 (S)	+0.057 (S)
11	-0.254 (R)	-0.198 (R)	+0.092 (R)	-0.089 (R)
	-0.074 (S)	+0.062 (S)	+0.012 (S)	-0.036 (S)
12	-0.206 (R)	-0.195 (R)	+0.090 (R)	+0.092 (R)
	-0.061 (S)	+0.007 (S)	-0.006 (S)	+0.047 (S)
13	-0.234 (R)	-0.198 (R)	+0.154 (R)	+0.195 (R)
	-0.060 (S)	+0.055 (S)	+0.073 (S)	+0.269 (S)

^{*a*}Para proton of DNB moiety. ^{*b*}Ortho protons of DNB moiety. ^{*c*}Methine proton of chiral center.

Figure S4. ¹H NMR (600 MHz, CDCl₃, 25 °C) spectral regions corresponding to the *ortho*- and *para*-DNB, NH and methine protons of **10** (30 mM) in 1:1:1 mixture: a) **10/BTDA**/DABCO, b) **10/BTDA**/DMAP. *indicates CSA signals.

Figure S5. ¹H NMR (600 MHz, CDCl₃/DMSO-d6, 25 °C) spectral regions corresponding to CH proton of **10** (30 mM) in **BTDA/10** (a) and in **BTDA/10**/DABCO (b) mixtures (1:1:1).

Figure S6. Stoichiometry determination based on *para* protons of DNB group for (*R*)-**10/BTDA**/DABCO (•) and (*S*)-**10/BTDA**/DABCO (•)complexes.

Table S2. Comparison between the data of actual enantiomeric excess (ee %) of
(S)-10, calculated from the mixed volumes of pure enantiomer stock solutions, and
ee (%) of (S)-10 determined by integration of the 1 H-NMR signals relating to the
NH proton of 10 in 10/BTDA /DABCO mixtures

Actual ee (%)	ee by NMR (%)
90	90.26
80	80.52
60	59.72
40	40.26
20	19.76
0	0.12
-20	-20.14
-40	-40.22
-60	-60.46
-80	-80.58
-90	-90.24
-99.4	-99.50

Table S3. Enantiomeric excess (ee %) determined by ¹H-NMR integration of signals for substrates **9-13** (30 mM, R:S=99:1, ee 98%) in the presence of **BTDA**/DABCO (30 mM, 1:1)

	ee by NMR (%)
9	-97.70
10	-98.22
11	-97.86
12	-98.18
13	-98.26

Figure S7. 2D gHSQC map (600 MHz, 30 mM, 25 °C, CDCl₃) of equimolar mixture of racemic 10/BTDA/DABCO.

Figure S8. 2D gHMBC map (600 MHz, 30 mM, 25 °C, CDCl₃) of equimolar mixture of racemic 10/BTDA/DABCO.

Figure S9. ¹H NMR spectrum (600 MHz, 30 mM, CDCl₃, 25 °C) of **BTDA** (a) and 1D-ROESY experiments (mix 0.4 s) with selective perturbation of H_7 (b), H_8 (c), H_9 (d), and H_{10} (e) protons.

Figure S10. ¹H-NMR spectrum (600 MHz, 30 mM, $CDCl_3$, 25 °C) of **BTDA** (a) and 1D-ROESY experiments (mix 0.4 s) with selective perturbation of N-H₂ (b) and N-H₃ (c).

Figure S11. 1D-ROESY experiments (600 MHz, 30 mM, $CDCl_3$, 25 °C, mix 0.4 s) with selective perturbation of DABCO protons in (*S*)-**10/BTDA**/DABCO (a) and (*R*)-**10/BTDA**/DABCO (b) mixtures (1:1:1).

Figure S12. ¹H-NMR (600 MHz, CDCl₃, 30 mM, 25 °C) spectrum of (*S*)-**10/BTDA**/DABCO equimolar mixture (a) and 1D-ROESY experiments (mix 0.4 s) with selective perturbation of H₇ (b), H₉ (c), H₈ (d) H₁₀ (e), CH (f), NH (g), H_o (h), H_{o-DNB} (i), H_{p-DNB} (j) protons.

Figure S13. ¹H NMR (600 MHz, CDCl₃, 25 °C) spectrum of BTDA.

Figure S14. ¹³C{¹H} NMR (150 MHz, CDCl₃, 25 °C) spectrum of BTDA.

Figure S16. ¹H NMR (600 MHz, CDCl₃, 25 °C) spectrum of equimolar mixture 2/BTDA (30 mM).

Figure S17. ¹H NMR (600 MHz, CDCl₃, 25 °C) spectrum of equimolar mixture 3/BTDA (30 mM).

Figure S20. ¹H NMR (600 MHz, CDCl₃, 25 °C) spectrum of equimolar mixture 9/BTDA/DABCO (30 mM).

Figure S21. ¹H NMR (600 MHz, CDCl₃, 25 °C) spectrum of equimolar mixture **10/BTDA**/DABCO (30 mM).

Figure S22. ¹H NMR (600 MHz, CDCl₃, 25 °C) spectrum of equimolar mixture 11/BTDA/DABCO (30 mM).

Figure S23. ¹H NMR (600 MHz, CDCl₃, 25 °C) spectrum of equimolar mixture 12/BTDA/DABCO (30 mM).

