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Calculation of the total scattering structure factor from molecular dynamics trajectories

The part of the total structure function that provides a description for the liquid structure may 

be calculated from the partial rdf’s according to the equation

𝐹(𝑄) = ∑
𝛼 ≥ 𝛽

∑
(2 ― 𝛿𝛼𝛽)𝑥𝛼𝑥𝛽𝑓𝛼𝑓𝛽ℎ𝛼𝛽(𝑄)

𝑀(𝑄)

Here, f is the scattering length (in neutron diffraction) or scattering factor (X-ray diffraction) 

of atom type α; f depends on Q in the case of X-ray diffraction, and is constant in the case of 

neutron diffraction. x is the corresponding mole fraction. , h(Q), the  𝑀(𝑄) = (∑n
α = 1xαfα)

2

partial structure factor, is defined from the partial rdf’s, g(r), according to the following 

equation:

ℎ𝛼𝛽(𝑄) = 4𝜋𝜌∫𝑟𝑚𝑎𝑥

0 𝑟2(𝑔𝛼𝛽(𝑟) ― 1)sin (𝑄𝑟)
𝑄𝑟 𝑑𝑟

where ρ is the atomic number density of the liquid.
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Figure S1: Measured and calculated total scattering structure factors (TSSF’s) for the ethanol-

water mixtures as a function of temperature. a) X-ray diffraction TSSF’s for xeth=0.8 and 0.85; 

b) X-ray diffraction TSSF’s for xeth=0.9 and 1.0; c) X-ray diffraction TSSF’s for xeth=0.6 and 

0.7; d) neutron diffraction TSSF’s for xeth=0.1 and 0.2.
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Table S1: Lennard-Jones parameters and partial charges for the atom types of ethanol used in 

the MD simulations.

Atom types σ (Å) ε (kJ/mol) q (e)

C (H3) 3.5 0.276144 -0.18

C (H2) 3.5 0.276144 0.145

H 2.5 0.12552 0.06

O 3.12 0.71128 -0.683

OH 0 0 0.418

Table S2: The first rows: box lengths (nm), the second rows: the corresponding bulk densities 

(g/cm3) for each simulated system. One star symbol: at 298; two stars symbol: at 295 K; without 

symbol: at 300 K. The third rows contain the experimental densities (g/cm3) at 298.15 K. S1

xeth 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.85 0.9 1.0

298 K

4.750*

0.9678

0.9632

4.998*

0.9429

0.9337

5.243*

0.9138

0.9047

5.479

0.8855

0.8799

5.685

0.8687

5.865*

0.8606

0.8409

6.052**

0.8462

0.8247

6.247

0.8268

0.8105

6.354

0.8129

6.441

0.8068

0.7978

6.608*

0.7953

0.7854

268 K
4.741

0.9731

4.961

0.9638

5.186

0.9440

5.412

0.9187

5.614

0.9023

5.810

0.8850

6.007

0.8656

6.175

0.8559

6.275

0.8439

6.348

0.8425

6.517

0.8293

263 K
4.730

0.9799

4.959

0.9652

5.179

0.9479

5.383

0.9339

5.617

0.9009

5.801

0.8895

5.984

0.8754

6.166

0.8596

6.271

0.8456

6.332

0.8491

X

258 K
4.726

0.9826

4.951

0.9699

5.183

0.9456

5.393

0.9287

5.603

0.9077

5.792

0.8935

5.976

0.8789

6.146

0.8682

6.244

0.8565

6.331

0.8495

6.498

0.8363

253 K
4.718

0.9878

4.946

0.9729

5.175

0.9501

5.381

0.9349

5.577

0.9201

5.765

0.9059

5.973

0.8804

6.124

0.8775

6.224

0.8651

6.313

0.8568

X

243 K
4.723

0.9848

4.924

0.9857

5.151

0.9635

5.371

0.9403

5.558

0.9299

5.759

0.9090

5.948

0.8912

6.117

0.8805

6.212

0.8698

6.297

0.8631

6.444

0.8578

233 K 4.713 4.928 5.137 5.355 5.545 5.742 5.933 6.095 6.189 6.259 6.429

(S1) Gonzalez, B.; Calvar, N.; Gomez, E.; Dominguez A. Density, dynamic viscosity, and derived properties of 
binary mixtures of methanol or ethanol with water, ethyl acetate, and methyl acetate at T = (293.15, 298.15, and 
303.15) K. J. Chem. Thermodynamics 2007, 39, 1578.
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0.9905 0.9835 0.9715 0.9487 0.9363 0.9171 0.8983 0.8901 0.8799 0.8788 0.8636

213 K 4.704

0.9964

4.905

0.9975

5.115

0.9840

5.312

0.9717

5.511

0.9536

5.688

0.9432

5.886

0.9201

6.049

0.9105

6.132

0.9046

6.220

0.8956
X

200 K
4.702

0.9976

4.892

1.0053

5.096

0.9948

5.300

0.9782

5.485

0.9672

5.674

0.9502

5.851

0.9365

6.015

0.9260

6.112

0.9132

6.188

0.9096
X

193 K X X X X
5.473

0.9739

5.670

0.9524

5.841

0.9415

6.010

0.9285

6.092

0.9223

6.172

0.9169
X

180 K X X X X X X
5.826

0.9488
X X X X

178 K X X X X X X X
5.974

0.9455

6.073

0.9309

6.151

0.9261
X

168 K X X X X X X
5.819

0.9519

5.972

0.9463

6.067

0.9338

6.147

0.9278
X

165 K X X X X X X X X X X
6.295

0.9199

158 K X X X X X X X
5.970

0.9471

6.051

0.9413

6.121

0.9400
X

153 K X X X X X X X X
6.043

0.9451

6.098

0.9505
X

138 K X X X X X X X X
6.029

0.9517

6.082

0.9581
X

133 K X X X X X X X X X X
6.259

0.9358
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Table S3: Steps of Molecular Dynamics simulation at each studied temperature. (After energy 

minimization the initial box was heated up to 340 K in order to avoid the aggregation of ethanol 

molecules. The stages of the simulation series for each composition were the following at each 

studied temperature (even at 340 K).) 

Type Run time
(ns)

Thermostat time const.
T (ps)

Barostat time const.
p (ps)

NPT_short 2 BerendsenS2 0.1 Berendsen 0.1
NPT_long 10 Nose-HooverS3-S4 1.0 Parrinello-RahmanS5 4.0
NVT_short 1 Berendsen 0.1
NVT_long 5 Berendsen 0.5

All results were derived from NVT_long simulations. In each case the TSSF-s were calculated 

also from the simulated models, using simulated partial radial distribution functions, by an in-

house code. For calculating partial radial distribution functions the g_rdf software was used, 

that is part of the GROMACS software package.

Goodness-of-fit:

, where FS(Q) is the calculated value from the MD simulation, 𝑅𝑊[𝐹(𝑄)] =
∑

𝑖(𝐹𝑆(𝑄𝑖) ― 𝐹𝐸(𝑄𝑖))2

∑
𝑖(𝐹𝐸(𝑄𝑖))2

FE(Q) is the experimental structure factor.

(S2) Berendsen, H. J. C.; Postma, J. P. M.; DiNola, A.; Haak, J. R. Molecular dynamics with coupling to an 
external bath. J. Chem. Phys. 1984, 81, 3684.
(S3) Nose, S. A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 1984, 52, 255-
268.
(S4) Hoover, W. G. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 1985, 31, 1695.
(S5) Parrinello, M.; Rahman, A. Polymorphic transitions in single crystals: A new molecular dynamics method. J. 
Appl. Phys. 1981, 52, 7182.
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Figure S2: Selected partial radial distribution functions for the mixture with 40 mol % 

ethanol as a function of temperature.
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Figure S3: Selected partial radial distribution functions for the mixture with 50 mol % 

ethanol as a function of temperature.
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Figure S4: Selected partial radial distribution functions for the mixture with 60 mol % 

ethanol as a function of temperature.
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Figure S5: Selected partial radial distribution functions for the mixture with 70 mol % 

ethanol as a function of temperature.
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Figure S6: Selected partial radial distribution functions for the mixture with 80 mol % 

ethanol as a function of temperature.
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Figure S7: Selected partial radial distribution functions for the mixture with 85 mol % 

ethanol as a function of temperature.
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Figure S8: Selected partial radial distribution functions for the mixture with 90 mol % 

ethanol as a function of temperature.
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H-bond definition

Two molecules were considered hydrogen bonded (1) if they were found at a distance r(O···H) 

< 2.5 Å and H-O…O angle < 30° or (2) if they were found at a distance r(O···H) < 2.5 Å and 

the interaction energy between molecules was more negative than -3 kcal/mol (ca. -12 kJ/mol). 

In the latter case H-bond interactions are taken into account as attractive interactions. Note that 

results only with the “energetic” definition are presented in this work: the two definitions were 

in good agreement and the energetic definition, whenever it is available, is thought to be more 

robust. 

The average number of hydrogen bonds (nHB) in the mixtures (Figure S9), when taking into 

account all the connections, decreases when the ethanol content increases. At each 

concentration nHB linearly increases with decreasing temperature. Water subsystems follow this 

tendency, but only at ethanol concentrations lower than 60 mol%. At higher concentrations the 

number of H-bonds between water pairs is almost constant. This latter statement is, 

independently from the ethanol concentration, also true for the ethanol subsystem (Fig. S10) 

over the entire temperature range investigated.

Figure S9. Average H-bond numbers considering each molecule, regardless of their types, 

together with the case when considering water–water H-bonds only.
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Figure S10: Average H-bond number for ethanol-ethanol subsystem.
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The number of H-bonded neighbors around (central) water and (central) ethanol molecules (Fig. 

S11) varies linearly with temperature at all concentrations. The only exception is the two 

highest ethanol concentrations (85 mol% and 90 mol%) below 190 K, where nHB becomes 

constant.

Figure S11 Average H-bond numbers considering connections of water molecules only, as well 

as considering connections of ethanol molecules only.
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Figure S12: Fraction of donor and acceptor sites as a function of temperature: a) ‘1A:1D’ for 

ethanol molecules; b) ‘1D:2A’ for ethanol molecules; c) ‘2D:1A’ for water molecules; d) 

‘2D:2A’ for water molecules. 
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c)
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The behaviour of the ‘1A:1D’ and ‘1D:2A’ combinations for ethanol molecules, as well as that 

of the ‘2D:1A’ and 2D:2A’ combinations for water molecules, as a function of temperature, 

can be found in Fig. S12. 

Concerning the ‘2D:2A’ combination as temperature decreases the occurrence of this scheme 

case linearly increases for water molecules, at every concentration: this may be taken as an 

indication that ‘2D:2A’ represents an inherent arrangement, being the most stable according to 

potential energy considerations.
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H-bond number excess parameter 

There are several approaches6
S65-S8 for capturing deviations from characteristics of a system with 

randomly distributed molecules. The basic question is whether some type(s) of hydrogen bonds 

(e.g. water-water, water-ethanol, etc…) are preferred (i.e. more frequent than they are in a 

randomly distributed system). The following parameter is defined for characterizing a (possibly 

preferential) H-bonded environment around a central molecule:

 , (1)𝑓𝛼𝛽 =
𝑛𝛼𝛽

𝑛𝛼𝑎𝑙𝑙
 

1
𝑥𝛽

where nαβ and nαall is the average H-bond number between α – β and α - all (+) pairs, 

respectively. xβ is the mole fraction of component β. In the case of an ideal (totally random) 

ethanol-water mixture this fαβ value is 1.0, whereas values higher than unity indicate preferential 

H-bonding. 

Results are presented in Fig. S13. The fwat-eth and feth-eth functions increase almost linearly with 

the increasing ethanol content. For feth-eth a noticeable minimum can be detected at xeth=0.3. On 

the other hand, in the case of fwat-eth a maximum emerges at xeth=0.6. The fwat-wat function is 

above 1.0 over almost the entire concentration range. A well-defined maximum can be 

identified for fwat-wat around ethanol mole fractions 0.5-0.6 at 298 K, which is shifted at 200 K 

to ethanol mole fractions of 0.6-0.7. This corresponds to a significant excess of water molecules 

in the solvation shell of water. This maximum agrees well with the maximum of Gwat-wat in 

Kirkwood-Buff integral theory.S9-S11

(S6) Miroshnichenko, S.; Vrabec, J. Excess properties of non-ideal binary mixtures containing water, methanol 
and ethanol by molecular simulation. J. Mol. Liq. 2015, 212, 90-95.
(S7) Soetens, J-C.; Bopp P. A. Water−Methanol Mixtures: Simulations of Mixing Properties over the Entire 
Range of Mole Fractions. J. Phys. Chem. B 2015, 119, 8593−8599.
(S8) Vlček, L.; Nezbeda, I. Excess Properties of Aqueous Mixtures of Methanol: Simple Models versus 
Experiment. J. Mol. Liq. 2007, 131, 158−162.
(S9) E. Matteoli; L. Lepori. Solute–solute interactions in water. II. An analysis through the Kirkwood–Buff 
integrals for 14 organic solutes. J. Chem. Phys. 1984, 80, 2856.
(S10) Perera, A.; Sokolić, F.; Almásy, L.; Koga, Y. Kirkwood-Buff integrals of aqueous alcohol binary mixtures. 
J. Chem. Phys. 2006, 124, 124515.
(S11) Ben-Naim, A. Inversion of the Kirkwood–Buff theory of solutions: application to the water–ethanol system. 
J. Chem. Phys. 1977, 67, 4884.
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Figure S13. H-bond number excess parameter: parameter for characterizing the preferential H-

bonded environment around a central molecule (f). Black solid circle symbols: fwat-wat at 298 

K; red open circle symbols: fwat-wat at 200 K; black solid triangle symbols: fwat-eth at 298 K; green 

open triangle symbols: fwat-eth at 200 K; black solid square symbols: feth-eth at 298 K; blue open 

square symbols: feth-eth at 200 K.
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Figure S14. The average largest cluster size (C1) and average second largest cluster size (C2) 

as a function of ethanol concentration and temperatures in ethanol-water mixtures. Violet 

sphere symbols: xeth=0.1; orange sphere symbols: xeth=0.2; navy sphere symbols: xeth=0.3; dark 

cyan sphere symbols: xeth=0.4; magenta sphere symbols: xeth=0.5; black sphere symbols: 

xeth=0.6; green sphere symbols: xeth=0.7; red sphere symbols: xeth=0.8; blue sphere symbols: 

xeth=0.85; dark red sphere symbols: xeth=0.9.
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The average largest cluster size (C1) and average second largest cluster size (C2) are plotted in 

Fig. S14. Several works7
S12-S15 have already proved that the properties of these quantities are 

good indicators for determining the location (concentration-temperature pair) of the percolation 

transition. At low temperatures, below 230 K, the number of molecules in the largest cluster 

equals the total number of molecules in the systems. It also means that the value of C2 is almost 

zero at each studied concentration. In these cases, molecules percolate throughout the systems. 

Around 230 K the spheres corresponding to the different concentrations start to move away 

from each other, i.e., the largest clusters start to shrink. The largest cluster at xeth=0.9 and 300 

K is only half the size of what it was at 150 K, which means that percolation is questionable. 

The average second largest cluster size shows that the system contains several smaller 

assemblies of less than 200 molecules. Note that the only case where the question of existence 

of percolation threshold arises is the 90 mol% solution at room temperature. 

Fractal dimension of the largest cluster:

According to random site percolation theory, infinite clusters are true fractals at the percolation 

threshold with fractal dimension fd=2.53 in three dimensions, and fd=1.896 in two 

dimensions.5
S12-S14 It has already been shownS12-S14 that we cannot detect a percolated cluster 

with fd value smaller than 2.53 in three, and 1.896 in two dimensions.

In the light of the foregoing, among the systems studied the one with 90 mol% ethanol deserves 

further scrutinization from the point of view of the percolation threshold. It was found that the 

fractal dimension of the largest cluster is 2.73 at 298 and 2.90 at 200 K, respectively. These 

values are significantly larger than the corresponding values to the percolation threshold. It can 

be stated that the largest cluster forms a 3D percolated network still at xeth=0.9. For the other 

systems studied, fd values were larger than 2.8, which confirms that their largest clusters form 

3D percolated networks. 

(S12) Pártay, L. B.; Jedlovszky, P.; Brovchenko, I.; Oleinikova, A. Percolation Transition in Supercritical Water: 
A Monte Carlo Simulation Study. J. Phys. Chem. B 2007, 111 7603-7609.
(S13) Pártay, L. B.; Jedlovszky, P.; Brovchenko I.; Oleinikova, A. Formation of mesoscopic water networks in 
aqueous systems. Phys. Chem. Chem. Phys. 2007, 9, 1341–1346.
(S14) Xu, X.; Wang, J.; Lv, J.-P.; Deng, Y. Simultaneous analysis of three-dimensional percolation models. Front. 
Phys. 2014, 9(1), 113–119.
(S15) Bakó, I.; Oláh, J.; Lábas, A.; Bálint, Sz.; Pusztai, L.; Bellissent-Funel, M.-C. Water-formamide mixtures: 
Topology of the hydrogen-bonded network. J. Mol. Liq. 2017, 228, 25-31.
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Figure S15. Cluster size distributions from the room temperature to the lowest studied 

temperature a) for xeth=0.85, b) for pure ethanol.
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Figure S16. Typical hydrogen bonded network topologies in water-ethanol mixtures at 

concentrations xeth = 0.40 (left), 0.70 (middle), and 0.90 (right). Red symbols indicate ethanol 

molecules, green symbols represent water molecules, while lines between molecules are the H-

bonds.

At low ethanol concentrations, these systems contain mainly cyclic entities, whereas at higher 

alcohol concentrations more and more chains appear. For xeth=0.9, even a dendrite type 

structure can be found that exists, for instance, in the neural networks.S16,S178

The above pictures represent single H-bonded clusters, shown here as examples. Apart 

from the mixtures with high alcohol content, below the percolation limit, the clusters represent 

practically the entire system. Identification of small (5- or 6-membered) rings is not done from 

these pictures, but by suitable algorithms coded into our softwareS18.

(S16) Rall, W. Branching dendritic trees and motoneuron membrane resistivity. Exp Neurol.1959, 1, 491-527.
(S17) Koch, C.; Poggio, T.; Torre, V. Nonlinear interactions in a dendritic tree: localization, timing, and role in 
information processing. Proc. Natl. Acad. Sci. USA. 1983, 80(9), 2799-802.
(S18) Bakó, I.; Megyes, T.; Bálint, Sz.; Grósz, T.; Chihaia, V. Water–methanol mixtures: topology of hydrogen 
bonded network. Phys. Chem. Chem. Phys. 2008, 10, 5004-5011.
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Background of the Laplace spectra

The structure of a network can be fully characterized with the adjacency or the combinatorial 

Laplace (L) matrices.S19
9

-S30 The Laplace matrix can be defined as follows:

(1)𝐿𝑖𝑗 = 𝑘𝑖𝛿𝑖𝑗 ― 𝐴𝑖𝑗

where ki is the number of (hydrogen) bonded neighbours of molecule ‘i’; δij is the Kronecker 

delta function and Aij=1 if a bond exists between nodes i and j. 

It is known that the Laplacian matrix is positive semidefinite and has nonnegative 

eigenvalues.S19,S20 Furthermore, 0 is always an eigenvalue of L and the multiplicity of the 

eigenvalue 0 is equal to the number of the connected components of the graph.

(S19) Van Mieghem, P. Graph Spectra for Complex Networks. Cambridge University Press, 2010.
(S20) Cvetkovic, D.; Simic, S. Graph spectra in Computer Science. Linear Algebra Appl. 2011, 434, 1545–1562.
(S21) Von Luxburg, U. A tutorial on spectral clustering. Stat. Comput. 2007, 17, 395-416.
(S22) Chung, F. Spectral Graph Theory. Chapter 2.2. A.M.S. CBMS, Providence, Rhode Island, 1997.
(S23) Banerjee, A.; Jost, J. On the spectrum of the normalized graph Laplacian. Linear Algebra Appl. 2008, 428, 
3015-3022.
(S24) McGraw, P. N.; Menzinger, M. Laplacian spectra as a diagnostic tool for network structure and dynamics. 
Phys. Rev. E 2008, 77, 031102.
(S25) Hata, S.; Nakao, H. Localization of Laplacian eigenvectors on random networks. Sci. Rep. 2017, 7, 1121.
(S26) Julaiti, A.; Wu, B.; Zhang, Z. Eigenvalues of normalized Laplacian matrices of fractal trees and 
dendrimers: analytical results and applications. J. Chem. Phys. 2013, 138, 204116.
(S27) de Abreu, N. M. M. Old and new results on algebraic connectivity of graphs. Linear Algebra Appl. 2007, 
423, 53–73.
(S28) Fiedler, M. A property of eigenvectors of nonnegative symmetric matrices and its applications to graph 
theory. Czech. Math. J. 1975, 25, 619-633.
(S29) Friedman, J. Some geometric aspects of graphs and their eigenfunctions. Duke Math J. 1993, 69, 487-525.
(S30) Bakó, I.; Pethes, I.; Pothoczki, Sz.; Pusztai, L. Temperature dependent network stability in simple alcohols 
and pure water: The evolution of Laplace spectra. J. Mol. Liq. 2019, 273, 670–675.
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‘Stability’ of H-bonded networks

Finally, we would like to provide some indicator for the ‘stability’ of H-bonded networks found 

in ethanol-water mixtures, as a function of temperature. Below we wish to devise a simple 

number that is related of the number of H-bonds that needed to be removed so that the network 

in question would not be percolating any longer.

The most important theorem is coupling to the connectivity and to the second smallest positive 

eigenvalue (Fiedler eigenvalue) of a Laplacian is known as the Cheeger inequality10
S31, S32:

(2)
𝜆2

2 < ℎ(𝐺) < 2𝜆2

where h(G) is the Cheeger constant (or conductance) of a graph G. This inequality is related to 

the minimum number of bonds such that, when removed, cause the graph to become 

disconnected (‘non-percolated’ according to the terminology of H-bonded networks) S32. 

Therefore, h(G) (or a similarly derived quantity like λ2 ∗ nHB, see below) can serve as a well-

defined parameter to measure the ‘distance’ from the percolation transition. Some applications 

of this theory for molecular liquid can be found in Ref. S18. and S34-S36.

The h(G) quantity is defined by the following equation.  

(3)ℎ(𝐺) = min
𝐸(𝑆𝑐,𝑉 ― 𝑆𝑐)

min( 𝑉𝑜𝑙(𝑆𝑐),𝑉𝑜𝑙(𝑉 ― 𝑆𝑐))

Here, V–SC and SC are two non-empty subsets of V nodes of the G graph, Vol(SC) and Vol(V–

SC) are the sums of the number of both intra- and inter-set connections of each node of the given 

subset. The E(V–SC, SC) is the number of inter-set links, connect nodes belonging to the 

(S31) Fiedler, M. A property of eigenvectors of nonnegative symmetric matrices and its applications to graph 
theory. Czech. Math. J. 1975, 25, 619-633.
(S32) Friedman, J. Some geometric aspects of graphs and their eigenfunctions. Duke Math J. 1993, 69, 487-525.
(S33) Choi, S.; Parameswaran, S; Choi, J-H. Understanding alcohol aggregates and the water hydrogen bond 
network towards miscibility in alcohol solutions: graph theoretical analysis. Phys. Chem. Chem. Phys 2020, 22, 
17181-17195.
(S34) Bakó, I.; Pethes, I.; Pothoczki, Sz.; Pusztai, L. Temperature dependent network stability in simple alcohols 
and pure water: The evolution of Laplace spectra. J. Mol. Liq. 2019, 273, 670–675.
(S35) Choi, J.-H.; Choi, H. R.; Jeon, J.; Cho, M. Ion aggregation in high salt solutions. VII. The effect of cations 
on the structures of ion aggregates and water hydrogen-bonding network. J. Chem. Phys. 2017,147, 154107.
(S36) Choi, J.-H.; Cho, M. Ion aggregation in high salt solutions. V. Graph entropy analyses of ion aggregate 
structure and water hydrogen bonding network. J. Chem. Phys. 2016, 144, 204126.
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different subsets. This expression has a minimum if the number of inter-set links (i.e. bonds) is 

taken as 1 and the denominator is a value indicating the half of the “volume” size of the entire 

system (Vol(V)/2, equals to the number of links of the G graph or by other words: the total 

number of hydrogen bonds in the configuration). We can call this value h(G)min. After simple 

mathematical transformations, we can obtain the following inequality from Eq. 2.:

(4)  
𝜆2

2ℎ(𝐺)𝑚𝑖𝑛    ≤  
ℎ(𝐺)

ℎ(𝐺)𝑚𝑖𝑛 ≤
2𝜆2

ℎ(𝐺)𝑚𝑖𝑛

The left and the right sides of the inequality defined by Equation 4 are shown in Figure S17. 

This inequality is related to the minimum number of bonds that, when removed, cause the graph 

to become disconnected (‘non-percolated’). This inequality provides a lower and upper limit on 

the stability of the percolated network, considering also the effect of finite size. It can be seen 

that the stability of the hydrogen bond network decreases significantly with increasing ethanol 

concentration.

Figure S17. Values of the inequality calculated by Equation 4. Black open squares: left side 

of Eq. 4 at 298 K; black solid squares: right side of Eq. 4 at 298 K; red open circles: left side 

of Eq. 4 at 233 K; red solid circles: right side of Eq. 4. at 233 K.
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Figure S18. Composition dependence of the smallest 2 value. Red line: an estimate of h(G) 

(2/N*nHB). The blue arrow points to where percolation transition occurs.
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As another demonstration of the power of Laplace-spectra, in Figure S18 the composition 

dependence of (the smallest) 2 is shown, together with a simple estimation of h(G). According 

to the (consequences of the) Cheeger equation (see above), wherever h(G) is larger than the 

smallest 2, taking away just one single hydrogen bond causes the percolating network to 

destabilize. According to Figure S18, the percolation threshold is around xeth=0.9 (see the blue 

arrow in Figure S18).


