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1. Bandgap correction using the screened hybrid functional HSE 

The PBE functional generally gives poor values of bandgap. The bandgaps obtained with HSE 

calculations tend to be in better agreement with experiment, but at a much higher computational cost. 

Interestingly, we found that PBE and HSE derived values of bandgaps are highly correlated for this 

system. In order to obtain a linear relation that would allow us to calculate near-HSE-quality values of 

bandgap from PBE bandgaps, we first chose five random configurations from each of the four bandgap 

energy quartiles (Figure 1a), thus ensuring the representation of the full Egap range. The correlation 

between HSE vs PBE bandgap energies is shown in Figure S1 (a).  

 

 

Figure S1. a) Linear regression of HSE vs. PBE bandgaps using 20 randomly selected configurations; b) 

test of the linear regression using a separate set of 20 random configurations not including in the fitting.  

The linear fit that best describes the correlation between 𝐸gap[HSE] and 𝐸gap[PBE] is: 

 

𝐸gap[HSE] = 1.268 𝐸gap[PBE] +  0.423 eV                                                 (S1) 

 

Equation S1 provides us with a way to correct the PBE values and get bandgaps as similar as possible 

to HSE ones, at a fraction of the cost.  

To test the validity of this approach, we applied the linear correction to a further 20 randomly selected 

configurations (across each of the four quartiles). These PBE-corrected Egap values were plotted against 

the corresponding HSE bandgaps, as shown in Figure S1b. It is clear that the linear transformation 

model is effective for correcting values on configurations for which it was not trained. 
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2. Calculation of the cluster correlation functions   

The simulation cell that we have employed in all our calculations consists of a 2x2x2 repetition of the 

parent MgO unit cell. The space group of the parent structure is 225. Since the cubic unit cell of MgO 

has a lattice parameter of 4.248 Å, the 2x2x2 supercell used in our calculations has a length of 8.496 Å. 

There are 32 cation sites in this supercell, of which 24 are occupied by Mg cations and 8 by Zn cations. 

In order to calculate efficiently the energies of the different (Mg24Zn8)O32 configurations we make use 

of cluster expansion (CE) theory.1 Within this approach, the energy of a particular configuration, 𝑠, of 

the solid solution, can be calculated as a linear expansion: 

𝐸s = ∑ 𝑚𝛼𝐽𝛼𝑋𝑠𝛼

𝑁c

𝛼

 

over the so-called cluster correlation functions (CCFs) 𝑋𝑠𝛼, where the sum extends over all clusters α 

of exchangeable sites (e.g. points, pairs, trios, quartets, etc.), and 𝐽𝛼 are the effective cluster interactions 

(ECIs), 𝑁c is the number of symmetrically distinct clusters, 𝑚𝛼 are the multiplicities (number of 

symmetrically equivalent clusters of type 𝛼).  The CCFs 𝑋𝑠𝛼 can be defined as the average of the product 

of a basis function 𝜙 of occupation variables 𝜎𝑠𝑖 (-1 and 1 for each element in a binary alloy) over all 

the clusters of type α:  

 

𝑋𝑠𝛼 =
1

𝑚𝛼
∑ ∏ 𝜙(𝜎𝑠𝑖)

𝑖∈𝛽𝛽≡𝛼

 

 

There is some flexibility in the choice of basis functions. We used two types of basis functions:1 i) a 

non-orthonormal, binary basis, 𝜙(𝜎𝑠𝑖) =
1+ 𝜎𝑠𝑖

2
 which takes values 0 and 1 for Mg and Zn occupancy, 

respectively; and ii) an orthonormal basis function using discrete Chebyshev polynomials. The results 

obtained when using both types of cluster basis are very similar, so in the manuscript we only report 

the results using the orthonormal basis function.  

We have employed the CELL tool2 to obtain the  CCF vectors 𝐗s = {𝑋𝑠𝛼} for each of the 8043 

symmetrically different configurations of the supercell with composition Mg24Zn8O32. There are 92 

symmetrically distinct clusters up to fourth order, namely 1 empty cluster, 1 one-point cluster, 5 two-

point clusters, 14 three-point clusters and 71 four-point clusters. Figure S2 shows some of these clusters. 

Because we are only comparing configurations with the same composition, the CCFs for the empty 

cluster and for the one-point clusters are constant for all configurations. The vectors 𝐗s formed from 

the remaining 90 correlation functions are then used as configurational descriptors for the linear 

regression (i.e. for finding the ECIs) or non-linear analysis using different techniques, as described in 

the text.  
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a) 

 

b) 

 

c) 

 

d) 

 

Figure S2. Atomistic view of a) the only 1-point cluster, b) the five 2-point clusters, c) the fourteen 3-point 

clusters, and d) ten of the 71 4-point clusters. Oxygen atoms are not shown, for simplicity reasons. The 

sites forming the clusters are shown in blue, and the rest of the cation sites in green.  



S5 

 

3. Performance of MLP neural network using CCF descriptor 

 

We found that relaxing the linearity condition on the CCFs did not significantly improve the 

performance of the descriptor for mixing energies or bandgaps. Training the deep MLP model using 

the CCF descriptor yielded equally poor correlations as shown in Figure S3.  

 

 

 

Figure S3. Deep multilayer perceptron Emix and Egap predictions using the CCF descriptor and  80% of 

the configurations for training. 
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4. Comparison of shallow vs deep MLP neural networks using CME descriptor 

We compared the performance of the deep vs shallow MLP models for predicting bandgaps. Though 

the deep MLP outperformed the shallow MLP in terms of MAE, we report the results of the shallow 

MLP here for comparison. Shallow MLP architectures may have the advantage of avoiding overfitting 

in certain use-cases, although there was no evidence of overfitting encountered in the present work. The 

performance of the shallow MLP increased as the training dataset size increased, as is the case of the 

deep MLP (reported in the main text). 

 

 

Figure S4. Shallow multilayer perceptron Egap prediction based on the CME descriptor for a) 80% of the 

configurations used in training; b) 10% of the configurations used in training. 

  

Table S1 reports a comparison of the shallow and deep MLPs in terms of performance. Although the 

shallow MLP performs very well and incurs in slightly shorter training times, the deep MLP is superior 

when using the same amount of data for training.  

 

Table S1. Summary of shallow and deep MLP neural network performances when using the CME 

descriptor to predict bandgaps.  

 Shallow network Deep network 

% Training 

Data 

Epochs MAE Time* 

(min) 

Epochs MAE Time* 

(min) 

10 9060 0.019 6 6484 0.016 8 

30 5732 0.018 8 3057 0.011 8 

50 3022 0.017 6 3385 0.0098 13 

80 2491 0.016 7 3240 0.0077 16 

*Training time on Intel i7 Coffee Lake processor (@4.2 GHz). 

** For reference, the computing time required for training with all GBDT methods required less than five 

minutes for training, while LR requires less than ten seconds in each case. 
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5. Further details about the machine learning algorithms 

GBDT was subject to hyperparameter optimization. The following settings were employed in 

the process (the corresponding name in the class sklearn.ensemble.GradientBoostingRegressor is 

shown in parenthesis):  

• Learning rate (learning_rate) = 0.01 

• Maximum depth of the individual regression estimators (max_depth) = 4 

• Minimum number of samples required to split an internal node (min_samples_split) = 5 

• Number of boosting stages to perform (n_estimators) = 1000 

Both MLP architectures featured 30% dropout at each layer to prevent overfitting, the activation 

used a ReLU function for the hidden layers, and linear activation for the final output layer.3 MLP’s were 

trained on batch sizes of 32, using the Adam stochastic gradient descent optimizer.4 Convergence in 

MAE associated with the validation data was used to truncate MLP training, using the EarlyStopping 

method in Keras. This provided maximum training, while avoiding potential overfitting from extensive 

training beyond numerical convergence. 
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6. Metrics summary 

Table S2 reports a complete comparison of ML model training metrics across each of the methods 

considered in the present article.  

 

Table S2. Mean absolute errors (MAE) at each ML method and training dataset size. 

 MLP shallow MLP deep GBDT LR 

80% Training data 

CCF- Emix - 0.018 - 0.020 

CCF- Egap - 0.089 - 0.100 

CME- Emix - - - 0.001 

CME- Egap 0.016 0.008 0.010 0.029 

50% Training data 

CME- Egap 0.017 0.010 0.010 0.029 

30% Training data 

CME- Egap 0.020 0.011 0.012 0.030 

10% Training data 

CME- Egap 0.019 0.016 0.015 0.030 
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7. Information about codes and data 

We provide the following resources in open access repositories: 

 

Data: 

• All data is available in a Zenodo repo – with a persistent DOI associated to ensure continuation of 

availability: https://doi.org/10.5281/zenodo.4736810  

• The repo contains both the raw data (in .csv format) and pre-processed data (in .pkl format, ready 

for training the ML models). 

• Distributed under Creative Commons Attribution International 4.0 License. 

 

Code: 

• All the code required to reproduce our results is available on a github repo 

(https://github.com/scott-midgley/Machine-Learning-for-Solid-Solutions).  

• The github repo is linked to the Zenodo data repo – by combining the two repositories anyone 

should be able to reproduce all our results. 

• The code repo includes a conda environment specification (in .yml format), so that it is possible to 

recreate the environment settings that we used to perform the study. 

• All code is written as Jupyter notebooks, with full instructions and comments to make it easy to 

follow. 

• The repo contains instructions on how to run the codes and recreate the appropriate environment 

and link to the data. 

• Distributed under MIT License. 

 

Models: 

• The models can be recreated from the code and data, typically within a short time.  

• The deep MLP networks take longer to train, so we have also provided the pre-trained models as 

serialized objects in .h5 files, which can be easily loaded and re-run. The code for doing so is also 

provided in notebooks. 

 

For more detailed information, please refer to the README files within each repository.  
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