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SUMMARY
Organisms adapt to their environments by learning to approach states that predict rewards and avoid states
associatedwith punishments. Knowledge about the affective value of states often relies on credit assignment
(CA), whereby state values are updated on the basis of reward feedback. Remarkably, humans assign credit
to states that are not observed but are instead inferred based on a cognitive map that represents structural
knowledge of an environment. A pertinent example is authors attempting to infer the identity of anonymous
reviewers to assign them credit or blame and, on this basis, inform future referee recommendations. Although
inference is cognitively costly, it is unknown how it influences CA or how it is apportioned between hidden
and observable states (for example, both anonymous and revealed reviewers). We addressed these ques-
tions in a task that provided choices between lotteries where each led to a unique pair of occasionally
rewarding outcome states. On some trials, both states were observable (rendering inference nugatory),
whereas on others, the identity of one of the states was concealed. Importantly, by exploiting knowledge
of choice-state associations, subjects could infer the identity of this hidden state. We show that having to
perform inference reduces state-value updates. Strikingly, and in violation of normative theories, this reduc-
tion in CAwas selective for the observed outcome alone. These findings have implications for the operation of
putative cognitive maps.
INTRODUCTION

Cognitive maps1 detail the structure of a decision-making envi-

ronment, including how states, actions, observations, and re-

wards are linked.2 Much research has focused on how cognitive

maps are acquired,3–6 how they support a transfer of structural

knowledge to novel environments,7 how they support goal-

directed planning,8,9 and how they are used ‘‘offline’’ to

instruct computationally simpler cached or model-free mecha-

nisms.10–13 Here, we address the role for cognitive maps when

inferring latent past states and predicting future states. This

type of inference is particularly critical when the values of states

need updating on the basis of reward/punishment feedback and

where credit must be attributed to relevant antecedent states.

Such credit assignment (CA) supports efficient adaptation to

the environment, allowing organisms to approach states inferred

to be rewarding and avoid those deemed to be punitive.

Humans are remarkably adept at making inferences using

cognitive maps to guide CA. For example, authors frequently

attempt to infer the identity of insightful or hostile reviewers

so as to recommend, or debar, them from future evaluations

of their work (depending on whether credit or blame was
Current Biology 31, 2747–2756, J
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assigned to them during the current reviews). Furthermore, un-

der conditions of state uncertainty (i.e., when states are only

partially observable), people retrospectively infer task states

guiding a CA toward an inferred, and away from a non-inferred,

state.14,15 Finally, when reward feedback is exuberant and de-

layed, inference based on a cognitive map is needed to ensure

causal attribution of rewards to outcome-relevant antecedent

actions.16

That inference is cognitively costly17,18 motivated the focus of

enquiry for the current study. First, we ask whether updating of

state values based on reward feedback (i.e., CA) is compro-

mised by cognitive demands of inference. Second, we ask

how any reduction in CA is allocated across the states to which

credit could be assigned. For instance, if credit needs to be as-

signed to observable as well as inferred states (e.g., when an

author is reviewed by both signed and anonymous referees),

we can ask: are the former favored? A preferential assignment

to directly evident states seems intuitive given that CA to inferred

states entails a more costly inference process. Alternatively,

through the very process of inference the latter might be favored,

possibly because there is recruitment of greater attentional

resources.
uly 12, 2021 ª 2021 The Author(s). Published by Elsevier Inc. 2747
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Figure 1. Task structure

(A) Participants were introduced to four people, who

were each associated with one animal and one

vegetable. Each unique vegetable and animal were

associated with two people. Animals and vegeta-

bles presented as outcomes were probabilistically

associated with a coin worth £1.

(B) On each trial participants chose, within 2 s, one

of two randomly offered people who shared one

outcome (animal or vegetable) in common, and

subsequently obtained as outcomes this person’s

favorite animal and vegetable in random succes-

sion. At this point, participants learned for each

outcomewhether it provided a reward (in the current

example trial the monkey yielded a reward, indi-

cated by a coin, but not the garlic, indicated by ‘‘0’’).

Outcomes were presented in one of three formats,

randomly interleaved with equal probability. The

standard presentation format, wherein the identities

of both outcomes were exposed, is illustrated in (B).

(C) In the prospective inference format, for the trial

illustrated in (B), participants saw a black curtain

instead of the second outcome (garlic) but its

reward or lack thereof was presented. Importantly,

after seeing the first outcome (monkey), participants

could predict, based on knowledge of the transition structure (A), the identity of the second outcome. Similarly, in the retrospective inference format, for the trial

illustrated in (B), participants saw a curtain instead of the first outcome (monkey). Here, participants could only infer the identity of this first outcome after they saw

the second outcome. Note, however, that by that time the reward associated with the hidden outcomewas no longer perceptually available. Dashed black arrows

indicate the display change necessary to cast the standard trial (B) into an inference format.

ll
OPEN ACCESS Article
We developed a novel variant of our dual-outcome bandit

task,14–16,19 which allowed us to address questions related to ef-

ficiency and prioritization by comparing CA for states that were

either observed or hidden, and where the latter could be inferred

based on knowledge stored in a cognitive map. Our task disso-

ciates model-based (MB) and model-free (MF) contributions to

choice,8,10,20–26 allowing us to examine any differential impact

of state inference on CA with respect to each of these putative

controllers.

We show that inference, and particularly retrospective infer-

ence, taxed CA associated with MB, but not MF, computations.

Strikingly, this CA reduction selectively impacted observed,

rather than hidden, states. We discuss mechanistic and norma-

tive accounts for these results and how they extend the scope of

cognitive-map-based processes, including the possibility for

intrinsic value of information gained through inference. Our find-

ings highlight a joint influence of inferential costs and priority in

the deployment of cognitive maps for CA.

RESULTS

Behavioral task
In a novel variant of a dual-outcome bandit task,14–16,19 we intro-

duced forty participants to pictures of four different people and

trained them on the latter’s favorite animal and vegetable. Partic-

ipants iterated between learning and quiz phases (testing on

association knowledge) until they achieved perfect quiz perfor-

mance (see STAR Methods). By design, each person favored a

unique vegetable-animal pair. Crucially, each animal and vege-

table were favored by two of these four people (Figure 1A).

Following training, participants played 360 bandit trials (10

blocks x 36 trials) offering a 2-s limited choice between a

randomly selected pair of people (Figure 1B). After choosing,
2748 Current Biology 31, 2747–2756, July 12, 2021
participants received as outcome the chosen person’s favorite

animal and vegetable in random succession. Each outcome

(i.e., animal/vegetable) was associated either with a coin (worth

£1) or with nothing (worth £0). On each block of trials, each

outcome was governed by a constant reward probability drawn

uniformly from the range [0.2, 0.8], independent of other out-

comes and across blocks. Subjects were instructed to make

choices that maximized earnings.

Crucially, feedback was presented in three different formats,

randomly interleaved, with equal probabilities. During choice,

participants were uninformed about the ensuing presentation

format. In a standard format (Figure 1B), both outcomes were

seen along with their corresponding rewards. In a prospective

and retrospective format, information was withheld during the

trial. However, participants were instructed that they could infer

the latter from the information available to them. In the prospec-

tive format (Figure 1C, bottom), the identity of the first outcome

alone was shown, whereas the second outcome was hidden

behind a curtain (rewards were presented as normal). Because

participants’ model of task structure (i.e., a cognitive map) en-

tailed knowledge of which two outcomes are associated with a

chosen person, they could infer the second outcome prospec-

tively, even before it was presented. The retrospective format

(Figure 1C, top) was the same as for the prospective format,

except now the first outcome was hidden. In this instance, par-

ticipants could infer what this first outcome was, but could

only do so retrospectively (i.e., after seeing the second

outcome).

MFCA and MBCA
We follow a modeling approach described in previous

studies.14–16,19 This is rooted in dual-systems theory and posits

an influence of two distinct information sources during



Figure 2. MFCA and MBCA effects

(A) After a person (e.g., woman) is selected, an

outcome’s (e.g., monkey) reward (or lack thereof)

reinforces theMF value of this chosen person alone.

In contrast, MBCA will occur for that outcome and,

consequently, it will affect equally the values of all

people (e.g., woman and bearded man) who share

that outcome, because the MB value of each of

these people is the sum of the values of his (or her)

preferred animal and vegetable.

(B) To probe MFCA, we analyzed trials that offered

for choice (trial n + 1) the person chosen on the

immediately preceding trial n (the repetition person)

alongside a person who favored a common

outcome, in this example the monkey. We tested

the probability of repeating a choice as a function of

the previous-trial common reward. The effect of the

trial-n common outcome ‘‘cancels out’’ from MB

trial n + 1 calculations. Hence, a common reward

effect on choice repetition isolates MFCA. For

example, when the monkey is rewarded versus not

rewarded on trial n, the MF value of the woman will

be higher and the probability of repeating the choice

will increase.

(C) Trial n’s common reward effect on choice

repetition (i.e., the difference in repetition probability

between common reward and non-reward) is dis-

played as a function of a trial n’s format (S, standard;

PI, prospective inference; RI, retrospective infer-

ence) and the common outcome’s serial position on

trial n (first/second). The asterisks correspond to the

significance of the common reward main effect in

the mixed-effects model, corresponding to the

average of all 6 data points (vertical black line).

(D) To test for an MBCA, we analyzed trials that

excluded from choice the person chosen on the

immediately preceding trial but offered another

person (who we term the generalization person;

e.g., the bearded man) who shares an outcome in

common (e.g., monkey) with the person chosen

previously. Note that the other person offered on

trial n + 1 (e.g., the child) shares no outcomewith the

previously chosen person.

(E) Trial n’s common reward effect on choice

generalization is displayed as a function of trial n’s

format. The asterisks correspond to the significance

of the triple interaction (see the X; common reward x format x position) and to the finding that for the second outcome, the common reward effect is stronger in

standard versus retrospective inference format (red horizontal line).

Error bars correspond to SEM across participants calculated separately in each format. *p < 0.05, ***p < 0.001. p values were calculated based on mixed-effects

logistic regressionmodels. Black diamonds in (C) and (E) designate concealed outcomes. See Figures S1 and S2 for supporting model simulations and Figure S3

for further analyses.
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choice8,9,10,20–31— a rigid, retrospective MF system32,33 and a

flexible, prospective MB system.32,34 The MF system repeats

actions based upon a past history of action success, whereas

the MB system relies on a cognitive map that predicts the

impact of actions on both world states and potential future re-

wards. MF and MB influences are typically integrated during

choice.28,35–37

In our task, an MF system uses the history of rewards associ-

ated with each person to estimate a current person value

(denoted QMF). Thus, in a trial’s choice phase, retrieved MF

values of the two people presented feed into a decision module.

In a learning, reward-feedback, phase the MF system updates

the QMF value of the chosen person alone, a process we call

model-free credit assignment (MFCA; Figure 2A). Note that an
outcome’s identity is irrelevant for MFCA to a chosen person,

because both the identity of the chosen person and the ensuing

rewards are fully observed. Consequently, we do not predict pre-

sentation-format effects on MFCA.

By contrast, at choice, anMB system calculates prospectively

on-demand QMB values for each person in an offered pair based

on the arithmetic sum of the values of the animal and vegetable

they prefer:

QMBðpersonÞ = QMBðassociated vegetableÞ+
QMBðassociated animalÞ

(Equation 1)

AnMB learner updates the values of the pair of choice outcomes

(vegetable and animal) based on reward feedback, such that the
Current Biology 31, 2747–2756, July 12, 2021 2749
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value of each outcome increases or decreases depending on

whether it was rewarded. We refer to these updates as model-

based credit assignment (MBCA). Importantly, unlike MFCA,

the MB system generalizes CA across the two people who share

a common outcome (Figure 2A).

Critically, because MBCA requires knowledge of outcome

identity, it requires inference in the prospective and retrospective

presentation formats, a dependence likely to incur temporal and

cognitive costs.16,17 We hypothesized that these costs would

weaken MBCA. Furthermore, there is a fundamental difference

between the two inference formats. In the prospective inference

format, one can infer the identity of the second, hidden, outcome

before it appears, because this is already implied by the first,

observed, outcome. By contrast, in the retrospective inference

format, the identity of the first, hidden, outcome is uncertain at

the point a reward associated with this outcome is presented.

Thus, at the same time as assigning credit to the second,

observed outcome, the subject has to employ working memory

to remember the first reward, and infer what the first outcome

must have been. We hypothesized that these extra demands

would place a burden on MBCA and, if extra cognitive resources

that subjects could recruit were insufficient, then subjects would

prioritize MBCA to one or the other outcome.

We examined signatures of MFCA and MBCA to people and

outcomes, respectively. We first present ‘‘model-agnostic’’ ana-

lyses supported by validating simulations described in full in Fig-

ures S1 and S2.

No presentation effects on MFCA

We examined whether MFCA contributed to choice and, if so,

whether there was a modulation by presentation conditions.

Consider (Figure 2B) a focal trial n + 1, which offers for choice

the person (e.g., the woman) chosen on the immediately preced-

ing trial n, along with a second person (e.g., the bearded man),

with both sharing a common outcome (here, the monkey). If

the monkey was rewarded on trial n, then whereas MFCA would

credit the woman, rendering her a more likely choice on trial n +

1, MBCA would appreciate that the extra value of the monkey

benefits both choices on trial n + 1, and not favor either. Thus,

a positive effect of the common outcome’s reward on choice

repetition on such trial pairs constitutes a signature of MFCA

(Figure S1A).

Here, we examined whether and how this common reward

effect varied as a function of presentation format of trial n

(standard/prospective inference/retrospective inference) and

whether the common outcome came first or second (deter-

mining the nature of inference, if any). Using a logistic mixed-ef-

fects model (STAR Methods), we found (Figure 2C) a main effect

of reward on the common outcome (b = 0.56, F(1,444) = 55.06,

p = 6e-13), but none of the higher-order interactions involving

the common reward were significant (all p > 0.17). Thus, the cho-

sen person benefits from MFCA, but there is no evidence for

modulation by outcome-presentation condition, i.e., format

and/or position.

Presentation effects on MBCA

Next, we examined the same questions for MBCA. Consider a

trial n + 1 that excludes the person chosen on trial n (e.g., the

woman; Figure 2D) from the choice set but includes a person

(here, the bearded man) who shares a common outcome (the

monkey) with the woman. The other person offered on trial n +
2750 Current Biology 31, 2747–2756, July 12, 2021
1 (here, the child) shares no outcome with the woman. We call

a choice of the bearded man on trial n + 1 ‘‘generalization’’

from trial n. To assessMBCA,we examined the effect of a reward

to the monkey on generalization, a so-called common reward ef-

fect. An MBCA account predicts this common reward effect

should be positive because extra value to the monkey benefits

the bearded man (and not the child). Here we ask whether this

common reward effect depends on trial n’s presentation condi-

tions (format x position; Figure S1B).

A logistic mixed-effects model (Figure 2E; below, ‘‘Rn’’ refers

to the nth row in Table 1, which includes statistical tests and in-

terpretations) showed a positive main effect for the common-

outcome reward (R1) on choice generalization, meaning greater

generalization following a reward (compared to non-reward) to

the common outcome. Crucially, evidenced by the crossing of

the curves (Figure 2E), choice generalization was subject to a

triple-interaction effect (common reward x format x position,

R4; there were no lower-order interactions, R2 and R3). Specif-

ically, the common reward effect (on choice generalization)

varied as a function of trial n’s format (standard versus retro-

spective) in different ways for the first and second outcomes

(R5–R7). Interpreting this further, we found that the common

reward effect for the first outcome was equivalent for the stan-

dard and retrospective inference formats (R8), but for the sec-

ond outcome it was lower in the retrospective inference format

(R9). In sum, comparing the standard and retrospective infer-

ence formats, the common reward effect on choice generaliza-

tion was selectively impaired for the second seen outcome (see

Figure S3 for further analyses converging on the same

conclusions).

The presentation of the second (seen) outcome in the retro-

spective inference format enables MBCA for both the seen and

the first, inferred outcome. However, the increased difficulty in

this condition impairs CA as compared with the standard format,

which serves as a neutral baseline against which to interpret the

extent of choice generalization. Strikingly, the impairment was

confined to the second, observed, outcome alone. MBCA for

the first, hidden, outcome was spared. The upshot is that when

inference became possible, an MBCA was prioritized for a hid-

den over seen outcome in the retrospective inference format.

Finally, there was no evidence that prospective inference taxed

the efficiency of MBCA, presumably because this type of infer-

ence is easier.

Computational modeling
Wetesteda series of computationalmodelswherein choiceswere

drivenbyamixtureofMB-MFcontributions. Inour fullmodel, each

outcomewasendowedwithanMBCAparameter16 that quantified

the extent outcome value updates (i.e., an increase following a

reward and a decrease following non-reward) following reward

feedback (STARMethods), andwas free to vary as a joint function

of format (standard/prospective inference/retrospective infer-

ence) and an outcome’s serial position (first/second; 6 MBCA pa-

rameters in total). The model also included a single parameter for

MFCA that contributed to MF updates of action values of chosen

people.

We first conducted ablation studies, comparing our full model

to a set of sub-models by lesioning different parts of the full

model (STAR Methods). These studies support a conclusion



Table 1. Results and interpretations for our mixed-effects model

regressing choice generalization on common reward, format, and

serial position

Row

Effect:common

reward x Stats Interpretation

1 1 b = 0.41,

F(1,444) = 28.31,

p = 2e-7a

positive CRE, i.e.,

participants generalize

their choice more when

the common outcome

is rewarded versus

non-rewarded

2 Format F(2,444) = 0.3,

p = 0.75

no evidence CRE varies

as a function of format

3 Position b = 0.04,

F(1,444) = 0.11,

p = 0.738

no evidence CRE varies

as a function of serial

outcome position

4 Position x

format

F(2,444) = 3.08,

p = 0.047a
CRE varies across

the three formats

in different ways

for the first/second

outcomes

5 Position x

(PI versus S)

b = 0.08,

t(444) = 0.29,

p = 0.771

6 Position x

(RI versus S)

b = 0.58,

t(444) = 2.25,

p = 0.025a

CRE varies as a

function of format

(for RI versus S, but

not for other format

pairs) in different

ways for the first

and second

outcomes

7 Position x

(RI versus PI)

b = 0.5,

F(1,444) = 3.54,

p = 0.061

8 First outcome:

RI versus S

b = 0.18,

F(1,444) = 0.95,

p = 0.33

for the first

outcome, CRE is

similar in standard

and retrospective

inference

9 Second

outcome:

RI versus S

b = �0.40,

F(1,444) = 4.03,

p = 0.045a

for the second

outcome, CRE is

lower in retrospective

inference than

in standard

The first column indexes row numbers. The second column specifies the

effect. We are only interested in effects involving the common reward and

hence this factor is included in all effects. For example, the name ‘‘posi-

tion’’ corresponds to the double common reward x position interaction.

The third column specifies statistical tests for each effect. The fourth col-

umn specifies the interpretation of the finding. CRE, common reward ef-

fect.
aSignificant effects.
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that both MBCA and MFCA processes contribute to choices,

and justified an elaborate, interactive, MBCA parameterization

in our full model (Figure S4). Additionally, we verified, based on

model simulations using participants’ best-fitting parameters,

that, unlike the full model, which predicted the model-agnostic

signatures presented above (Figures 3B and 3C), each of its
sub-models failed to predict a subset of these effects (Figures

S1 and S2). Importantly, our full model supported good param-

eter and model recovery (STAR Methods; Figure S5).

We next probed the best-fitting MBCA parameters in the full

model to test how these varied asa joint functionof format andpo-

sition (Figure 3A). A mixed-effects model, wherein we regressed

theMBCA parameters on presentation format and outcome serial

position (STARMethods), revealed an interaction between format

and position (F(2,222) = 3.10, p = 0.047). Specifically, MBCA was

modulated differently by format (standard/retrospective; cross-

over of curves) for the first and second outcomes (b = 0.15,

t(222) = 2.47, p = 0.014; for the other format pairs, both p >

0.135). Interpreting this further, whereas MBCA for the first

outcomewasonapar across thestandardand retrospective infer-

ence formats (b = 0, F(1,222) = 0, p = 0.94), MBCA for the second

outcome was lower in the retrospective inference format (b =

�0.15, F(1,222) = 7.04, p = 0.009). Crucially, these results

converge with our model-agnostic analyses to a conclusion that

an efficiency cost of retrospective inference was incurred mainly

by MBCA for the revealed, as opposed to the hidden, outcome,

thereby implicating a prioritization of retrospective inference-

based MBCA. Notably, although MBCA for the second outcome

was lower in the retrospective inference format, it was still positive

(b = 0.1, F(1,222) = 5.38, p = 0.021).We also found thatMBCAwas

positive for the hidden outcome in both inference formats (pro-

spective: b = 0.15, F(1,222) = 13.34, p = 3e-4; retrospective: b =

0.16, F(1,222) = 20.32, p = 1e-5), providing additional evidence

that participants relied on a cognitive map of the task to infer the

identity of a hidden outcome, fosteringMBCA to those outcomes.

Finally, we calculated for each participant the ‘‘MBCA impair-

ment’’ in the retrospective inference relative to the standard

format (subtracting a retrospective inference format MBCA

parameter from its corresponding standard format parameters),

separately for each serial position (Figure 3D). We found a posi-

tive across-participants correlation between impairment for the

two positions (r = 0.4, p = 0.014), suggesting the difficulty of

MBCA in the retrospective inference format is shared by both

outcomes. However, the findings also suggest participants

respond to this challenge by recruiting additional cognitive re-

sources to ensure MBCA is spared for the hidden outcome.

This is evident in a baseline shift for MBCA for the hidden

outcome (regressing MBCA impairment for outcome 2 on

MBCA for outcome 1 showed a positive intercept b = 0.15,

t(36) = 3.27, p = 0.002).

MBCA is cognitively more demanding in the
retrospective inference format
A guiding assumption for our study is that MBCA is more difficult

in the retrospective inference condition. We reasoned that if

MBCA ismore effortful and resource draining in the retrospective

inference (compared to standard) format, then choice should be

slower on successive trials, at least when this next trial is ‘‘new,’’

i.e., not a replica of the current one (a replica trial offers the same

two persons as the previous trial). Because our task includes a

long inter-trial interval (Figure 1), which might dilute effort-based

inter-trial reaction time (RT) effects, we expected any RT effects

to be at best modest.

WecalculatedmeanRT for eachsubjectasa functionof thepre-

vious trial’s format and the current trial type (i.e., replica/new)
Current Biology 31, 2747–2756, July 12, 2021 2751



Figure 3. Analysis based on the full computa-

tional model

(A) MBCA parameters for each format (S, PI, and RI)

and outcome serial position (first/second). The as-

terisks correspond to the significance of the format

x position interaction (see the X) and to the stan-

dard-retrospective inference contrast for the sec-

ond outcome (red line).

(B) Common-outcome reward effects (MFCA), as in

Figure 2C, but based on simulations of the full

model. The asterisks correspond to the significance

of the main common reward effect.

(C) Common-outcome reward effects (MBCA), as in

Figure 2E, but based on simulations of the full

model. The asterisks correspond to the significance

of a triple common reward x format x position (see

the X) interaction and to a common reward x stan-

dard versus retrospective inference format interac-

tion for the second outcome (red line).

(D) MBCA impairment in the retrospective inference

format (i.e., the difference between MBCA param-

eters for the standard and retrospective inference

format) for the first (x axis) and second (y axis) out-

comes. Each point corresponds to an individual participant. Regression (thick) and identity (thin) lines are imposed.

Error bars correspond to SEM across participants calculated separately in each condition. *p < 0.05, **p < 0.01, ***p < 0.001. See also Figure S4 for model

comparisons, Figure S5 for parameter recovery and trade-offs in the full model, and Table S1 for best-fitting model parameters.
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(Figure 4). Amixed-effectsmodel (STARMethods) revealedapos-

itive main effect for trial type (b = 79.07, F(1,222) = 63.56, p = 8e-

14), showing new trials are slower than replica trials. There was

no evidence for a main (previous trial) format effect (F(2,222) =

0.37, p = 0.69). Importantly, however, we found a significant inter-

action between format and trial type (F(2,222) = 3.27, p = 0.04)

such that standard and retrospective inference formats differed

dependent on trial type (b = 29.18, t(222) = 2.52, p = 0.012; a pro-

spective inference format did not differ from either standard or

retrospective inference formats, both p > 0.229). Furthermore,

whereas for replica trials, RT was on a par for the standard and

retrospective inference formats (b = �10.09, F(1,222) = 1.26, p =

0.263), for new trials, consistent with our assumption, RT was

slower for the retrospective inference format (b = 19.08,

F(1,222) = 8.56, p = 0.004).

Inference-presentation formats tax reward acquisition
Heretofore, we assessed the cost of inference in terms of reduc-

tion in MBCA. However, the ultimate purpose of MBCA is to pro-

mote reward acquisition. Thus, we next ascertained the effec-

tiveness for earning reward of participants’ MBCA across the

three formats. Because actual earnings in the task reflect the

aggregated contribution of MBCA across all three formats as

well as of MFCA, we simulated reward earnings for synthetic

agents under different settings of MBCA parameters, corre-

sponding to the three different formats (STAR Methods). Fig-

ure 5A shows that the effectiveness of our participants’ MBCA

was subject to a gradual decline across the standard, prospec-

tive inference, and retrospective inference formats.

Prioritization of inference-based MBCA is non-
instrumental for reward acquisition
A recent reinforcement-learning (RL)-based theory proposes

that CA should be prioritized for task states that are likely to be

encountered more frequently (reflecting a higher ‘‘need’’) or
2752 Current Biology 31, 2747–2756, July 12, 2021
those where revaluation fosters reward acquisition if one visited

these states (reflecting higher ‘‘gain’’).13,38 In this framework, our

findings raise an important question regarding the effects on

acquisition of reward for prioritization of MBCA in the retrospec-

tive inference format. Because presentation formats are ran-

domized in our task, there is neither increased need nor gain

for MBCA to hidden relative to observed states. Therefore, we

do not predict such prioritization would be instrumental for

reward earnings.

To examine this, we simulated pure-MB agents performing our

task over a broad range of MBCA parameters (STAR Methods).

Figure 5B displays earnings for different combinations of total

(summed across the first and second positions) retrospective

inferenceMBCAparameters (different curves, where warmer co-

lor corresponds to a higher total) and for theMBCA ratio between

the first, inferred, outcome and the total (x axis). For any level of

total MBCA, earnings are optimized when theMBCAs for the first

and second outcomes in the retrospective inference formats are

equal (the center of the curve). Furthermore, earnings are sym-

metric across the two outcomes; that is, flipping the MBCA

across serial positions did not make a noticeable difference in

earnings. These findings show that, as expected, prioritized

MBCA to the inferred outcome is not conducive to increased

earnings. Furthermore, because inference is cognitively effortful,

CA should be prioritized for the seen outcome. A prioritization of

inference-based CA is therefore sub-optimal and our findings

suggest that either inference is of intrinsic value, or the very pro-

cess of making inferences leads to an approximate and ineffi-

cient outcome.

Finally, we used robust multiple linear regression to examine

how participants’ empirical standardized reward earnings varied

as a function of the overall level of MBCA (defined as the average

of all 6 MFCAs in the full model) and asymmetries in MBCA

across serial positions (the absolute difference between MBCA

parameters for the first and second serial positions averaged



Figure 4. Mean RT results

Mean RT is displayed as a function of the previous trial’s format (S, PI, or RI)

and the current trial’s type (replica of the previous trial or a new trial). The

asterisks correspond to the significance of the format x trial type interaction

(see the X) and to the standard-retrospective inference contrast for new trials

(blue line). Error bars correspond to SEM across participants calculated

separately in each condition. *p < 0.05, **p < 0.01. p values were calculated

based on mixed-effects regression models.
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across the three formats). We found a positive effect of overall

MBCA level (b = 0.56, t(35) = 4.84, p = 3e-5) and a negative effect

for MBCA asymmetry (b =�0.34, t(35) =�2.23, p = 0.032). Thus,

althoughMBCAwas beneficial for reward earnings, asymmetries

in CA for the first and second outcomes diminished its benefit.
Addressing alternative accounts
We considered potential alternative explanations for our find-

ings. First, assume that when the first, hidden, outcome is pre-

sented on retrospective inference trials, participants assign

credit online based on a belief state in relation to both possible

outcomes. Then, when the second outcome is seen, CA would

occur for the visible outcome alone (as in the standard condi-

tion). By itself, this could not account for our main finding of a

diminishedMBCA for the second outcome in retrospective infer-

ence as compared to standard formats. However, a variant

might be that a belief state formed during the first outcome loads

working memory, thereby diminishing attention paid to the sec-

ond outcome’s reward (hindering MBCA to the second outcome

based on its reward). In contrast, MBCA for the first outcome

would be spared because it is held in memory as its reward is

presented.

Importantly, this account predicts a form of ‘‘cross-credit

assignment’’ such that the value of the second seen outcome

is reinforced by a first outcome’s reward. To examine this predic-

tion, we revisited trial transitions of the type used to study MBCA

(Figure 2D). Here, however, we considered retrospective infer-

ence format trials n alone, wherein the common outcome (e.g.,

monkey; designated as common on trial n + 1) appeared second

(seen). If participants assign credit from the first reward (e.g.,

related to garlic) to both outcomes, then a garlic reward will rein-

force the monkey, promoting choice generalization (Figure 6A).

Regressing choice generalization on the first, non-common,

reward using a mixed-effects logistic model (STAR Methods),
we found a numerically negative effect for the non-common

reward (b = �.07, t(74) = �0.58, p = 0.565; Figure 6B). Hence,

there was no evidence for online CA based on belief states

(see Figure S6 for confirming results based on computational

modeling).

Similar considerations speak against the second possibility

that what we term MBCA arises due to forms of direct associa-

tion.39 For example, suppose that during outcome, rewards are

associated with all persons who relate to a seen outcome. This

suggestion, too, cannot account for the diminished MBCA for

the second outcome (based on its own feedback) and it is un-

clear how such associations will account for the MBCA for the

first hidden outcome, because throughout the task the black cur-

tain is associated with all 4 persons. Therefore, a reward for the

first outcome will be associated with all four persons and will not

promote choice generalization. If, however, one assumes that

associations for the black curtain occur only for choice-related

outcomes, rather than for all four outcomes (an assumption

that would itself in any case demand a form of MB inference),

then this likewise predicts cross-credit assignment for the first

reward. A third potential alternative account for our findings,

that the sole effect of the retrospective inference format could

be to flip the ‘‘functional order’’ of CA between the two outcomes

during feedback, is refuted in Figure S7.

DISCUSSION

Even when task states are latent, agents can infer these if they

hold an internal structural representation of their environ-

ment,40,41 i.e., a cognitive map.1 Here, we assessed the effi-

ciency costs incurred by a cognitive-map-based guidance of

CA, including the relative impact on observed and inferred hid-

den outcomes.

Because MFCA to actions can operate in our task based on

knowledge of actions and rewards alone, we neither expected,

nor found, outcome-presentation effects on this process. We

previously showed, however, that in other task settings, inferring

a hidden state’s identity can guide MFCA toward an inferred

state.14 Additionally, inference of a latent task state (e.g., which

stimulus dimensions predict a reward) can support simpler task

representations via dimension reduction and thus aid MF

learning.42

By contrast, MBCA to individual outcomes (animals and veg-

etables) is contingent on knowledge of outcome identity, leading

us to predict a sensitivity to outcome-presentation format. We

show that MBCA occurred for hidden outcomes, consistent

with our previous findings that cognitive maps support planning,

but also CA.14,16 Notably, the extent to which participants’

MBCA was instrumental to reward earning decreased gradually

from the standard to prospective inference and to retrospective

inference formats. This pattern is consistent with the idea that the

efficacy of MBCA decreases when inference becomes neces-

sary. This reduced efficacy was evident also as an interactive

function of presentation format and outcome serial position.

Although we found no significant decline in MBCA in the pro-

spective inference format, MBCA was strikingly diminished in

the retrospective inference format relative to the standard format

for the second, observable, outcome, whereas CA for the first,

hidden, outcome was intact.
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Figure 5. Simulated reward earnings for

various regimes of MBCA parameters

(A) Average standardized earning for simulated

groups of pure-MB agents. A standard agent

duplicated the empirical MBCA parameters of its

yoked real participant from the standardized format

across all three formats. Similarly, prospective- and

retrospective inference agents duplicated MBCA

from the prospective inference and retrospective

inference presentation formats, respectively (see

STAR Methods for full details). Error bars corre-

spond to SEM across experiments calculated

separately in each format.

(B) Standardized earnings (ordinate) of simulated

pure-MB agents (STARMethods) are displayed as a

function of (1) the total weight of MBCA in the

retrospective inference format summed across

observed and inferred outcomes (color gradient,

increasing from black to yellow in steps of 0.3, with some values marked on the right side), and (2) the fraction of that total that is allocated to the inferred outcome

(x axis). Earnings are maximized when the ratio is 0.5, i.e., when MBCA for the inferred outcome is identical to MBCA for the observed outcome (for none of the

curves was there a point significantly higher than the central point). Each data point is based on 10,000 simulations of synthetic experimental sessions (see STAR

Methods for full details).
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One potential explanation for why we did not find an expected

reduced MBCA in prospective inference, as compared to stan-

dard, format trials, is the simplicity of prospecitve inference trials.

Future studies might investigate MBCA in more challenging pro-

spective inference setups, for example when the task transition

structure entails more complex inferences, or when feedback

is delivered under stricter time pressure. Neuroimaging could

also be used to test whether a putative anticipatory signal in

the prospective inference format predicts the extent of MBCA

to the anticipated outcome.

Compared to prospective inference trials, retrospective infer-

ence trials impose a greater burden on CA. That non-replicated

trials that follow retrospective inference trials have longer RTs is

consistent with the extra difficulty. Furthermore, the malign ef-

fect of the retrospective inference format on MBCA was corre-

lated across both outcomes (Figure 3D), suggesting this difficulty

was shared by both outcomes and that subjects differed in their

abilities to mitigate this difficulty. Surprisingly, on average, the

difficulty of the retrospective inference condition impacted the

seen, as opposed to the hidden, outcome. This suggests that

participants recruited additional cognitive resources to ensure

CA is uncompromised for the hidden outcome. In other words,

our suggestion is that MBCA for the first outcome reflects a bal-

ance of two opposing effects, which roughly offset each other.

On the one hand, the increased difficulty tends to reduce

MBCA for this outcome. On the other hand, there is a positive

baseline shift in MBCA for this outcome that we suggest is due

to recruitment of additional cognitive resources.

Our computational simulations show that, as might be ex-

pected, CA to seen and hidden outcomes is equally instrumental

for acquisition of reward (Figure 5B). Furthermore, because we

randomized the way we concealed the outcomes, there was

equal gain and need in MBCA for seen and hidden outcomes.13

Considering the costs of inference and memory maintenance, a

normative approach would seem to prioritize a less costly CA to

the seen outcome. In contrast, our findings support a conclusion

that the more demanding inference-based MBCA was priori-

tized. This observation points to a novel variable affecting CA

prioritization.
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Why did participants prioritize MBCA to the hidden outcome in

the retrospective inference condition? An algorithmic possibility

is that the effort required to infer a hidden outcome directs

greater attention to this outcome. This fits with a framework in

which information is considered to have intrinsic worth, above

and beyond its immediate instrumental value,43–48 perhaps ac-

quired through prolonged life experiences as a secondary rein-

forcer. An intrinsic value for information pertaining to a hidden

outcome’s identity, which outweighs the cost of inference, could

account for this finding.

Finally, our findings have broad implications for ecological de-

cision making given that a need to infer task states is ubiquitous.

Our finding suggests that when cognitive resources are limited,

CA might be prioritized for inferred states and attenuated for re-

vealed states. We acknowledge our task is idealized in so far as

state uncertainty can be fully resolved based on a relatively sim-

ple model. In contrast, real life is replete with complex situations

wherein inference can only be partially resolved (e.g., inferring

the intentions of a close other) based on much richer models

(e.g., theory of mind). We think in such situations the extent of

CA to task states will be governed by an interplay between the

complexity of inference, the resolution it provides, and the avail-

able cognitive resources. For example, when resources are

scarce, people may adaptively degrade inference, in accor-

dance with bounded optimality accounts.49 Relatedly, a poten-

tial limitation of our task is that, unlike real-life situations, the

duration of the CA phase was under the control of the experi-

menter. Future studies should examine how inference and CA

interact when participants directly control temporal allocation

during CA.

In conclusion, an extensive literature highlights both costs

and benefits associated with planning based on cognitive

maps. The current study provides empirical evidence that

cognitive maps play an equally important, and dramatic, role

in supporting inference-based CA. Because inference serves

a key role in adaptation to natural environments, an important

next step will be to characterize with greater granularity the

costs and sources of value associated with deployment of

cognitive maps.



Figure 6. Examining a possibility of cross-credit assignment on retrospective inference trials

(A) We reexamined trial transitions of the type used to studyMBCA (Figure 2D). Here, however, we considered only retrospective inference format trial n, wherein

the common outcome (e.g., monkey; designated as common on trial n + 1) appeared second. If credit from the first reward (related to garlic) is assigned to the

second outcome, a reward for the first outcome promotes choice generalization.

(B) Choice-generalization probability as a function of the first outcome’s feedback (reward versus non-reward). Following reward, the generalization probability

was numerically lower. Error bars correspond to SEM across participants calculated separately in each condition (n = 38).

See also Figure S6 for further analyses.
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Data and code availability
The data that support the findings of this study and data analysis code have been deposited in the Open Science Framework (OSF)

and are available in the following link: https://osf.io/t3yf9/?view_only=e3e63487443541359b450baaa4d1f593

EXPERIMENTAL MODELS AND SUBJECT DETAILS

Participants
Forty participants (15 Males, 25 Females, age range: 20-35) were recruited from the SONA subject pool (https://uclpsychology.

sona-systems.com/Default.aspx?ReturnUrl=/) with restrictions of having normal or corrected vision, being non-dyslexic, being a

UK based student and being born after 1981. The study was approved by the University College London Research Ethics Committee

(Project ID 4446/001). Subjects gave written informed consent before the experiment.

METHOD DETAILS

Experimental procedures
Participants were first familiarised with four pictures of persons and learnedwhich animal-vegetable pair each person grows (pictures

of persons, animals, and vegetables were adopted from previous studies50,51). Each vegetable/animal was preferred by two different

people, and each person grew a unique animal-vegetable pair. The mapping between persons and animals/vegetables was created

randomly anew for each participant and remained stationary throughout the task. After learning, participants were quizzed about

which vegetables/animal each person preferred and about which person they would choose to obtain a target animal or vegetable.

Participants iterated between learning and quiz phases until they achieved perfect quiz performance (100% accuracy and RT <

3000 ms for each question).

After learning participants played a practice block of 24 trials to verify that they understood the task. These practice trials pro-

ceeded as described below with the sole difference that outcome-presentation was only in the standard format. Next, participants

were instructed that in following blocks they will either see both choice outcomes or only one choice outcome and the other will be

hidden behind a black curtain. They were also instructed that they can infer the identity of a hidden outcome, should they find this

useful, based on knowledge of which pair of outcomes they expect to get and the identity of the outcome they saw. Finally, they were

instructed that the computer’s decision to hide outcomes and which outcomes to hide is random and independent of their choices.

Participants next played 10 short blocks, each comprising 36 bandit trials. On each trial, a pair from the four persons were offered

for choice and participants had 2,000msec to choose one of these objects (left/right arrow keys). Offered persons always shared one
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outcome (animal or vegetable) in common. This defined 4 person pairs, each presented on 9 trials (per block), in a random order.

Following a choice, participants saw sequentially, and in random order, the two choice outcomes and whether each of these out-

comes was rewarded (a notational £1) or not. Importantly, outcomes could be presented in one of three equi-probable formats inter-

leaved across trials. In the standard format both outcomes were seen, in the prospective-inference format only the first outcome was

seen and the second was hidden, and in the retrospective-inference format only the second outcome was seen and the first was

hidden. Note that rewards were always observable. The reward- probabilities of the four outcomes were constant within each block

(four independent uniform samples from [0.2, 0.8]) and independent across blocks.

After each block was completed participants had a forced 40 s (minimum) break. After the break participants were informed that all

vegetable/animal reward probabilities were reset to new values and therefore they should form new impressions of these when the

task resumes. The task lasted about 60 min. Participants were paid £8 per hour plus a performance-based bonus which was calcu-

lated based on the total amount of earned coins on 3 randomly sampled trials (£1 per bonus pt.).

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analyses were conducted using customary-built scripts and statistical toolbox in MATLAB (R2020b, Natick, Massachu-

setts: The MathWorks Inc.). All statistical details can be found in the Results and/or figure legends.

Participant exclusion
Two participants were excluded, one due to failure to meet the recruitment criteria (not a student) and the other due to not showing

any incentive to earn rewards (all 7 CA parameters for this participant were negative). The remaining 38 participants were the targets

for the analysis.

Model-agnostic analysis: MFCA and MBCA
Our model-agnostic analyses were conducted using logistic mixed effect models (implemented with MATLAB’s function ‘‘fitglme’’)

with participants serving as random effects with a free covariance matrix. In our first analysis (related to Figures 2B and 2C), we used

only trials n+1 that offered for choice the trial-n chosen person. Our regressor COMMON coded whether the common outcome was

rewarding on trial-n (coded as +0.5 for reward and�0.5 for non-reward), the regressor PROSPECTIVE, and RETROSPECTIVE, indi-

cated whether trial’s n format was prospective-inference or retrospective-inference, respectively, and the regressor POSITION,

coded the serial position of the common outcome on trial n (0.5: first,�0.5: second). Variable REPEAT indicated whether the choice

on the focal trial n+1 was repeated. PART coded the participant contributing each trial. The model, in Wilkinson notation, was: RE-

PEAT�COMMON *(PROSPECTIVE + RETROSPECTIVE)*POSITON + (COMMON *(PROSPECTIVE + RETROSPECTIVE)*POSITON |

PART). We used F-test to examine contrasts on fixed effects. When examining interaction effects involving format (e.g., common-

reward x format interaction) we first tested a hypothesis that both the retrospective and retrospective effects (e.g., COMMON

*PROSPECTIVE, COMMON * RETROSPECTIVE) were 0 and only if this null was rejected we proceeded to test effects of specific

formats (e.g., COMMON *PROSPECTIVE). Due to format-coding, the main effect for common reward was based on the con-

trastð3bCOMMON + bCOMMON:PROSPECTIVE + bCOMMON:RETROSPECTIVEÞ=3. Similarly, the interaction of common-reward x position was

based on the contrastð3bCOMMON:POSITION + bCOMMON:POSITION:PROSPECTIVE + bCOMMON:POSITION:PROSPECTIVEÞ=3.
In our second analysis (related to Figures 2D and 2E), we used only trials n+1 that excluded from choice the trial-n chosen person.

Only one of the offered persons (trial n+1) shared a common outcome with the previously chosen person and the variable GENER-

ALIZE indicatedwhether this personwas chosen.We repeated the same analyses as above but for GENERALIZE instead of REPEAT.

Additionally, we ran a mixed effects model (Figure S3A) regressing the common reward effects (the contrast between generalization

probabilities following common outcome reward and non-reward) on format and outcome (note each participant contributed 6 effects).

The model in Wilkinson’s notation was: REWARD_EFFECT�POSITION*(PROSEPCTIVE+RETROSPECTIVE)+ (POSITION*PROSE

PCTIVE|PART)+(POSITION*RETROSPECTIVE|PART); these regressors are as in previous analyses but here they pertained to a reward

effect rather than to single trials.

We also ran a mixed effects logistic regression model, which included all trial transitions and accounted for all the influences that re-

wards from a previous trial exert via both MBCA and MFCA (Figures S3B and S3C). We regressed the chosen display side (coded in a

variable CHOOSE-R/L; left coded as 0, right as 1) on trial n+1 on a set ofMBCAandMFCA regressors as follows. First, by task design, it

was always the case that exactly one of the two trial-n outcomes (i.e., vegetables/animals), was unique to oneof the twopersons offered

on trial n+1.We label thisoutcomeas the ‘‘Uniqueoutcome.’’A trial n reward to thisUniqueoutcomesupportsachoiceof thepersonwho

is related to that outcome on trial n+1. In contrast, the other trial-n outcome, was either common to both persons offered on trial n+1 or

absent from both. Hence, the value of this outcome (and in particular, whether it was rewarded on trial n) exerts no influence on MB

choice tendencieson trial n+1.Accordingly,we focused on the uniqueoutcomeandwedefined the regressorMB_REWas+0.5 if either:

1) the uniqueoutcome relates to the right sidepersonon trial n+1andwas rewardedon trial n, or: 2) the uniqueoutcome relates to the left

side person on trial n+1 and was unrewarded on trial n. Otherwise, this regressor was defined as�0.5. Another regressor, POSITION,

coded the serial position of the Unique outcome on trial n (�0.5: first, 0.5: second) and the two regressors PROSEPCTIVE and RETRO-

SPECTIVE were defined as in the previous analyses. We next defined a set of MFCA regressors as follows. We had 6 regressors cor-

responding to the serial position and format of each outcome on trial n. These regressors were named MF_REW1, MF_REW2 (these

relate to the standard format), PROSPECTIVE_ MF_REW1, PROSPECTIVE_ MF_REW2 (these relate to the PI format),
e2 Current Biology 31, 2747–2756.e1–e6, July 12, 2021
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RETROSPECTIVE_ MF_REW1, RETROSPECTIVE_ MF_REW2 (these relate to the RI format). The numerical 1 or 2 in the regressor’s

name corresponds to the serial position of the outcome. If the person chosen on trial n was not offered for choice on trial n+1 then all

six regressors were set to 0. Otherwise, the 4 regressors that do not correspond to the trial n format (S/PI/RI) were set to 0. The two re-

gressorscorresponding to trial n’s formatcodedwhether thefirstandsecondoutcome, respectively,were rewarded (0.5) orunrewarded

(�0.5) on trial n. However, if the trial n chosen person was on the left side of the screen on trial n+1, we applied a negative sign to all the

MFCA regressors. A final regressor, PERS, controlled for choiceperseveration tendencies. It was codedas 1,�1 respectively, if the trial

n chosen person was offered on the right/left side of the screen on trial n+1, and 0 otherwise. The model, in Wilkinson notation, was:

CHOOSE-R/L �MB_REW *(PROSPECTIVE + RETROSPECTIVE)*POSITON + MF_REW1+MF_REW2+PROSPECTIVE_MF_REW1+

PROSPECTIVE_MF_REW2+ RETROSPECTIVE_MF_REW1+ RETROSPECTIVE_MF_REW2+ PERS+ (MB_REW *(PROSPECTIVE +

RETROSPECTIVE)*POSITON+MF_REW1+MF_REW2+PROSPECTIVE_MF_REW1+PROSPECTIVE_MF_REW2+RETROSPECTIVE_

MF_REW1+RETROSPECTIVE_MF_REW2+PERS |PART).Weexamined fixed effect and contrasts between fixed effects in thismodel,

using F tests as explained above.

Finally, for the ‘‘cross credit assignment’’ analysis (Figure 6B) we included only choice generalization trial-transitions (Figure 6A)

such that trial n’s format was RI and the outcome designated as common (on trial n+1) was temporally second (seen) on trial n.

Our regressor NON-COMMON coded whether the non-common, first (unseen), outcome was rewarding on trial-n (coded as +0.5

for reward and �0.5 for non-reward). The model, in Wilkinson notation, was: GENERALIZE�NON-COMMON + (NON-COMMON |

PART), where GENERALIZE and PART were defined as above. We reran the same model (Figure S6B) this time including only trial

transitions wherein the common outcome was first (hence the non-common outcome was second) on an RI format trial n.

Mixed effect analysis for RT
We calculated for each participant mean RT (MRT) as a function of the previous trial’s format and the current trial type, i.e., whether it

was a replica of the previous trial or a new trial. We used a mixed effects model to regress mean RT on a set of regressors. We

removed trials for which the choice was very fast < 250ms (0.0033 of all trials). We also removed the first trial of each block as these

trials followed a break. We defined two regressors: The first, TYPE, coded whether the current trial was a replica of the previous trial

(�0.5) or a new (+0.5) trial. The regressors PROSPECTIVE and RETROSPECTIVE were similar to the previous analyses (coding the

format of the previous trial). The model, in Wilkinson notation, was: MRT�TYPE*(PROSPECTIVE + RETROSPECTIVE) +

(TYPE*(PROSPECTIVE + RETROSPECTIVE)|PART).

Computational models
We formulated a hybrid RL model to account for the series of choices for each participant. In the model, choices are contributed by

both the MB and MF systems. The MF system caches a QMF-value for each person, subsequently retrieved when the person is

offered for choice. During learning, following reward-feedback, rewards from the various outcomes are used to update theQMF-value

for the chosen person as follows:

QMFðchosen personÞ) �
1� fMF

� �QMFðchosen personÞ+ cMF � rtotal (Equation 2)

where the cMF is a free MFCA parameter, rtotal is the sum of the animal and vegetable rewards (each coded as 1 for reward or �1 for

non-reward) and fMF (between 0-1) is a free parameter corresponding to forgetting in theMF system. TheMF values of the 3 non-cho-

sen persons were subject to forgetting:

QMFðnon chosen personÞ) �
1� fMF

� �QMFðnon chosen personÞ (Equation 3)

Unlike MF, the MB system maintains QMB-values for the four different outcomes (vegetables and animals). During choices the QMB-

value for each offered person is calculated based on the transition structure:

QMBðpersonÞ = QMBðrelated vegetableÞ+QMBðrelated animalÞ (Equation 4)

Following a choice, the MB system updates the QMB-values of each of the two choice outcomes based on its own reward:

QMBðoutcomeÞ) �
1� fMB

� �QMBðoutcomeÞ+ cMB
format;pos � routcome (Equation 5)

Where fMB (bet. 0-1) is a free parameter corresponding to forgetting in the MB system, format is the trial’s format (S = Standard, PI =

Prospective-Inference, RI = Retrospective Inference), pos= 1; 2 is the outcome’s serial position and cMB
format;pos is a free MBCA param-

eter corresponding to format and position (6 MBCA parameters). The MB values of the 2 outcomes unrelated to the chosen person

were subject to forgetting:

QMBðunrelated outcomeÞ) �
1� fMB

� �QMBðunrelated outcomeÞ (Equation 6)

Ourmodel additionally included progressive perseveration for chosen persons. After each trial the perseveration values of each of the

4 persons updated according to

PERSðpersonÞ) �
1� fP

� � PERSðpersonÞ+pr � 1person= chosen (Equation 7)
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Where 1person=chosen is the chosen person indicator, pr is a free perseveration parameter, and fP(bet. 0-1) is a free perseveration

forgetting parameter.

During choice a net Q value was calculated for each offered person:

QnetðpersonÞ = QMBðpersonÞ+QMFðpersonÞ+PERSðpersonÞ (Equation 8)

TheQnet values for the 2 persons offered for choice are then injected into a softmax choice rule such that the probability to choose an

option is:

ProbðpersonÞ = eQnetðpersonÞ

e½QnetðpersonÞ+Qnetðother personÞ� (Equation 9)

QMF and PERS person-values and QMB outcome-values where initialized to 0 at the beginning of each experimental block.

We also examined an additional more flexible model, which we term the ‘‘RI cross CA’’ model. This model, was identical to the full

model described above with a sole change that in the RI format, each reward was allowed to reinforce the MB value of both choice-

related outcomes (rather than just its own outcome). Such reinforcement is expected if in the retrospective-inference format, partic-

ipants assign credit for the first reward as it is presented and prior to fully resolving the identity of the full outcome. This can happen if

participants assign credit for the first reward based a belief state (which allows for the possibility that the second, as yet unseen,

outcome generated the first reward), or if after choice participants hold both anticipated outcomes in working memory, and the first

reward is thereby associated with both outcomes. Additionally, it is possible that during the second outcome participants infer the

identity of the first outcome, which is then associated with the second reward. Thus we added two novel, MBCA free parameters

cMB
RI; 1/2, c

MB
RI; 2/1 where cMB

RI; i/j governs the extent to which on RI trials, the temporally i’th reward reinforces theMB values of the other

(j’th) outcome. Accordingly, for the RI trials alone, Equation 5 was replaced with the following update (for all i = 1,2; j = 3-i):

QMBðoutcome iÞ) �
1� fMB

� �QMBðoutcome iÞ+ cMB
RI; i � routcome i + cMB

RI; j/i � routcome j (Equation 10)

Note that our full model, is nested under the ‘‘RI cross CA’’ (setting cMB
RI; 1/2 = cMB

RI; 2/1 = 0).

Model fitting and model comparison
We fit our choice models to the data of each individual, maximizing the likelihood (ML) of their choices (we optimized likelihood using

MATLAB’s ‘fmincon’, with 200 random starting points per participant; Table S1 for best-fitting parameters). Our full hybrid agents,

which allowed for contributions from both an MB and an MF system, served as a super-model in a family of seven nested sub-

models: 1) a pureMBCA agent, eliminatedMFCA by constraining all MF parameters to 0: cMF = fMF = 0, 2) a pureMFCA agent, elim-

inated MBCA by constraining all MB parameters to 0: cformat; pos : cMB
format; pos = fMB = 0:, 3) a ‘no presentation effects on MBCA’

sub-model which constrained equality across positions and formats, cformat; pos : cMB
format; poshcMB, 4) a ‘No position effect on

MBCA’ sub-model which forced for each format equality between the MBCA parameters for the first and second outcome

cformat; cMB
format; 1 = cMB

format; 2; 5) a ‘No format effect on MBCA’ sub-model which constrained the MBCA parameters for all three

format to be equal for each outcome positioncpos; cMB
S; pos = cMB

PI; pos = cMB
RI; pos; 6) an ‘additive-MBCA effects’ sub-model, which al-

lowed format and position to exert additive effects on MBCA but not to interactcformat; pos; cMB
format; posh cMB

format + cMB
pos=2 � 1pos= 2;

and 7) a ‘flipped functional position’ sub-model which forced the following two constraints: cMB
S; 1 = cMB

PI; 1 = cMB
RI;2h cMB

1 and cMB
S; 2 =

cMB
PI; 2 = cMB

RI;1h cMB
2 . Note this last sub-model included only two freeMBCA parameters. This model was designed to test an assump-

tion that MBCA depends only on an outcome’s ‘‘functional position’’ rather than its temporal position. The functional position of an

outcome reflects the order in whichMBCA operates. Note that whereas for S and PI trials the temporal and functional order are equiv-

alent (credit is first assigned to the temporally first outcome), for RI trials these orders are flipped such that the temporally first

outcome is functionally second and vice versa.

We next conducted a bootstrapped generalized likelihood ratio test (BGLRT52) for the super-model versus each of the sub-models

separately (Figures S4 and S7C). In a nutshell, this method is based on the classical-statistics hypothesis testing approach and spe-

cifically on the generalized-likelihood ratio test (GLRT). However, whereas GLRT assumes asymptotic Chi-square null distribution for

the log-likelihood improvement of a super model over a sub-model, in BGLRT these distributions are derived empirically based on a

parametric bootstrap method. In each of our model comparison the sub model serves as the H0 null hypothesis whereas the full

model as the alternative H1 hypothesis.

For each participant, we created 1001 synthetic experimental sessions by simulating the sub-agent with the ML parameters on

novel trial sequences which were generated as in the actual data. We next fitted both the super-agent and the sub-agent to each

synthetic dataset and calculated the improvement in twice the logarithm of the likelihood for the full model. For each participant,

these 1001 likelihood-improvement values served as a null distribution to reject the sub-model. The p value for each participant

was calculated based on the proportion of synthetic dataset for which the twice logarithm of the likelihood-improvement was at least

as large as the empirical improvement. Additionally, we performed the model comparison at the group level. We repeated the

following 10,000 times. For each participant we chose randomly, and uniformly, one of his/her 1,000 synthetic twice log-likelihood

super-model improvements and we summed across participant. These 10,000 obtained values constitute the distribution of group

super-model likelihood improvement under the null hypothesis that a sub-model imposes. We then calculated the p value for
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rejecting the sub-agent at the group level as the proportion of synthetic datasets for which the super-agent twice logarithm of the

likelihood improvement was larger or equal to the empirical improvement in super-model, summed across participants.

Model recovery
Because ourmodel-comparisons are based on BGLRT, model recovery questions are tantamount to assessing type-I error rates and

power. We used a type I error rate of 0.05meaning that by design, if a null model (one of our sub-models) generated the data it will not

be rejected (i.e., it will be ‘‘recovered’’) with a probability of 0.95. To estimate the power of our design, we repeated the same steps as

in our BGLRT analysis, but this time using synthetic data that was simulated from the full model instead of the sub-models. For each

simulated dataset, we examined whether each of the null models were rejected, according to BGLRT, in favor of the full model. We

found that for all 10,000 simulations, all submodels were rejected in favor of the full model (i.e., the full model was ‘‘recovered’’) at the

group level. Thus the estimated power is very close to 1 for assessing all sub-models.

Model simulations
To generate model predictions with respect to choices, we simulated for each participant, 25 synthetic experimental sessions (novel

trial sequences were generated as in the actual experiment), based on his or her ML parameters obtained from the corresponding

model fits (the models are described above). We then analyzed these data in the same way as the original empirical data (but with

datasets that were 25 times larger, as compared to the empirical data, per participant).

Analysis of model parameters
For each participants we obtained, based on the full model, six MBCA parameter estimates corresponding to format x position. We

then ran amixed effectsmodel (implemented withMATLAB’s function ‘‘fitglme’’) for the CA parameters (denoted C), with participants

(PART) serving as random effects with a free covariance matrix. Two regressors PROSPECTIVE, and RETROSPECTIVE, indicated

whether format was prospective-inference or retrospective-inference, respectively, and the regressor POSITION, coded the serial

position of the common outcome on trial n (0.5: first, �0.5: second). The model, in Wilkinson notation, was: CA �(PROSPECTIVE +

RETROSPECTIVE)*POSITON + (PROSPECTIVE + RETROSPECTIVE+ POSITON |PART). Contrasts were tested in a similar way to

that described in Model-agnostic analysis: MFCA and MBCA.

We also ran a similar model but regressing FUNCTIONAL-CA instead of CA. This variable was identical to CA after flipping the order

of the 2 MBCA parameters in the RI position. Thus, in this model the regressor POSITION captures the effect of the functional-serial

position, under the assumption that the functional and temporal positions are flipped in RI. Finally, the two MBCA parameters of the

‘‘flipped functional position’’ sub-model were compared using a t test.

Parameter recovery and trade-offs
We tested parameter recovery of our full model (Figure S5) based on the following method. For each participant, we create 1,000

synthetic datasets which were same in size and structure to the empirical sessions, by simulating the full model based on his/her

best fitting parameters.We then fitted these datasets with the full model.We assessed the Pearson correlations between each gener-

ating MBCA parameter and the corresponding recovered parameter across these 38*1000 datasets.

Additionally, for each MBCA parameter and each synthetic dataset (of 38,000 datasets) we calculated the estimation error as the

difference between the generating parameter and the recovered parameter. We assessed parameter trade-offs by calculating Pear-

son correlations between estimation errors for each pair of parameters.

Power of mixed-effects analyses
Prior to data-collection, we did not knowwhat effect-size to expect (as far as we know, this is the first study to address the interaction

between inference and different forms of CA). Thus, we collected a sample of comparable size to our previous tasks.14,16,19 However,

an examination of the power of the high order interactions in our mixed effects analyses can guide future studies. We addressed this

question by taking 1000 bootstrap samples of our participants and ran model agnostic analyses of interest for each bootstrap sam-

ple, examining focal high-order interaction effects. The power to detect an interaction was estimated as the proportion of bootstrap

samples for which an interaction was significant at p < 0.05. For ourmainmodel-agnostic analysis (Figure 2E) the estimated power for

the triple common-reward x format x position interaction was 0.57. For the mixed effects model based on estimated model param-

eters (Figure 3A) the estimated power for the format x position interaction was higher, 0.68. Thus, we recommend using larger sam-

ples in future studies. For example, when rerunning our power simulations for ‘‘up-sampled’’ cohorts of 60 participants, we found high

power for both model agnostic (.84) and the parameter-based (.87) analyses.

Simulations of reward-earnings
We assessed the instrumental value of the MBCA parameters our participants used in each format for acquisition of rewards (Fig-

ure 5A). We yoked each real participant with 3 synthetic pure-MBCA agents: S, PI and RI. For agent S we duplicated the participant’s

MBCA parameters from the standard format across all 3 formats: cformat; pos; scMB
format; pos = cMB

S; pos, where sc denoted the MBCA
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parameters for a synthetic agent. PI and SI agents were defined similar based on the real participant’s PI and RI parameters, respec-

tively. For synthetic agents, fMB was set equal to the empirical forgetting rate of the true participant and MFCA and perseveration

were ablated: cMF = fMF = fP = pr = 0.

Each synthetic agent was tested on the same 1000 synthetic experimental sessions that were constructed in the same way as the

empirical sessions. For each agent, we calculated, the average number of points it earned per-trial based on its simulated choices

and consequent rewards. We compared these average earnings to those on the same experimental trials of two additional hypothet-

ical agents: ‘guessing’ and ‘oracle’. On each trial, the guessing agent earned the average expected total reward (according to the

generating outcome-reward probabilities) provided by both bandits, whereas the oracle agent omnisciently earned themaximal total

expected reward across the two offered bandits. For comparison, we calculated the standardized earnings of the synthetic MBCA

agent as the ratio of howmuchmore it earned than the guessing agent to howmuch more the oracle agent earned than the guessing

agent. Finally, for each experimental session we averaged standardized earnings across each group of synthetic agents. We thus

obtained 1000 repeated-measurements of group-level standardized earning for S, PI, and RI agents. For each agent we averaged

these 1000 measurements (Figure 5A).

We assessed how earning change as function of a trade-off betweenMBCA for the seen and hidden outcomes in the retrospective

inference format (Figure 5B).We simulated 10,000 pureMBCA-agents for each of several combinations ofMBCA parameters on syn-

thetic experimental sessions and calculated standardized earnings (as above). In all simulations theMB forgetting rateswas set to the

estimated empirical group-level average and agents expressed no choice-perseveration tendencies or MFCA: cMF = fMF = fP =

pr = 0. The parameter combinations we used is the various simulations are as follows. We defined a grid of total MBCA ranging

from 0.3 to 3 in steps of 0.3, and a percentage-grid from 0 to 1 in steps of 0.05. For each level of total MBCA, t, and percentage,

p, we included the parameter combination:

cMB
S; 1 = cMB

S; 2 = cMB
PI; 1 = cMB

PI; 2 =
t

2
; cMB

RI; 1 =pt; cMB
RI; 1 = ð1�pÞt
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Figure S1. Signatures of MBCA and MFCA. Related to Figure 2. A) The Data panel is Figure 2C 
(empirical effects on choice repetition) and the Full-model panel is Figure 3B (both copied for 
convenience). The other panels correspond to the same analysis for the non-hybrid, “pure”, 
sub-models. The pure MFCA sub-model captured the positive common-reward main effect on 
choice-repetition but the pure MBCA sub-model did not, predicting a tiny negative effect (note 
the different scale for this panel) B) Similar to (A) but for the analysis probing MBCA (Figures 2E, 
3C).  The pure MBCA sub-model captured the triple common-reward x format x position 
interaction on choice-generalization but the pure MFCA did not. Error bars correspond to SEM 
across participants calculated separately in each condition (n=38). *,**,*** denote 
p<.05, .01, .001, respectively. p-values were calculated based on mixed effects logistic 
regression models. 



Figure S2. Signatures of MBCA and MFCA. Related to Figure 2.The arrangement of this figure 
similar Figure S2. Here simulation results are shown for the hybrid sub-models which 
constrained the flexibility of MBCA parameterisation. A) All sub-models captured the 
common-reward main effect on choice repetition. B) None of the models captured the triple 
Common-reward x format x position interaction on choice-generalization. Error bars 
correspond to SEM across participants calculated separately in each condition (n=38). *** 
denotes p<.001. p-values were calculated based on mixed effects logistic regression models.  



Figure S3. Additional ‘model agnostic analysis’. Related to Figure 2. A) Same as Figure 2E but 
individual-participant data is also shown (dots). We conducted further analyses, to probe 
deeper into MBCA effects, wherein we regressed, using a mixed effects model, the reward 
effects (i.e., the difference between repetition probabilities following a common reward and 
non-reward; displayed) on format and serial position (Methods). Neither main effects for 
position (comparing averages along curves) nor format (comparing averages across curves) 
reached significance (both p>.763) but the format x position interaction (F(2,222)= 4.97, 
p=.008) was significant. Specifically, the retrospective inference format interacted with 
position in a manner that was different to the standard format (b=.16, t(222)= 3.1, p= .002; 
cross over in curves between RI and S; the other two format pairs didn’t interact differently 
with position, both p> .055). Interpreting this further, whereas for the first outcome there 
were no differences between the retrospective inference and the standard format (b= .07, 
F(1,222)= 2.73, p=.1; for the 1st position curve S and RI are on a par) for the second outcome, 
the reward effect was smaller in the retrospective than the standard format (b=-.1, F(1,222)= 
6.62, p=.011; for the 2nd position curve RI<S). These findings converge to provide the same 
conclusions as the analysis in the main text. B-C) MFCA and MBCA effects as a function of 
format and serial position based on our model-agnostic mixed effects model that included all 
trial transitions. One benefit of our model-agnostic analyses, described in the main text, is 
they provide intuitive and relatively simple signatures that dissociate MFCA and MBCA 
contributions. However, these analyses are based on different subsets of trial transitions 
(Figures 2B, D) and do not take account of the entire set of CA influences from a previous trial. 
For example, our MFCA analysis (Figures 2B-C) controlled neither for  MFCA nor 



MBCA influences that a trial-n non-common reward (i.e., reward to the outcome not 
designated as common; Garlic in the current example) exerts on choice repetition (on trial 
n+1).  To address these potential limitations, we conducted a further model agnostic 
analysis that included all trial transitions and modelled simultaneously the entire set of 
putative MFCA and MBCA influences (STAR Methods). For MFCA (panel B), we found a 
positive main effect for reward (b=0.72, F(1,12781)= 61.77, p=4e-15). However, there was 
no evidence that reward interacted with either format, position of both (all p>.085). The 
asterisk corresponds to the significance of the MFCA effect, the average of all data points 
(black line). For MBCA (panel C), we found a positive main effect of reward (b=0.46, 
F(1,12781)= 45.86, p=1e-11). There was no evidence reward interacted with either format 
or position (both p>.486). However, we found a triple reward*position*format interaction 
(F(2,12781)= 5.05, p=.006). Specifically, position modulated the reward effect differently in 
the standard compared to RI format (b=-0.59, t(12781)= -2.71, p=.007)  and in PI compared 
to RI (b=-0.61, F(1,12781)= 7.22, p=.007), but there was no evidence that position 
modulated MBCA differently between the S and PI formats (p=.93). Interpreting these 
interactions further we found that for the first outcome, the reward effect didn’t differ 
between the RI format and either the PI or S formats (both p>.173). In contrast, for the 
second outcome, the reward effect in the RI format was lower than both S (b=-0.43, 
F(1,12781)= 7.09, p=.008) and PI (b=-0.40, F(1,12781)= 6.02, p=.014). The asterisks 
correspond to the significance of the triple interaction (see X; reward x format x position) 
and to the contrasts between the reward effect in RI and S, and RI and PI for the second 
outcome (red lines). Error bars correspond to SEM across participants calculated separately 
in each format. *,*** denote<.05, .001, respectively. P-values were calculated based on 
mixed effects logistic regression models. Black diamonds designate concealed outcomes. 



Figure S4. Model-comparison results. Related to Figure 3. A) Results of the bootstrap-
GLRT model-comparison for the pure MBCA sub-model. The blue bars show the histogram 
of the group twice log-likelihood improvement (model vs. sub-model) for synthetic data 
simulated using the sub-model (10,000 simulations). The blue line displays the smoothed 
null distribution (using Matlab’s “ksdensity”). The red line shows the empirical group twice 
log-likelihood improvement. 0 out of the 10000 simulations yielded an improvement in 
likelihood that was at least as large as the empirical improvement. Thus, the sub-model can 
be rejected with p<.001. B-E) Same as (A), but for the pure MFCA (p<.001), the no 
presentation effect on MBCA (p<.001), the no position effect on MBCA (p<.001), the no 
format effect on MBCA and the additive MBCA effects MBCA (p=.003) sub models. The 
various models, the model-comparison method and model-recovery performance are 
detailed in the STAR Methods. 



Figure S5. Parameter recovery and trade-off for the full model. Related to Figure 3. A) 
Each panel displays a scatter plot of a generating MBCA parameter (abscissa) vs. the 
recovered parameters (ordinate; STAR Methods).  Black solid lines are imposed diagonals. 
Model recovery for MBCA parameters was high [mean Pearson’s r = .79]. B) Each non-
diagonal panel displays a scatter plot between estimation errors (recovered minus 
generated parameters) for a pair of MBCA parameters. The numbers in the top left are 
Pearson’s r and regression lines are imposed. Diagonal panels display estimation-error 
distributions for the various MBCA parameters. Trade-offs are negligible (all |r|<.064).  
S=Standard, PI=prospective inference, RI=retrospective inference; The 1/ 2 in panel titles 
refer to the outcome’s serial position. 



Figure S6. Examining whether Cross CA occurs in the RI format. Related to Figure 6. A) As 
confirmation to the results presented in Figure 6B, we also fitted to our data a flexible model 
(dubbed the “RI cross-CA” model; STAR Methods), wherein in the retrospective-inference 
format, each reward (first/second) was associated with two (instead of one) MBCA 
parameters, corresponding to the extents to which a reward reinforced 1) its own outcome, 
and 2) the other choice-related outcome.  Examining the best fitting parameters of this model 
(displayed), we found that MBCA for the first outcome (based on its own reward) in the RI 
format was significantly positive (M= 0.18, t(37)= 5.55, p=3e-6) and larger than MBCA for the 
second outcome (based on the first reward; t(37)= 2.75, p=.009), which was non-significant 
(M= 0.04, t(37)= 1.15, p=.256). The upshot is that credit from the first reward is selectively 
assigned to the first outcome with no evidence it spills to the second outcome. B) For 
completeness, we tested whether in the RI format cross-CA occurs from the second reward 
spills to the first outcome. Same as Figure 6B but here we analysed only choice-generalization 
trials wherein the common outcome was first. Regressing choice-generalization on the non-
common reward using a mixed-effects logistic model (Methods) revealed no significant effect 
(b= 0.02; t(74)= 0.14, p= .89). C) Same as A but examining MBCA for the second reward.  The 
MBCA parameters for the second reward was significantly positive for the second outcome 
alone (second outcome: M=0.1, t(37)= 2.2, p=.034; first outcome: M=0.02, t(37)= 0.62, p=.54). 
Here, the contrast was non-significant (t(37)=-1.16, p= .255), likely due to the lower levels of 
self-MBCA for this outcome. Hence, there is no evidence for cross-CA for the second outcome. 
Error bars correspond to SEM across participants calculated separately in each condition 
(n=38). *,**,*** denotes p<.05, .01, .001, respectively.  



Figure S7. Examining the possibility of a functional, rather than temporal, serial position 
effect. Related to Figure 6.  A third alternative account for our findings is that the sole effect 
of the retrospective-inference format could be to flip the ‘functional-order’ of CA between 
the two outcomes during feedback (i.e., as the second outcome appears, people first assign 
credit to it and next infer and assign credit to the first outcome).  According to this account, 
our findings might simply reflect a functional, rather than a temporal, serial-order effect such 
that MBCA is stronger for the functionally second outcome. Note that in the standard and 
prospective-inference formats the functional and the temporal serial orders are identical. We 
addressed the latter possibility by formulating an additional ‘flipped functional order’ sub-
model in which we had two MBCA parameters, one for each functional (rather than 
temporal) position (STAR Methods). A) Examining the best fitting parameters for this sub-
model (displayed), we found no significant difference between these two MBCA parameters 
(t(37)= 1, p=.325). Relatedly, when we re-ran our mixed effects model on the parameters of 
the full model but including functional, instead of temporal, serial position as a regressor, we 
found no functional-position effect (p=.104). Thus, we found no evidence MBCA is stronger 
for the functionally second position. B) Simulating this sub-model, failed to predict the 
significant focal common-reward x position x format interaction pertaining to MBCA 
signatures (compare to Figure 2E). C) a bootstrapped generalized likelihood ratio test 
rejected the flipped-functional order sub-model at the group level (p<.001) in favour of the 
full model. D) based on the full model, we regressed the MBCA parameter for the seen 
(temporally second) outcome in the RI format on both MBCA parameters in the standard 
format, allowing these two parameters to compete for accounted variance. The coefficient of 
the MBCA parameters for the second S-outcome alone was significant (First outcome: b=0, 
t(35)=0.02, p=.982; Second outcome: b=0.44, t(35)=3.14, p=.003). One would expect the 
opposite pattern had the decline in MBCA for the second seen RI outcome (relative to 



the second standard outcome) occurred simply because its functional position was first. 
Taken together, our findings speak against the possibility that flipped functional positions in 
RI is the sole explanation to our findings. Error bars correspond to SEM across participants 
calculated separately in each condition (n=38). ** denotes p<.01.  



Param 𝑐𝑆,1
𝑀𝐵 𝑐𝑆,2

𝑀𝐵 𝑐𝑃𝐼,1
𝑀𝐵 𝑐𝑃𝐼,2

𝑀𝐵 𝑐𝑅𝐼,1
𝑀𝐵 𝑐𝑅𝐼,2

𝑀𝐵 𝑐𝑀𝐹 𝑝𝑟 𝑓𝑀𝐹 𝑓𝑀𝐵 𝑓𝑃 

Mean 

(SE) 

0.16 

(0.09) 

0.25 

(0.10) 

0.15 

(0.07) 

0.15 

(0.08) 

0.16 

(0.06) 

0.10 

(0.08) 

0.70 

(0.14) 

0.03 

(0.13) 

.29 

(.08) 

.16 

(.09) 

.37 

(.10) 

Table S1. Best fitting parameters for the full model. Related to Figure 3.  See ‘Computational 
Models’ in STAR Methods for a full description of the model and its parameters. 
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