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I. IMPROVEMENTS TO THE SYCAMORE
DEVICE

The Sycamore processor used in this work has a num-
ber of improvements over the original demonstration in-
troduced in Ref. [1]. This revision largely focused on op-
timizing the readout circuit, to reduce readout times and
minimize crosstalk during simultaneous measurement. In

particular, the resonator ringdown time 1/k, resonator-
qubit coupling g, and parasitic resonator-resonator cou-
pling were all optimized.

The resonator ringdown times 1/k shown in Fig. S1
have a number of important effects on the performance
of error correction experiments. The ringdown time sets
the timescale for both the depletion of readout photons
as well as qubit reset [2]. Both of these operations rely on
passively depopulating the resonator, and require waiting
a number of ringdown times to bring the resonator pho-
ton number to a sufficiently low value (1 x 1073). This
time spent waiting is costly since a dominant source of er-
ror in our system is decoherence on the data qubits while
the measurement and reset operations complete. Thus,
fast 1/k is a critical processor parameter for error cor-
rection with dispersive readout. These improvements to
1/k were realized by correcting an impedance mismatch
on the control wiring in the interior of the qubit array,
which caused larger variations in ringdown times across
the chip in the original generation. Additionally, we in-
creased the qubit-resonator coupling g to ensure more-
optimal matching of the dispersive shift y to the new
resonator linewidths k.

While this new Sycamore generation has tighter spread
in resonator ringdown times, operation times for QEC
are still limited by the slowest measure qubit readout
resonator. The specific chain of 21 qubits used in the
repetition code was chosen to minimize the longest res-
onator ringdown time among measure qubits. Future
generations of the device will need to further decrease
the spread in resonator ringdown time in order to achieve
better QEC performance.

Finally, the original Sycamore processor had undesired
resonator-resonator couplings across the center of the de-
vice, affectionately known as “the bacon strip” within
our team and described in Fig. S20 of Ref. [1]. These
crosstalk effects heavily constrained simultaneous read-
out operations and required very specific qubit frequency
configurations during readout. These crosstalk effects
were minimized in our new revision by increasing the fre-
quency detuning of resonators that are physically close
together on the processor, as well as optimizing the geom-
etry of the qubit-resonator coupling capacitor to reduce
stray capacitive coupling.

II. CZ GATE METRICS

In Fig. S2, we plot additional metrics which character-
ize the error rates of our CZ gate. In both sub-figures, we
characterize the gate with cross-entropy benchmarking
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FIG. S1. Readout coupling and ringdown times for Sycamore generations. (Left) Integrated histogram (ECDF) of qubit readout
resonator ringdown times 1/k across the original (green) and new (blue) generation of the Sycamore processor. The newer
generation processor has ringdown times that are approximately 5 times faster, a critical enabler of fast repetitive measurement
and reset operations. A focus of future devices will be to tighten this distribution further. (Right) Integrated histogram (ECDF)
of coupling between the qubit and readout resonator, where coupling is increased to match larger resonator linewidth.

(XEB), in which we execute circuits composed of varying
numbers of cycles, where each cycle consists of random
7/2 rotations on both qubits followed by a CZ gate [1].

III. CALIBRATING PHASE CORRECTIONS -
ADEPT

When performing quantum algorithms, the best per-
formance is typically achieved when the calibration pro-
cedure is well-matched to the algorithm under test. Here,
we introduce single qubit Z phase corrections into the
QEC circuit on data and measure qubits as a final cal-
ibration step, see Fig. S3. These phase corrections help
to compensate for differences between when components
are calibrated in isolation and when they are composed
in a complex circuit. To calibrate these corrections, we
use Active Detection Event Parameter Tuning (ADEPT)
as described in Ref. [4], where we choose values that min-
imize the local detection event fraction.

These Z corrections are virtual and are implemented by
updating the frame of subsequent microwave rotations.
The origin of these corrections has not been definitively
determined, but we believe they arise from a combina-
tion of factors including transients from flux pulses, mi-
crowave and flux crosstalk, and stray coupling. In ad-
dition to lowering the error rate, these corrections also
minimize the impact of system drift by keeping qubits
first-order insensitive to a variety of phase errors.

Given that these corrections mitigate Z errors, they
manifest slightly differently in each experiment. In our
error correction circuits, Z errors commute through CZ

gates and a single correction can handle corrections for
large portions of the circuit. The bit-flip code is insen-
sitive to Z errors on the data qubits, thus we only use
corrections on the measure qubits. For the phase-flip
code, we use corrections on both the measure and data
qubits. For the surface code, we use corrections on the
measure qubits and two corrections for each data qubit,
which can be understood as correcting for Z errors when
the data qubit is in the X basis, and another correction
for correcting Z errors when the data qubit is in the Z
basis.

IV. DATA FOR BIT FLIP CODE

In addition to the phase flip code that is primarily
described in the main text, we also ran a bit flip code for
which the logical error rates are shown in Fig. 3¢ of the
main text. The experimental implementation of the bit
flip code is similar to the phase flip code except for the
following differences:

e Initialization and measurements are performed in
the Z basis instead of X.

e The stabilizers used are Z type instead of X type,
which means that the the data qubits do not have
Hadamards at the beginning and end of each stabi-
lizer round, and parity is measured in the Z basis
rather than X.

e We do not run dynamical decoupling pulses on the
data qubits during measurement.
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FIG. S2. a Typical integrated histogram (ECDF) over pairs

of 2-qubit CZ XEB Pauli error rates per cycle, under isolated
(blue) and parallel (orange) operation. Note that these er-
rors include two single-qubit gates per cycle, which typically
add 2 x 1073 Pauli error in total. In both cases, we define
error with respect to the best-fit single-qubit phases [1]. We
attribute the 0.2% increase in error to stray interactions with
other qubits when they are excited during parallel operation.
b Same, but for average leakage rate per cycle, deduced by
measuring the |2) population of the higher frequency qubit in
each pair vs. number of cycles and fitting to a rate equation
as in Ref. [3]. Leakage to the lower qubit as well as leakage
from single-qubit gates is > 10x smaller and not shown. For
isolated CZ gates, we attribute roughly half of the leakage to
coherent error due to pulse distortion, and the other half due
to dephasing, both of which cause an imperfect full swap and
back between |11) and |20). As with the total gate error, we
attribute the increase in leakage in parallel operation to stray
interactions with other qubits.

e Finally, prior to measurement in every round, we
flip all of the data qubits with a 7w pulse to ensure
that the data qubits do not collapse into the ground
state and remain there, which would artificially re-
duce logical error probabilities.

In Fig.S4, we show detection fractions and two point
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FIG. S3. Single qubit phase corrections in the phase-
flip repetition code circuit. a, We introduce single qubit
variable angle Z corrections into the circuit on the data and
measure qubits for the phase-flip repetition code, other codes
behave slightly differently, see text. These corrections mini-
mize phase errors that occur between calibrating components
individually and when composing algorithms. b, Values of the
phase corrections. The measure qubit corrections (green) are
significant and dominated by transient behavior of the large
flux pulses used in the measurement and readout operations.
The data qubit corrections (orange) are smaller and centered
about zero, but non-negligible.
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code, similar to Fig. 1d of the main text. b, p;; correlation
matrix for the 50 round bit flip code, similar to Fig. 2c of the
main text
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FIG. S5. a, Logical error probabilities vs number of detection
rounds for the bit flip code, similar to Fig.3a of the main
text. b, Semilog plot of logical error probabilities, similar
to Fig.3b of the main text. Lines depict fits to 2Perror =

1 — (1 — 2eg)™oumds as in the main text for rounds greater
than 10.

correlations for the 50 round bit flip code, and in Fig. S5,
we show the logical error probabilities for rounds 1-50 of
the bit flip code.

V. LOGICAL ERROR PROBABILITIES
WITHOUT POST-SELECTION

Logical error probabilities shown in Fig. 3 of the main
text were computed while excluding device-wide corre-
lated error events which we attributed to high energy
particles. In Fig.S6, we show the fraction of data that
was discarded for every number of rounds in the phase
and bit flip codes. In Fig.S7, we show the logical error
probabilities when high energy events are not discarded,
with the post selected logical error probabilities (same as
Fig. of the main text) also shown for comparison. To
within the uncertainty from fitting, values of Ax and Ay
do not change when we do not discard data from high
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FIG. S6. Fraction of data discarded for each run of the rep-
etition code, for both phase- and bit-flip codes. The dashed
lines indicate the mean fraction of data discarded, around
0.4% for both phase and bit-flip codes.
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FIG. S7.  Logical error probabilities for the a, phase flip
code and b, bit flip code, comparing with (light circles) and
without (dark Xs) post-selection of high-energy events.

energy events.

Additionally, in Fig. S8, we show two p;; matrices de-
rived from the data displayed in Fig. 4d of the main text.
The first matrix shown in Fig. S8a is computed from the
first 1000 runs of the experiment as a baseline, while the
second matrix shown in Fig. S8b is computed from the
1000 runs immediately following the start of the high en-
ergy event. We use the same number of runs for both
baseline and the high energy event so that the measure-
ment noise floor for the p;; matrix is consistent, which for
1000 runs is about 10 times larger than what is shown in
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FIG. S8. a, Baseline p;; matrix for the first 1000 runs of the

data shown in the top of Fig.4d, where no high energy event
is present. As in Fig2, we average together 4-round segments
of the data. b, p;; matrix for the 1000 runs immediately
following the start of the high energy event in Fig. 4d.c, ECDF
of p;i; values comparing baseline to high energy event. In the
background, meaning matrix elements which are neither space
(S) or time (T) edges, we observe a median 0.3% increase in
pij during the high energy event. In S and T elements, we
observe a median 1.5% increase.

Fig. 2 of the main text. Finally, Fig. S8c compares the cu-
mulative distributions of the p;; values. The device wide
nature of the high energy event breaks the assumption of
pairwise correlations used to compute p;;. Nevertheless,
we observe a significant increase in the p;; values during
the high energy event, both in the values of the expected
space and time edges, as well as in the background noise.

VI. THE d =2 SURFACE CODE

We implement a logical qubit in the distance-2 surface
code, the smallest non-trivial example of a surface code
logical qubit [5, 6]. The physical layout is depicted in
Fig. S9a-b, consisting of a 2 x 2 array of data qubits,
indexed 0 to 3, subject to three stabilizer measurements
Z()Zl, XoXlXQXg, and ZQZg.

Since there are only four data qubits, it is straightfor-
ward to write explicit quantum states for the Zy and X,
eigenstates. Consider the case where the three stabilizer
values are all +1. Then, the logical qubit exists in the
two-dimensional ground state manifold of the Hamilto-
nian [7]

H=—XoX1Xo X3 — Z0Z1 — Z275. (1)

We can isolate specific logical states using the logical op-
erators Z;, = ZyZs and X = X¢X; shown in Fig. S9c.
For example, |[0r) (41 eigenstate of Z1) is the unique
ground state of H — Z;,. An alternative way to identify
|0L) is to start with [111¢213) = |0000), which is a +1
eigenstate of Z;, and both Z stabilizers, and then project
it into the Xy X;X5X3 = +1 subspace with the projec-
tion operator (1 + XoX;X5X3)/2. The logical states are

|02) = (/0000) + [1111))/v/2
11) = X1[02) = (|0011) + [1100))/v/2

[+1) = (|0L) + [12))/V2

= (|0000) + |1111) 4 [0011) + |1100))/v/4
=) = (|0L) — |12))/V2

= (]0000) + |1111) — |0011) — |1100))/v/4.

It is also possible for some stabilizer values to be —1.
For example, if XX X5X3 = —1 but the others are +1,
then we identify |0r) = (|0000) — |1111))/+/2, differing
from the +1 case by Zy (or any Z;). Initializing to |0000)
and projectively measuring Xy X7 X2 X3, this would be
the outcome half the time (also see Fig. S1la).

In our experiments, we explore all 8 stabilizer value
combinations, which is representative of stabilizer values
that would be encountered by a long-lived logical qubit.
In particular, we initialize the data qubits to each of the
16 possible bitstrings, such as |0111). For experiments
in the logical Z basis, we proceed directly with stabilizer
measurements, and the Z stabilizers and Zj, are already
well-defined (for |0111), ZpZ; = —1, Z3Z3 = +1, and
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FIG. S9. Stabilizers and logical operators. a, Layout

of the distance-2 logical qubit as depicted in Fig. la, with
the data qubits labeled 0, 1, 2, 3, and the measure qubits
labeled A, B, C. b, The same logical qubit depicted in a more
standard lattice surgery surface code notation, as in Ref. [8].
The Z stabilizers are light tiles (ZoZ1 and Z2Z3), and the X
stabilizer is a dark tile (X0 X1 X2X3). ¢, The logical operators
X1 = XoXi1 and Zr = ZyZ2, which cross at qubit 0, so
[Xr,Z1] # 0. d, A distance-3 logical qubit and its logical
operators, analogous to ¢, with 9 data qubits and 8 stabilizers.

Z5;, = —1). The first XoX;X2X35 measurement is ran-
domly +1. For experiments in the logical X basis, we
perform Hadamards on all four data qubits before pro-
ceeding with the stabilizer measurements, so [0111) be-
comes |[+———). Now the X stabilizer and X, are well-
defined (for |[+———), X0 X1 X2X3 = —1 and X = —1),
and the first Z stabilizer measurements are each ran-
domly +1. We show the specific quantum circuit for
these experiments, analogous to Fig. 1lc, in Fig. S10.
Note that the placement of some of the Hadamard gates
is flexible. For example, for the top measure qubit shown
in Fig. S10, the Hadamard could in principle be placed
anywhere prior to the first CZ which is operating on that
qubit with no change to the stabilizer. We first rule out
placing the Hadamard during the CZ gate, as the effect of
simultaneously operating single- and two-qubit gates on
gate fidelities has not been explored in depth yet. With
two possible locations remaining, our software defaulted
to placing that Hadamard as early as possible. However,
a potentially better choice would have been to defer the
Hadamard until immediately before the CZ gate, so that
the measure qubit would stay in |0) for longer and be
exposed to less decoherence. Since the length of the CZ
gate is only 26 ns compared to a mean Ty of To = 19 s,
we expect this oversight to have a negligible effect on the
overall results.

Note that to prepare a logical X or Z; eigenstate, it
is important to initialize all the data qubits in the same
basis (X or Z) as the intended logical qubit state. Then,
the data qubit state is an eigenstate of all the stabilizers
of the same type as the logical operator, and any errors
of the opposite type can be detected in the first round.
We show standard Z and X initializations in Fig. S1la-
b. Alternatively, consider |++00), shown in Fig. Sllc,
which is employed in Ref. [6]. The first Xy X; X2X3 mea-
surement will be random, so no Z errors can be detected
on the first round, risking a logical error in X;. More-
over, although |++400) is an eigenstate of X7, = XXy, it
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FIG. S10. Surface code quantum circuit. Quantum
circuit implementing repeated Z (green) and X (blue) stabi-
lizers, analogous to Fig. 1c. The stabilizer circuit is longer
(four CZ layers) because of the weight-4 X stabilizer. For X
logical measurements, we include Hadamard gates on each
data qubit prior to measurement, shown in gray; these are
omitted for Zj, logical measurements.

TABLE S1. Linear fits for experimental and simulated data
of logical error probability vs round in the d = 2 surface
code. Note that when fitting, we exclude the first data point
where only one round of the code is executed because it has
an artificially low error rate.

Slope
1.72+0.10 x 1073
1.48 +£0.01 x 1073
2.484+0.10 x 1073
1.58 +£0.01 x 1073

Intercept
2.4240.20 x 1073
0.31+0.01 x 1073
2.18£0.30 x 1073
1.40 £ 0.01 x 1073

X experiment
X simulation
7 experiment

7 simulation

is not an eigenstate of X; = (XoX1X2X3) X = X2X53,
an equally valid logical operator.

This encoding can detect any single error, but because
it is only distance-2, the code cannot be used to correct
for errors, as shown in Fig. S11d-e. Any single error on
a data qubit leads to an ambiguous syndrome, where it
is unclear if a logical operator has been affected. This
is distinct from the larger distance-3 logical qubit (see
Fig. S9d), where any single error can be corrected un-
ambiguously (distance-d can accommodate any (d—1)/2
eITors).

Consequently, any time we observe a detection event
in a run, we simply discard that run. As we increase the
number of rounds, we increase the probability that there
has been a detection event, so the fraction of runs we
keep decreases exponentially, as shown in Fig.4c of the
main text. Empirically, we remove about 27% of runs
each round, which agrees well with simulations of the
experiment.

At the end of each run, we measure the data qubits in
the basis matching the logical basis of the experiment,
either X or Z, and evaluate the appropriate logical op-
erator. We identify a logical error if the logical mea-
surement outcome differs from the value we initialized.
By post-selecting only runs without detection events, we
avoid most logical errors. However, two simultaneous er-
rors can be undetectable and lead to logical errors, such
as XoX1, which flips Z. Following post-selection, the
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FIG. S11. Error detection. a, Example initialization

to |0000) prior to the first round of stabilizer measurements.
This is a +1 eigenstate of Z; and both Z stabilizers. In the
first round, any X error can be detected. However, the first
X stabilizer measurement will be random, so no Z errors can
be detected. b, |++++) is a +1 eigenstate of X and the
X stabilizer. In the first round, any Z error can be detected,
but the two Z stabilizers will have random values. ¢, |[++00)
is a +1 eigenstate of X, and the lower Z stabilizer. As in a,
the first X stabilizer measurement will be random, so no Z
errors can be detected, risking a logical error Xy = —1. d,
Illustration of the detected syndrome for one X error. Note
Xo and X; have the same syndrome, but Xy flips Z1 while
X1 does not. X2 and X3 are similar. e, Illustration of the
detected syndrome for one Z error. All four have the same
syndrome, but Zy and Z; flip X while Z2 and Z3 do not.
In d-e, there is an implicit decoding procedure: for flipped
X0X1X2X3, insert Zy correction; for flipped ZopZ1, insert Xo
correction; and for flipped Z2Zs, insert X2 correction. When
this correction is the wrong choice, which happens for about
half of error events, we get logical errors.

probability of a logical error is about 0.002 each round,
as shown in Fig. 4d, with numerical fits summarized in
Table S1. For comparison, in Ref. [6], about 60% of runs
are removed each round, and the logical error probability
is about 0.03 each round.

Note that in the simulation, the X basis has slightly
lower error than the Z basis. One possible explanation is
that the two weight-2 Z stabilizers has two opportunities
for measurement error versus one for the single weight-4
X stabilizer. The experimental fits similarly show lower
errors in the X basis, but with an even greater differ-
ence. Understanding this behavior in depth is an ac-
tive research area, but we enumerate a few possibilities
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FIG. S12. Physical qubits per logical qubit. We

estimate the physical qubits required for one logical qubit
to achieve an overall logical error suppression of 1072 as a
function of the inverse error suppression factor 1/A, marking
A =10 with a vertical line. Left: semi-log, right: log-log.

here. First, there may be bias between X and Z errors
in the experiment, while the simulation uses depolarizing
Pauli noise. Second, compared to the repetition code, the
surface code is more vulnerable to drift and other non-
Markovian noise, due to longer stabilizer cycles and more
possible locations for phase errors in the stabilizer circuit.

In Fig. 4b, we project the error suppression factor A
for the surface code. Modest performance improvements
will be needed to achieve A > 1, which would be a clear
demonstration of operating below threshold error rates,
where making the code larger makes it better (even if the
absolute error rate is worse than a physical qubit). How-
ever, a practical surface code quantum computer would
benefit from A ~ 10, which vastly decreases the required
physical qubits per logical qubit for a given logical er-
ror rate. For example, suppose we want an overall logi-
cal error suppression 1/A(+1)/2 = 10=12 for a practical
computation. For a given A, we can solve for distance d
and estimate the required number of physical qubits per
logical qubit as roughly 2d?, as shown in Fig. S12. For
A = 10, this corresponds to roughly 1000 physical qubits
(distance-23).

VII. QUANTIFYING LAMBDA

Accurately benchmarking the performance of quantum
error correction can be confounded by artifacts if exper-
iments are not carefully designed. In particular, bound-
ary effects can introduce different error characteristics
that must be understood. Here, we study two types of
boundary effects. The first is qubits at code boundaries,
which interact with a reduced number of stabilizers and
thus participate in a reduced number of entangling gates
and may decrease the number of physical errors present.
Second, data qubits are subject to less errors in the first
round of the code than in the steady-state, and data qubit
measurement errors are only relevant in the final round



TABLE S2. Pauli error rates (bit flip error rates for measure-
ment and reset) used in subsequent simulations.

full dataset subsampling 1 subsampling2  subsampling 3
Input 000000000 Input 00000 Input 00000 Input 00000
1 0000 1 00 1 00 1 00
2 1001 2 10 2 00 2 01
3 0100 3 01 3 10 3 00
4 1000 4 10 4 00 4 00
5 0001 5 00 Sl 00 5 01
Out 01010 Oout 0 10 Out 1 0 1 [Out 0 10

11—
3—1

FIG. S13. Example of subsampling a d = 5 repetition code
dataset into 3 d = 3 repetition code datasets.

of measurements.

In our analysis of the repetition code, we use the tech-
nique of subsampling outlined in the supplementary ma-
terials of [9]. In order to, for example, compare the per-
formance of a d=11 repetition code to a d=3 repetition
code, we take a single dataset for the d=11 code, per-
form matching analysis, then subsample this dataset into
a collection of d=3 datasets and perform matching anal-
ysis on each sub-dataset. Generally, a repetition code of
distance ds can be subsampled from a larger code of dis-
tance d, where n = d — ds; + 1 is the number of unique
datasets one could produce. This can be understood by
considering a line of 9 qubits (for d = 5), and uniquely
choosing a line of 5 qubits (for d = 3) along it, as shown
in Fig. S13.

Subsampling has a number of practical advantages.
First and foremost, the experimental burden of acquir-
ing data is reduced. In order to quantify the perfor-
mance of a distance d repetition code as well as all pos-
sible configurations of smaller code distances, without
subsampling we would need to perform 7nexperiments =

Zi‘tll)/Q’Odd d — 2n. In the case of d = 11, subsampling
reduces the datasets needed by a factor of 25. Addi-
tionally, by using only a single source dataset, we enforce
self-consistency in error rates between code distances and
reduce sensitivity to systematic errors and system drift
that may occur between data acquisition runs. Alterna-
tively, one could collect only a single dataset for each code
distance. However, qubits typically have performance
variations and the choice of which qubits for which code
distance at what time will introduce bias or noise into
benchmarking.

In order to understand boundary effects and their im-
pact on repetition code data, we perform simulations us-
ing an uncorrelated depolarized Pauli error model. Here,
we use a simple error model described by Table S2, where
every qubit shares identical error rates. Given these prob-
abilities, we simulate 100,000 runs of a 21 qubit repetition
code over 10 QEC rounds.

We process this simulated data to explore the detec-
tion event fraction as a function of round, per qubit. We
find that the first and last round deviate from the steady-
state detection event round, as seen in FigS14. This dis-
crepancy comes from a difference in circuit structure as

Operation Error rate
H le-3
CZ 5e-3
M 2e-3
R 5e-3
Idle (M + R) 4.4e-2
Idle (H) Te-4
0.12
0.11
c
i)
% 0.10 -
& | q13.0
€ 0094 | —— q15.0
3 | —e— q17_0
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FIG. S14. Simulated repetition code data for 10 QEC rounds
and 21 qubits. The plot shows detection event fraction as a
function of round. We find a uniform behavior of detection
fraction in the intermediate rounds, and different values at
the first and last rounds of the code, which differ in circuit
structure.

well as initial conditions. Before initialization, all qubits
begin in the |0) state and suffer no Idling error during
the M + R operations that subsequent rounds do. In
the last round, the stabilizer outcomes are determined
from the final data qubit measurements, and require no
data qubit idling or entangling gates. These differences
manifest in smaller error rates and thus smaller detection
event fractions associated with these rounds.

This non-uniformity in detection event fraction must
be accounted for when analyzing A. In benchmarking
QEC, we seek to quantify the logical error rate in the
steady-state, but these boundary effects indicate the er-
ror rate is slightly different at the beginning and end of
the code. Due to this effect, the logical error probabili-
ties will deviate slightly from an exponential decay. To
mitigate this behavior, we choose to fit an exponential
decay to only experiments with a large number of rounds
(greater than 10), where this effect is minimized. This
can be seen in Fig.S15, where in this simple model we
see logical error probabilities that deviate from an ex-
ponential model (dashed, solid lines) at small numbers
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FIG. S15. Logical error probabilities fitted to an exponential
model of logical error rate (dashed, solid lines) (distance-3,
repetitions = 10,000). At low rounds, we see deviations from
the exponential fit due to boundary effects at the start and
end of the code, where error rates are reduced as compared to
the steady-state of the experiment. This can be seen in the
lower graph, where we plot fitted error over simulated error.
At low rounds, we find up to nearly a factor of 2 discrepancy.
To mitigate this effect, we fit the exponential only to rounds
greater than 10. Similar fits can be seen in Fig. 3 of the main
text, and in Fig. S5 and Fig. S7.
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FIG. S16. Detection event fraction vs measure qubit index

for a 21 qubit repetition code. Detection event fraction for
measure qubits at the edge of the code (index = 0, 9) have
lower detection event fraction, as data qubits on the boundary
participate in fewer entangling gates.

of rounds. In this regime, the logical error probabilities
outperform the steady state and are not predictive of fu-
ture QEC performance. This discrepancy, here up to a
factor of 2, can vary depending on circuit construction
and hardware.

In addition to time boundary effects, spatial boundary
effects also exist for qubits located at the edge of the

code, which participate in less entangling gates. This
can be seen in Fig. S16, where the measure qubits at
the edges of a simulated 21 qubit repetition code have
lower detection event fraction. This introduces a small
but systematic difference in comparing subsampled data
to experiments that are run in isolation.

VIII. CIRCUIT SIMULATIONS WITH PAULI

NOISE

This section describes simulations that approximate
errors in the experiment as Pauli errors sampled from
probability distributions and inserted into a circuit of
Clifford gates. In many quantum error-correcting codes,
including repetition codes and surface codes, the bulk
of the encoded operations consist only of gates from the
Clifford group [10]; the exception is the need to enact
logical non-Clifford gates, such as through magic-state
distillation [11], which is needed in a fault-tolerant quan-
tum computer but beyond the scope of logical memory
experiments like this work. A circuit composed entirely
of Clifford gates can be simulated efficiently using the
Gottesman-Knill theorem [12], and this description in-
cludes noisy circuits where the noise is a probability dis-
tribution for randomly inserting a Pauli operator after
each gate. Moreover, for stabilizer codes [10], the sta-
bilizers are Pauli operators which can be measured by
Clifford gates, so it is convenient to represent errors as a
distribution of Pauli errors. We employ this model here
— Clifford circuits with Pauli errors — because the sim-
ulations can easily scale to modeling large surface codes,
such as a distance-23 surface code requiring at least 1057
qubits.

We employ circuit simulations to attempt to under-
stand the relative contributions of errors from different
operations, also known as error budgeting. This proceeds
in two stages. First, we run simulations of the repetition
codes with circuit-noise parameters informed by bench-
marking component operations, such as CZ gate error
from cross-entropy benchmarking and idling qubit error
from measuring 77 and T5. We compare the logical error
rate in the simulations with the logical errors in the ex-
periment, and see close agreement. We also discuss pos-
sible explanations for the gap between experiment and
simulation.

Second, we use simulations to estimate the relative
contributions of component errors to the logical error
rate. We construct an error budget for A (see Eqn. (1)
of the main text) by attempting to represent its inverse
A~1 as a linear function of the component errors, which
we motivate by arguing that A~! is approximately linear
in the component errors. For such a model, the frac-
tion budgeted to each component is simply given by the
weighted contribution of the component error, divided
by quantity A~!. However, A~! is not a perfectly linear
function, and we discuss our approach to dealing with
this. Our intent with the error budgeting is to determine



what component error rates are necessary to implement
a working demonstration of a surface code. We can fore-
cast how a small surface code might perform if run on a
device with current error rates, and we can use the er-
ror budget to compare tradeoffs in component errors and
make design decisions for future devices.

A. A Description of a Component-Error Model for
Simulations

We simulate the repetition and surface code experi-
ments in a simplified “circuit noise” model. A circuit is
constructed from component operations, including Clif-
ford gates and related operations like initialization or
measurement in the eigenbasis of a Pauli operator. A
circuit composed of these components can be simulated
efficiently, and this set of instructions is sufficient to im-
plement stabilizer codes such as repetition codes and sur-
face codes.

Noise in the circuit is simulated by sampling random
Pauli errors and inserting them into the circuit according
to the following probability model. For each component,
there is a “Pauli error channel,” which is a distribution
over the possible Pauli errors to insert, including iden-
tity for no error (e.g. the distribution has 4 elements
for single-qubit operation, or 16 for a two-qubit opera-
tion). For each component in the circuit, a Pauli error
is sampled according to the distribution associated with
that component, and this Pauli operator is inserted after
the component. Measurement errors are treated slightly
differently, as follows. The binary measurement result is
flipped with a probability p, i.e. it goes through a classi-
cal binary symmetric channel instead of a Pauli channel.
For the circuits used in this work, when a qubit is mea-
sured, it is always reset before being used again; this
means we do not assume that a measured qubit is left in
the state consistent with a measurement result, because
we unconditionally reset that qubit before using it again.

The effect of the randomly sampled Pauli errors that
are injected into the simulated circuit is to change some
of the measurement outcomes from their expected values.
For example, an X (bitflip) error that occurs on a data
qubit will be detected by the next syndrome circuits that
interrogate this data qubit. We collect the syndrome
measurements and final data-qubit measurements in the
simulation, and process them in the same way as the
experiment using minimum-weight matching to infer a
most likely location of errors.

Our simulations make some simplifying assumptions
about the Pauli error channels. First, we assume that
each use of a component of the same type (e.g. every CZ
gate) has the same error channel. Of course, it would
be straightforward to simulate different error channels
for each gate in the circuit. This would also be com-
putationally efficient, but we opt to keep the number of
parameters in the simulation relatively small. Second, we
further simplify error channels to be parameterized by a
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TABLE S3. Error rates used in bit and phase flip simulations

Component Bitflip Phaseflip
DD 5.1e-2 4.1e-2
CzZ 6.6e-3 6.6e-3
M 1.9e-2 1.9e-2
R 5.0e-3 5.0e-3
H 1.1e-3 1.1e-3
1 8.4e-4 5.8e-4

single scalar parameter. The error channel for each gate
or idle is a depolarizing channel parametrized by a sin-
gle probability p for any error to occur; for a single-qubit
depolarizing channel, each of X, Y, or Z errors has proba-
bility p/3 to occur; for a two-qubit depolarizing channel,
each of the 15 non-identity Paulis has probability p/15
to occur. Each reset operation is followed by a quantum
bitflip channel (random insertion of Pauli X), and each
measurement operation is followed by a classical bitflip
channel (random flip of the measurement bit). All com-
ponents (e.g. every CZ gate) have the same error channel,
but different components can have different error proba-
bilities (i.e. measurement error p,, can be distinct from
the CZ error pcz).

There are six types of component operations in our
model, which are listed in Tab.S3. Since the error chan-
nel on each component has a single parameter, the noise
in the simulator has six parameters. We refer to these
parameters collectively as a vector denoted x, which we
use to relate the component-error probabilities to per-
formance measures of the repetition and surface codes,
such as logical-error probability or A, the ratio by which
logical error improves when code distance is increased by
2.

B. Comparing Component-Error Simulations to
the Experiments

To reproduce experimental conditions in the simplified
simulator, we try to approximate the error rate in each
component with data from benchmarking of those com-
ponents. The methods for characterizing error are:

e Single- and two-qubit gates: cross-entropy
benchmarking [13], averaged over the gates used
in the experiment. Averages treat one-qubit and
two-qubit gates separately.

e Idle operations: modeled as memoryless depolar-
izing channel with decay time constant given the
by relevant experiment, meaning “T7 decay” for
the bitflip code and “Ty decay” for the phaseflip
code. T; decay means initializing |1) and measur-
ing probability of the state being |1) as a function of
time; T decay meanings initializing |+) and mea-
suring decay of this state to the mixed state with
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FIG. S17. Simulations of logical-error probability for repeti-
tion codes using Pauli-channel noise calibrated to component
errors measured in the device. a, Logical error vs. number
of syndrome rounds for the bit flip code. b, Same data as
panel a (bit flip code), plotted on a log-scaled vertical axis.
¢, Logical error vs. number of syndrome rounds for the phase
flip code. d, Same data as panel ¢ (phase flip code), plotted
on a log-scaled vertical axis.

time, while doing CPMG echoing to remove low-
frequency phase noise (this dynamical decoupling
is also done during idle operations in the phaseflip
experiments).

e Reset and measurement: These errors are dif-
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FIG. S18. Logical error vs. code distance for the repetition
codes, and a fit to estimate A for the two codes.

ficult to distinguish; measurement error presents
a noise floor for reset characterization. However,
for simulation purposes, only the sum of the two
error probabilities is important. We characterize
reset by performing the reset gate between mea-
surement pulses, preparing the qubit in |0) or |1);
the error is the probability of finding |1) after re-
set. For measurement, we benchmark individual
qubits by preparing |0) or |1) and immediately mea-
suring, identifying the error probability. We also
benchmark simultaneous readout on all the mea-
sure qubits and all the qubits, as in Ref. [1].

It is important to note that the model is limited to
only simulating Markovian Pauli channels. The associ-
ated probability distributions are independent and iden-
tically distributed for each type of component. Other
important physical effects that we suspect to be present
are not included in the model, such as leakage, cross-talk
during gates, cosmic rays, parameter drift with time, or
any other non-Markovian noise source. The reason for
choosing such a limited noise model is that it scales to
large problem sizes and allows us to make forecasts of
surface codes. Additionally, even crude approximations
of effects such as leakage require physical understanding
of the origins and dynamics of these errors, and experi-
ments are ongoing in this direction. In future work, we
will improve the simulations to incorporate approxima-
tions to effects like leakage that are still computationally
efficient at large numbers of qubits.

The simulation conditions mirror the experiments in
simulating bitflip and phaseflip error-correcting codes
with the following parameters. The values of component-
error probabilities are those given in the main text, Fig.
4a. The syndrome circuits are executed n,ounds times, for
Nrounds being every integer in the range [1,50]. At each
value of N,ounds, the simulation is executed M = 160,000
times. A logical error has occurred if the logical mea-
surement at the end of an error-correction circuit gives



an encoded qubit state different from the initial encoded
state. We count the number of simulated logical errors
Me(Nrounds) at each value of nyounds, and the logical error
probability is calculated as

Perror (nrounds) = Me (nrounds)/M' (2)

For each value of code distance d € {3,5,7,9,11}, we
determine the logical error rate €jgical by fitting

Perror(nrounds) =0.5 [1 - (1 - 2€logical)nmunds] (3)

to the sampled data. This fitting ansatz has the prop-
erties that Porror(Trounds = 0) = 0, it saturates as
Porror (Nrounds — 00) = 0.5, and the error after one round
Perror(1) = €iogical. As in the main text, we calculate A as
the ratio by which logical error improves when increasing
the code distance by 2:

A(d) = 6logical(d)/elogical(d + 2)- (4)

The simulated logical error vs. number of syndrome
rounds, and fits to this data, are shown in Fig. S17. The
simulated logical error rates match well but not perfectly
to the experimental results. Figure S18 shows the fit-
ted logical error per round vs. code distance and fits
to determine A. The error rates are lower, and A val-
ues are higher, than what is seen in the experiments.
We attribute this discrepancy to one of the assumptions
of the simulator not holding in experiment. For exam-
ple, Section IX discusses evidence for cross-talk errors
happening during the experiment as well as long time
correlations in detection events due to presence of leak-
age states in the data qubits. Another possibility is that
parameter drift during the experiment leads to higher
error rates when running error correction than during
the component benchmarking that determines the com-
ponent error probabilities used in the simulation. Said
another way, this method of forecasting A accounts for
about 85% of the error, because it predicts A~! values
that are about 0.85 of the experimentally measured val-
ues, leaving weighted error contributions of about 15% of
the total not accounted for. This method was also used
to simulate the d=2 surface code, producing the “model”
traces in Fig. 4c-d of the main text.

C. Error Budgeting: Constructing a Linear Model
Relating Component Errors to Inverse of Lambda

The quantity A is used to forecast logical error rate
for a quantum code of a given size, so we extend this
reasoning to determine what component error rates are
needed to realize a target A value. We use the conven-
tion that A is the factor by which logical error is sup-
pressed by increasing code size, where A > 1 means log-
ical error decreases when code size increases. As a ra-
tio, its inverse A~! has the same meaning (the factor by
which logical error changes when code size increases one
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step). Moreover, we argue that A~! is approximately
a linear function of component errors. As in the main
text, we say that logical error rate is related to code dis-
tance d by €logical(d) o A-IE@+D/2] for ¢ odd. Tt has
been seen in numerical simulations with Pauli-channel
noise [14, 15] that for a single physical-error parameter p,
€logical < (/pen)9TY/2) where py, is the threshold error
rate for the chosen code and error model parameterized
by p. Hence, a naive comparison of the two approximate
expressions would have A~! = p/py;,, meaning that A1
is (approximately) linear in p.

For notational simplicity, denote the vector of compo-
nent error rates as x and let there be a function of compo-
nent error rates f(x) such that A=t = f. We will assume
throughout that f(0) = 0, meaning A approaches oo in
the limit errors go to zero. If f(x) were a truly linear
function in its arguments, we could calculate the gradi-
ent g = Vf anywhere to determine f exactly. However,
numerical simulations show that this is not the case, and
the gradient changes for different choices of the point to
linearize around. Since we desire a linear model to form
an error budget, we need to make a choice of how to do
so; since f(x) is not linear, there is no single “correct”
answer.

Our approach is to treat f(x) as if it was a second-order
function in its arguments,

f(z) = gr+0.52THe, (5)

where g is the gradient of f, (H);; = 9*f/0x;0z; is the
Hessian matrix of f, and both are evaluated at z — 07.
By doing so, we are saying that the second-order terms
would capture enough of the nonlinearity in f to pro-
vide a good approximation in the domain of interest. We
then exploit the following property. For any second-order
function f with f(0) = 0, there is a linear function given
by the first-order Taylor series evaluated at a point a/2
such that this linear function coincides with the second-
order function at a:

(Vflizas2) a = ga+0.5a"Ha = f(a) (6)

To make an error budget for the experimental
component-error vector x (values in Fig. 4a of the main
text), we use simulations to numerically evaluate the gra-
dient of f at x/2, which determines the weights on the
error components. From the weights in this linear model,
we can produce an estimate of f = A~! that shows the
weighted contribution of each component error. These
results are summarized in Tab. S4 and Tab. S5.

We see in these tables that the major source of logi-
cal error (more than 50% of the budget) is idling error
during the measurement and reset process. This is sim-
ply due to 71 decay times around 15 us and idle times
(880 ns during measurement and reset), leading to an er-
ror probability of 4-5% during each such operation. CZ
gates and the combined effect of reset and measurement
account for most of the remaining errors, with very small
contributions from one-qubit gates and idle operations
during gates.
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TABLE S4. Error Budget for bit flip code.

Component Error rate Model weight Contribution to A™! Error-budget percentage
DD 5.1e-2 3.5 0.179 58%
CZ 6.6e-3 11.7 0.077 25%
M 1.9e-2 1.6 0.030 10%
R 5.0e-3 1.6 0.008 3%
H 1.1e-3 3.4 0.004 1%
I 8.4e-4 6.6 0.006 2%

TABLE S5. Error budget for phase flip code. *Note that “I” gates are assigned zero weight. The term in the gradient
of A~! for this component is actually a small negative number that depends on code distance, for example about -1 for A
between d=3 and d=5. The reason this is negative is that “I” gates only appear on data qubits at the endpoints of the linear
chain, and not across the data qubits like the other components. This is why the derivative of A~! with respect to “I”-gate
probability is negative: errors in this component affect d=3 more than d=5, and the trend continues to higher distances. For
the experimentally measured error rate in this component, it has negligible contribution to logical error and hence A™!, so we

choose to set its weight to zero for the purposes of an error budget.

Component Error rate Model weight Contribution to A™! Error-budget percentage
DD 4.1e-2 3.5 0.144 54%
CZ 6.6e-3 11.9 0.079 29%
M 1.9e-2 1.5 0.029 11%
R 5.0e-3 1.5 0.008 3%
H 1.1e-3 8.0 0.009 3%
I 5.8e-4 0* 0 0%

IX. PROBABILITY p;; OF ERROR-PAIRED
DETECTION EVENTS

In this section, we discuss a technique that allows
us to characterize error processes in repetition code ex-
periments using correlations between detection events.
We refer to this technique as the p;; correlation matriz
method. We use it to estimate the probability p;; of con-
ventional (e.g., bit or phase flips) and unconventional
(e.g., leakage and crosstalk) error processes that produce
pairs of detection events at the error graph nodes i and
7. We use this technique to produce in-situ diagnostics
for QEC operation, and because it extracts detailed error
information, it can also inform weights to the decoder.

A. Error graph and correlation matrix p;;

Figure S19 shows an example of the error graph of a
quantum bit-flip or phase-flip repetition code. It con-
tains (Ny + 1) Nyq nodes (vertices), where NV, is the num-
ber of rounds (0,1,..N, — 1) and Npq is the number
of measure qubits (the number of data qubits is then
d = Npnq+1, which is also the code distance). Each node
i corresponds to readout of a measure qubit (except for
the last column of nodes — see below) and can be asso-
ciated with a pair of error graph coordinates: i = {s,t},
where s = 0,1,...Nyq — 1 is the space-coordinate (mea-
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FIG. S19. Error graph and main edges. An example of
the error graph for Nmq = 4 measure qubits (5 data qubits)
and N, = 8 time rounds. The horizontal axis shows num-
bering of rounds (¢ coordinate), the vertical axis shows num-
bering of measure qubits mq0-mq3 (s coordinate). The dots
denote the graph nodes; red dots indicate detection events.
The vertical, horizontal and diagonal edges are denoted as
Spacelike (S) [including the Boundary (B)], Timelike (T) and
Spacetimelike (ST) edges. Positions of data qubits dq0-dqg4
(not used in the error graph) are indicated at the left.

sure qubit index) and ¢t = 0, 1, ...V, is the time-coordinate
(round number). The nodes can also be counted, e.g., in



the “time-first” manner,
i=t+ (N; +1)s, (7)
or in the “space-first” manner,
=25+ Nyqt. (8)

In each experiment, some of the nodes experience error
detection events [9] (or simply “detection events”) de-
noted by red dots in Fig. S19 (black dots denote absence
of detection events). By definition, a detection event at
node ¢ = {s,t} occurs when the corresponding measure-
ment result my ;y is different from the previous measure-
ment of the same qubit, x4y = my, ) Smys -1y, where
z; = 1 means a detection event at node i, while x; = 0
means no detection event (here @ denotes XOR). There
are two exceptions to this rule. First, for the column with
t = 0, instead of non-existing my, 1} we use the parity
of two neighboring data qubits in the initial state (if there
is no error, we are supposed to get x50y = 0). The sec-
ond special case is for the last column of nodes, t = N,
which does not correspond to a physical round (physi-
cal rounds are t = 0,1,...N; — 1); in this case, instead
of non-existing my n,}, we use the parity of neighboring
data qubit readouts at the end (after the round N, — 1),
so that w, n,) = 0 again indicates the expected no-error
situation.

A decoder’s task is to use detection events on the error
graph to choose one of two given complementary initial
states of data qubits (initial parities of neighboring data
qubits are given, so the decoder needs to determine only
one bit of information). The decoder for this experi-
ment used minimum-weight perfect matching algorithm
[9, 14, 16], which connects detection events to each other
(pairwise) or to a space-boundary.

In the conventional Pauli error model assumed by the
decoder [9], the detection events can be produced only
in pairs, corresponding to the edges of the error graph
(for the space-boundary edges, only one detection event
near the boundary is produced). There are 3 types of
such edges — see Fig.S19. Spacelike (S) edges connect
nodes {s,t} and {s+1,t} (the boundary S-edges connect
nodes {0,t} and {Nmq—1,t} to the corresponding space-
boundaries), timelike (T) edges connect nodes {s,t} and
{s,t+ 1}, and spacetimelike (ST, “diagonal”) edges con-
nect nodes {s,t} and {s+ 1,¢+ 1}. In the conventional
Pauli error model, a single physical error corresponds to
an edge of the error graph.

Note that if two physical errors occur in edges sharing
a node (see Fig.S19), then there will be no detection
event at this node: two detection events at the same
node cancel each other. Therefore it is better to say that
a physical error flips color (black+red, ; — 1 — ;) of
two nodes, instead of producing two detection events.

Now let us discuss how to find the probability p;; of
a physical error, which flips colors of both nodes ¢ and
j, using experimental statistics of detection events [17].
From experimental data we see that such processes may
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occur not only when a pair of nodes is connected by a
conventional edge on the error graph; therefore, we treat
i and j as arbitrary nodes. However, we still assume
that such pairs (edges) are uncorrelated with each other.
In reality, sometimes there is a correlation between the
edges (discussed later); so the assumption of the absence
of correlation is a first approximation.

As mentioned above, p;; denotes the probability that
two nodes i and j flip color simultaneously. These nodes
can also flip color because of other edges connected to
i and j separately. However, it is important that these
additional flips are independent (uncorrelated) for i and
j because they are caused by different physical errors.
Therefore, we can consider three uncorrelated processes:
node 4 flips color (z; — 1 — z;) with some probability
pi, similarly node j flips color with probability p;, and
both nodes flip color with probability p;;. Since we start
with the black color (x; = x; = 0), the joint probabilities
P(x;,2;) of detection or no detection events at nodes ¢
and j are

P(0,0) = (1 —pi)(1 —pi)(1 — pj) +pijpipj,  (9a)
P(0,1) = (1 = piz)(1 — pi)pj +pijpi(1 —pj),  (9b)
P(1,0) = (1 = piy)pi(1 — pj) + piz(1 = pi)pj, (%)
P(1,1) = (1 = piy)pip; +pij(1 —pi)(L —pj).  (9d)

These formulas have obvious meaning, describing com-
binations of the three processes occurring or not occur-
ring. Note that P(0,0)+ P(0,1) + P(1,0) + P(1,1) = 1.
The relations (9) can also be expressed via the fractions
of the detection events (often abbreviated as DEF: detec-
tion event fraction) for each node, (z;) = P(1,0)+P(1,1)
and (z;) = P(0,1) + P(1,1), and the probability of both
detection events, (x;x;) = P(1,1), which gives

(zi) = pi (1 = pij) + (1 — ps) pijs (10a)
(z5) = pj (1 = pi) + (L = pj) piyy (10b)
(wiwj) = pij (1 —pi) (1 —p;) + (1 — pij) pipj.  (10c)

Solving these equations for p;;, p;, and p;, we obtain

11 A4 ((wizj) — (wi)(z;))
Dij 2_2\/1_12@)2<a:j>+4<a:,;xj>’ (11)
pizw7 szm' (12)

We can think about p;; as a symmetric matrix, p;; =
pij, with indices corresponding to the nodes ordered ei-
ther in the “time-first” way (7) or in the “space-first” way
(8) — see Figs. S20 and S21 discussed later. Formally, in
Eqn. (11) the diagonal elements are the detection frac-
tions, p; = (x;); however, we usually set them to zero,
pii = 0, for clarity of graphical presentation.

Note that in the experimentally relevant case when
pij < 1/4, Eqn. (11) can be approximated as (i # j)



(zizj) — (zi)(x))

PN T )1 2(ay)) (13)

Equation (13) for p;; is Eqn.(2) of the main text.
This form shows a clear relation of p;; to the covariance
(xjz;) — (x;)(x;); however, the correction due to the de-
nominator is typically quite significant. For example, for
(@) ~ (x;) ~ 0.11 (see Fig.1 of the main text), the de-
nominator in Eqn. (13) is about 0.6. The approximation
(13) slightly overestimates Eqn. (11), the correction fac-
tor is roughly (1 — 3p;;).

Equation (11) allows us to find accurate individual er-
ror probabilities for S, T, and ST edges of the error graph,
which are needed for the minimum-weight decoder. How-
ever, there is an important exception: the error proba-
bility for a boundary S-edge cannot be obtained in this
way because it contains only one node. To find the er-
ror probability p; g for a boundary edge from node 7, we
use Eqn. (12), pix = ((#:) — pis)/(1 — 2p;B), in which
the “individual flip” probability p; s, is calculated from
already calculated error probabilities for S, T, and ST
edges connected to the node i. We essentially sum up
the known error probabilities of the connected edges and
find the missing error probability (due to the boundary
edge) to bring the sum to the DEF (z;). Note, however,
that it is not a simple sum of the probabilities because
of the “color flipping” procedure, so that the errors p;;, ,
Dijss --- Dij, due to k connected edges produce the total
flip probability

Pis = 9(Pijrs - 9Pijar 9(Pijar Piji)) ), (14)
gp,9)=p(l—q)+ (1 —-p)g=p+q—2pq.  (15)

Thus, after finding p; s, we calculate the boundary S-
edge probability as

<=’Ez> — Pi,x

. 1
I 2pix (16)

piB =

Note that this procedure for boundary edges assumes
that error processes corresponding to different edges are
uncorrelated. In reality this is not a very good assump-
tion (this is why we are actually using a slightly different
procedure for boundary edges). A natural way to es-
timate the effect of correlation between the edges is to
use Eqn. (14) for a node ¢ not close to a boundary, sum-
ming up the contributions from all connected edges and
then comparing the result with the DEF (z;). Doing
this test for the phase-flip experiment, we typically find
a relative inaccuracy of about 4% (median value), which
indicates a reasonably small but still nonzero correlation
between the main edges (for the bit-flip experiment the
median relative inaccuracy is about 9%). A natural way
of thinking about positive correlations between the edges
is to assume that some error processes flip color of 4, 6,
.. nodes on the error graph, so that the same process in-
creases p;; for several pairs of nodes (this also produces
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unconventional edges on the error graph reported by p;;).
To study correlations between edges, we have generalized
the method of p;; to 3-point and 4-point correlators (es-
sentially the “hyperedges”), extending the approach of
Eq. (9) to account for more nodes and more error pro-
cesses. This generalization will be described in a future
publication.

B. Fluctuations of the p;; elements

When evaluating Eqn. (11) using experimental data,
the p;; values exhibit statistical fluctuations because the
averages (x;z;), (z;), and (z;) are estimated from a large
but finite number Neypy, of experimental realizations (typ-
ical values of Nexpt are between 10 and 105). In this sec-
tion we estimate the standard deviation o, of statistical
fluctuations of the p;; elements.

For the estimate, let us use the approximation (13)
and assume the usual experimental case when (z;) < 1,
(zj) < 1, and p;; < 1. Then the effect of the denomina-
tor fluctuations is negligible in comparison with fluctua-
tions of the numerator (covariance C;;), so

0C;; ) — (M)
=21 =20y G = @) = waley)
(17)

Using the form C;; = ((x; — (x:))(z; — (z;))) and using
in it true averages (z;) and (x;) instead of averages over
Nexpt realizations (the effect of the change is negligible),
we find

oc,, = \/Var((ei — (@) (25 — @)/ Newpr - (18)

The variance here is ((x; — (:))*(z; — (z;))*) — CF;, in
which the first term can be rewritten after some algebra
as Ciy(1—2()) (1 —2(2;)) + (i) ) (L — () (1— (1),
using the properties z? = z; and 27 = x;. Inserting
this form into Eqn. (17) and using C;;/[(1 — 2(x;))(1 —

2(z;))] =~ pi;, we obtain

ooy () (= (@) (1 — (z5))
- \/p”(l Pij) 1—2(x;))*(1 — 2(x;))* .

Op.. =
Pij
Nexpt

Opij ~

(19)

Note that the first and second terms in the numerator
of Eqn. (19) have a clear meaning and can be obtained
separately. When p;; is well above the statistical noise
floor, op,; mainly comes from fluctuation of the number
of realizations, in which the edge error (color flipping
event) has occurred: NexptPij & \/NexptPij (1 — pij), as
follows from the binomial statistics. It is easy to see that
this leads to the first term in Eqn. (19). The second term
is the noise floor, coming from the fluctuations of (z;),
(x;), and (x;x;) when p;; = 0. It can be obtained, e.g.,
by considering the number of realizations with x; = 1:
Ny=1 = Nexpt () £ \/Nexpt<xi>(1 — (z;)), number of




realizations with x; = x; = 1: Ny,—y,=1 = Ng,=1(z;) *
V/Nai=1(x;)(1 — (z;)) (with uncorrelated =), and re-
alizations with z; = 0 and z; = 1: erzoyzjzl =
(Nexpt — Na=1){x5) £ /(Nexpt = Nay=1) () (1 = (z;))
(also with uncorrelated +). Then calculating the appar-
ent value of the covariance C;; and using it in Eqn. (17),
we obtain the noise floor, which gives the second term in
Eqn. (19).

As a final simplification, let us neglect the factors (1 —
pij) and (1 — (z;))(1 — (z;)) in Eqn. (19) (this slightly
increases g, , so we are on the safe side), thus obtaining

ot [ (@)
Y L (T )

In our repetition phase-flip code experiments, we have
Nexpt = 76,000 realizations and the detection error frac-
tions are (x;) ~ (x;) ~ 0.11 (slightly bigger, ~ 0.12 in
the bit-flip experiments). Thus, the standard deviation
of the experimental p;; values that are nominally zero
(noise floor) is roughly

Op;; =26 x 1074 (21)

In particular, this is the noise floor seen in the p;;
matrix plots shown in Figs. S20 and S21. Additional
averaging over the rounds leads to even smaller noise floor
(< 2 x 107%) in Fig.2(c) of the main text.

C. Experimental results for p;;

Figure 520 shows the correlation matrix p;; for a phase-
flip code experiment with 21 qubits (Nyq = 10 measure
qubits and 11 data qubits) and N, = 30 rounds. In
this particular experiment, no cosmic rays events were
detected, so no data was discarded from Neypt = 76,000
runs. The error graph nodes ¢ and j are ordered in the
“time-first” way given by Eqn. (7). Figure S20 contains
310x 310 pixels, with the color of each pixel determined
by the value of the corresponding p;; element. Each axis
contains Npq = 10 blocks (see grid lines) corresponding
to 10 measure qubits indicated on the axes; each block
contains N, + 1 = 31 points (small ticks on the axes)
corresponding to time rounds.

We see that most pixels in Fig.S20 (which are away
from the features discussed below) have values close to
zero. The fluctuations are consistent with the expected
noise floor given by Eqn. (21). The figure is symmetric
across the main diagonal (which runs bottom-left to top-
right) because p;; = p;;. The values on the main diagonal
are set to zero.

The most visible features are 4 diagonal lines (2 from
each side of the main diagonal), which correspond to S
and T edges of the error graph: the T-edge line contains
pixels next to the main diagonal, while S-edge line is N, +
1 pixels away from the main diagonal. The color scale for
S and T lines is saturated because the values of p;; for
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these lines are around 0.03; they are shown in Fig. S22
discussed in more detail below. There is also a less visible
line in Fig. S20 next to the S-line (one pixel farther, N, +
2, from the main diagonal), which corresponds to ST
edges. The typical values of p;; for the ST-line are around
0.004. Another well-visible feature in Fig. S20 is a reddish
“dirt” near S and T lines for qubits mql and mq2 and to a
less extent for some other qubits; we attribute this feature
to leakage to state |2) in a data qubit. One more feature is
short lines (“scars”) parallel to the main diagonal, which
we attribute to crosstalk. The leakage and crosstalk are
discussed later.

S, T, and ST edges. In the conventional theory of
the repetition QEC code, the errors are associated only
with S, T, and ST edges. The elements of p;; show the
probabilities of these errors individually for each edge on
the error graph. We emphasize that these probabilities
are obtained in situ, during the actual operation of the
code, in contrast to estimates based on qubit coherence
and gate fidelities.

As expected from the conventional theory, S, T, and
ST edges are the main features in Fig.S20. The val-
ues of p;; elements for these edges are shown in Fig. 522
by blue markers for S-edges, red markers for T-edges,
and green markers for ST-edges; the lines are a guide for
the eye. The S-edge error probabilities for the boundary
edges (denoted dq0 and dql0 in Fig. S22) are calculated
using Eqgs. (14)—(16); we see that their values are con-
sistent with other S-edges. Each block of blue markers
corresponds to a particular data qubit (indicated at the
top), markers within a block correspond to time rounds
(from 0 to 30, see the horizontal axis). Note that S-edge
probabilities for rounds ¢t = 0 and ¢ = 30 are significantly
smaller than for other rounds (emphasizing the need of
many rounds in an experiment). This is because S-edge
errors in our phase-flip code are mainly due to dephas-
ing of data qubits during readout and reset (or due to
energy relaxation for a bit-flip code), while the special
rounds ¢t = 0 and t = N, do not have these parts of the
cycle. For other rounds, the error probability p;; can
be crudely estimated as 7/2T5, where 7 is the readout-
and-reset time (expected contribution from CZ gates is
significantly smaller). In our experiment, 7 = 0.88 us and
on average Ty ~ 16 us, which gives 7/2T5 ~ 0.028. We
see that p;; values for S edges (blue symbols) are close to
this estimate, though they are different for different data
qubits, mostly reflecting variation in 75 times and also
having contributions from gate errors. The integrated
histogram for the S-edges is shown by the blue line in
the left panel of Fig. S23; the median p;; value is

py; ctEe el & 3.0 x 1072, (22)

The T-edge errors (red symbols in Fig.S22) are
grouped in blocks corresponding to measure qubits in-
dicated below the red symbols. The T-edge errors are
expected to come mainly from the readout errors, but
there are also contributions from the gate errors and re-
set error. Our median readout error is around 0.018;



however, the p;; values are considerably higher, with the
median value (see the integrated histogram in Fig. S23)
of

p;I]‘fcdgc,mcdian ~ 27 % 1072. (23)
The error probabilities for ST edges (green symbols in
Fig.S22) are much lower than for S or T edges; they
are supposed to come mainly from CZ gate errors. The
integrated histogram in Fig.S23 (green line) shows for
ST edges the median value of

pZSJT—edge, median ~ 3.7 % 1073' (24)

Unconventional edges. Figure S20 clearly shows
that in contrast to what is expected from the conven-
tional QEC theory, some correlations between the detec-
tion events correspond to error graph edges different from
the S, T, and ST types. In particular, there are signif-
icantly non-zero p;; values near the lines corresponding
to T and S edges, separated from them by a few rounds.
The integrated histogram for some types of these edges
is shown in the right panel of Fig.S23). As illustrated
by the inset, with ST’ we denote the “diagonal” edges
similar to the ST edges, but going into the other direc-
tion. With 2T, 3T, etc. we denote the edges spanning 2,
3, etc. rounds for the same measure qubit. We see that
out of the unconventional edges, 2T edges have the high-
est typical probability (the median of 1.7 x 10~3), which
is still more than twice smaller than the typical ST-edge
probability. A relatively small probability of unconven-
tional edges indicates a high quality of the experiment.
Note that before the qubit reset [2] was implemented,
the unconventional-edge probabilities were much higher,
with 2T probabilities exceeding ST probabilities.

The negative values of p;; for a small fraction of uncon-
ventional edges shown in Fig. S23 are consistent with the
statistical noise level (21). Note, however, that in some
cases, for example, for 2T edges in a high-quality bit-
flip experiment, the p;; values can actually be slightly
negative. This can be understood using Eqn. (13) as a
negative correlation. Indeed, a negative correlation be-
tween the nodes can be caused by a negative correla-
tion between the edges. An example is the second-order
anticorrelation due to data qubit energy relaxation (an
energy relaxation event cannot be immediately followed
by another relaxation event), which may cause slightly
negative p;; in a bit-flip repetition code experiment [2].

Figure S21 shows the same data as Fig.S20 but with
the different ordering of nodes: here we use the “space-
first” ordering from Eqn. (8). Then each axis contains
N; + 1 = 31 blocks corresponding to time rounds (grid
lines), while Ny = 10 points within each block corre-
spond to measure qubits. The S-edges are next to the
main diagonal, the T-edges are the diagonal lines sepa-
rated by 10 pixels from the main diagonal, and the ST
edges are on the next diagonal line (11 pixels from the
main diagonal). The parallel lines in Fig. S20 separated
by 20, 30, etc. pixels from the main diagonal correspond
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to 2T, 3T, etc. edges. The figure clearly shows that tem-
poral correlations can survive for over 5 rounds.

Leakage to state |2). We attribute the detection-
event correlations lasting for several rounds, as seen in
Fig. S21, to the leakage to state |2) in data qubits. The
same effect causes the “dirt” in Fig. S20 close to S and T
lines, with the magnitude of the correlations for several
edge types shown in the right panel of Fig. S23. Note that
measure qubits are reset to |0) at every round, so non-
computational states can survive only in data qubits. For
a typical qubit energy relaxation time of 77 ~ 15 us and
the round duration of 960 us, we would expect that state
|2) should survive on a data qubit for about 8 rounds.
Examining Figs. S23 and S21, we see that this estimate
is in the right ballpark, but the actual decay of the state
|2) can be significantly faster due to hopping of leakage,
a subject of ongoing research.

We have found that the amount of leakage is sensitive
to minor experimental details. The p;; technique can be
used for a fast diagnostic to estimate the level of leakage
and to find which qubits suffer a bigger leakage. Special-
ized experiments have shown [2] that a typical probability
of state |2) in a data qubit is around 4 x 10~3. This mag-
nitude is consistent with the values we extract from the
p;; analysis. While this analysis is somewhat involved,
we note that ST’ edges have a somewhat similar (though
smaller) p;; values due to leakage. For our phase-flip
code experiment, the median value for ST’-edge errors is
1.3x 1073, while the biggest value (averaged over rounds)
is 3.3 x 1073 for data qubit dq2 (as can be seen from
Fig.S20, dg2 has the biggest leakage). So, as a crude
proxy for leakage, we can use

piSJTI"fedge (leakage) 5 3 % 10_3. (25)
The 2T edges can also be used to estimate leakage; the
biggest 2T-edge value (averaged over rounds) is 3.6x 1073
for measure qubit mq2. (All these values are for the
phase-flip code; for a bit-flip code there is an additional
contribution from “odd-even correlations” due to energy
relaxation of data qubits).

Note that during several rounds while a data qubit
is in state |2), there is a relatively high probability of
detection events at the neighboring measure qubits [2].
This leads to a significant correlation between S-edges
(and also T-edges), which negatively affects performance
of the minimum-weight-matching decoder. This is why
leakage is dangerous for quantum error correction even
for a relatively low leakage probability.

Crosstalk features. Short parallel lines (“scar” fea-
tures) in Fig.S20 far away from the main diagonal in-
dicate the presence of correlations between detection
events at qubits, which are far apart along the 1D line of
qubits used in the experiment. However, they are actu-
ally close to each other on the Sycamore chip — see the
top panel of Fig.S24, which shows 10 pairs of measure
qubits (indicated by arrows), for which there are visible
scars in Fig. S20. We attribute these scar features to the
crosstalk.



The lower panel of Fig. S24 shows the values of same-
round p;; elements averaged over the rounds, for all pairs
of measure qubits except nearest neighbors. While most
values are within the statistical noise level, the elements
corresponding to the scar features are significantly above
the noise floor (bigger values are indicated by orange and
green cells). We see that the magnitude of the crosstalk
correlations is

p;::Jr'osstalk S 2 % 1073' (26)
For the crosstalk pairs shifted in time by one round we
find crudely twice smaller edge probabilities.

The long-range correlation between detection events
caused by crosstalk are dangerous to the code operation
because they can effectively reduce the code distance.
However, we see that in our device the crosstalk is quite
small and, most importantly, local in physical distance on
the chip. Therefore, we expect that in the future it will
not present a serious problem in a surface code operation.
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FIG. S20. Correlation matrix p;;. A graphical representation of the 310x310 symmetric matrix p;; [Eqn. (11)] for a phase-
flip repetition code experiment with Npnq = 10 measure qubits (11 data qubits) and N, = 30 rounds. The color of each pixel
depicts the probability p;; for an error process involving error graph nodes ¢ and j. The nodes are ordered in the “time-first”
fashion, Eqn. (7), with 10 blocks (separated by grid lines) corresponding to measure qubits (mq0, mql, ... mq9) and 31 ticks
within each block corresponding to time rounds (from ¢ = 0 to t = N,). The main features are the diagonal lines corresponding
to T, S, and ST edges, which are shifted from the main diagonal by 1, 31, and 32 pixels, respectively (ST line is more faint than
T and S lines). Additional features are reddish (“dirty”) patches near S and T lines, which are due to leakage to state |2) in
data qubits, and also short parallel lines (“scars”) due to crosstalk. Note that the color bar ranges to 0.007, while probabilities
for S and T edges are above this truncation.
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each block. The lines for S, T, and ST edges are shifted from the main diagonal by 1, 31, and 32 pixels, respectively. Short
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stripes indicate the presence of long-time correlations in detection events lasting for over 5 rounds.
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like) edges for the data in Fig. S20 (phase-flip code, 10+11 qubits, 30 rounds). For S-edges (blue symbols) the corresponding
data qubits dq0—dql0 are indicated at the top, 31 points within each block correspond to rounds. The S-edge probabilities for
boundary data qubits dq0 and dq10 are calculated using Eqs. (14)—(16). For T-edges (red symbols), the corresponding measure
qubits mg0-mq9 are indicated below the red symbols, each block contains 30 points. ST-edges (green symbols) are positioned
in the same way as S-edges (without boundaries), with 30 points per block. Lines are a guide for the eye.
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FIG. S24. Crosstalk error probabilities. Top panel:
Layout of 10 measure qubits (black circles with integer labels)
and 11 data qubits (gray-filled circles) on the Sycamore de-
vice. Arrows indicate the pairs of measure qubits that exhibit
stronger (red arrows) and weaker (orange arrows) detection-
event correlations due to crosstalk. Bottom panel: Effective
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cept for nearest neighbors). We show the values of p;; x 10%
for same-round p;; elements averaged over rounds. Cells are
colored according to the values: yellow and green indicate
a significant crosstalk, blue indicates statistical noise. The
biggest crosstalk of 2.2 x 1072 is between mq4 and mq6 (left-
most arrow in the top panel).
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X. COMPARISON OF EDGE WEIGHTING
METHODS FOR MATCHING

To decode the error detections obtained in the exper-
iment, we use a minimum weight perfect matching algo-
rithm to determine which physical errors were most likely
given the observed directions. A key component of this
algorithm is the weighting of the edges in the error graph
which correspond to the expected correlated probabilities
of pairs of nodes. The weight of a particular edge (W)
and the expected probability for that edge (p) are related
by

which satisfies the property that adding the weights of
two edges corresponds to multiplying their probabilities.
We considered four candidate strategies for determining
expected edge probabilities and weights:

1. Uniform weighting - assume that all edges in the
matching graph are equally likely

2. Bootstrapping - Run matching on a training
dataset with uniform weights, then for a given edge,
count the number of times it was matched and di-
vide by the number of total experiments to compute
the expected probability for future matches.

3. Node correlations (p;;) - Use the node correla-
tion technique described in Section IX to determine
the correlated probabilities for edges from a train-
ing dataset.

4. First principles - From the measured gate, mea-
surement, and reset error probabilities, compute
the edge probabilities by propagating possible er-
rors through the circuit.

For methods 2 and 3, we use the data at 50 rounds
to determine the matching weights for all other datasets.
While these methods can in general produce a unique
weight for each edge in the 50 round graph, we average
together all rounds so that the edge weights used during
matching are uniform in time. Phase flip and bit flip
edge weights, as well as weights for each of the smaller
subsampled codes, are determined separately.

In Tab.S6, we show the fitted values of A using the
different weighting methods, for both the bit and phase
flip codes. To within the uncertainty from fitting, we
find that methods 2, 3, 4 all give the same result for A,
and A, while uniform weighting reduces A, to 2.7 and
A, to 2.5. The primary effect of the more sophisticated
weighting methods is to increase the weights of spacetime
edges relative to spacelike and timelike edges.

Other potential techniques for decoding detections
include maximum likelihood [18] and neural networks
[19, 20]. The efficacy of these other methods compared
to minimum weight perfect matching is currently under
investigation.
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FIG. S25. Stabilizer Circuit. a, Circuit schematic repre-
sentation of the stabilizer circuit. Layers of single qubit and
two qubit gates highlighted in blue. Measurement, reset, and
dynamical decoupling operations highlighted in yellow to cor-
respond to the waveforms in b, Rendered waveforms to show
that the majority of the time spent during the stabilizer is
during the measurement and reset operations. Lines repre-
sent microwave control (XY), flux control (Z), and readout
for the stabilizer circuit for one data qubit (blue) and one
measure qubit (red).
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FIG. S26. Dynamical Decoupling Sequences. The four
multi-pulse sequences used during the measurement and reset
portions of the stabilizer circuit. Each sequence has the same
total idle time and executes the same number of gates. The
distinction between these four sequences during the execution
of the circuit is only the phase of the microwave pulses, a
technique used to compensate for cumulative pulse errors.

XI. DYNAMICAL DECOUPLING OF DATA
QUBITS

The measurement and reset operations take 880ns
to complete and account for approximately 92% of the
time spent for the duration of the phase flip code (see
Fig. S25). Leaving data qubits to idle during these opera-
tions, we undergo energy relaxation processes in addition
to dephasing processes, accounting for a large portion
of the total error budget. The process of measurement
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TABLE S6. Error suppression factors (Az, A, for phase and bit flip) and multiplicative constants (C, and C?) fit to logical
error rates vs code distance (Eqn. 1 of the main text) for the four different edge weighting methods.

Weighting method Cy Az C, Az
Uniform 0.056 + 0.005 2.79 + 0.056 0.066 + 0.007 2.75 4+ 0.06
Bootstrapping 0.068 £+ 0.008 3.18+£0.08 0.078 £ 0.01 3.01£0.09
Correlation (p;;) 0.067 £+ 0.008 3.18 £ 0.08 0.077 £0.011 3.01+£0.09
First principles 0.067 £+ 0.007 3.174+0.08 0.0756 + 0.011 2.99 +0.09
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FIG. S27. Benchmarking phase flip performance with and without dynamical decoupling. b Detection event

fractions vs qubit and round for each of the data qubit Idle, CP, CPMG, XY4, and XY8 operations during measure qubit
readout and reset. Median detection event fraction by round plotted in black. b, Logical error rate vs number of qubits,
showing exponential suppression of error rate in all cases. ¢, Boxplot of extracted error suppression factors (A) from fits like
those shown in b, for five iterations of the experiment for each decoupling scheme. Overall, we see an 1.7x increase in for all
decoupling schemes. The performance between the various decoupling schemes is comparable.

and reset on the measure qubits introduces additional av-
enues of error including measurement-induced dephasing
from photon crosstalk between readout resonators [21],
as well as frequency detuning errors incurred from any
flux crosstalk between qubits. While energy relaxation
is irreversible and cannot be mitigated here, dephasing
can be mitigated using dynamical-decoupling techniques.
We employ multi-pulse sequences developed within the
field of NMR which have been shown to mitigate low-
frequency noise in superconducting qubits [22]: Carr-
Purcell (CP) [23], Car-Purcell-Meiboom-Gill (CPMG)
[24], XY4, and XY8 [25].

With independent phase coherence measurements, we

verified that we were able to effectively decouple the
qubits from the noise sources listed above. Using CPMG,
we verified independently via phase coherence measure-
ments with and without adversarial readout tones, as
well as with and without large frequency excursions on
neighboring qubits, that we are able to effectively decou-
ple away the intrinsic low-frequency noise, measurement-
induced dephasing on the data qubits caused by crosstalk
from measure, as well as any flux crosstalk effects. We
then evaluated the performance of each dynamical decou-
pling protocol within the context of the repetition code.
For all of the decoupling sequences, we fix the time be-
tween pulses such that every sequence has the same total



idle time and executes the same number of gates (see
Fig.S26). The fixed idle time was set such that each
sequence performed eight gates. Using decoupling, we
see an ~1.7x increase in the error suppression factor,
A (Fig.S27). To compare the performance of the dif-
ferent decoupling schemes, the experiment was run and
analyzed a total of five times for each of the schemes
(Idle, CP, CPMG, XY4, and XY8). The performance
between schemes was comparable with the CPMG and
XY4 sequences slightly outperforming the CP and XY8
sequences.

XII. QUBIT FREQUENCY OPTIMIZATION

Our processor employs frequency-tunable qubits [1].
Quantum logic gates are executed at two distinct types
of frequencies: idle and interaction frequencies, which are
collectively referred to as gate frequencies. Qubits idle
and execute single-qubit gates at their respective idle
frequencies. Neighboring qubit-pairs execute CZ gates
at their respective interaction frequencies. All gate fre-
quencies are explicitly or implicitly interdependent due
to engineered interactions and/or crosstalk according to
the repetition code circuit and its mapping onto our pro-
cessor. Since many error mechanisms are frequency de-
pendent, we can mitigate errors by constructing and op-
timizing an error model with respect to gate frequencies.

To construct an error model, we combine error contri-
butions from Z pulse-distortion, relaxation, dephasing,
and qubit crosstalk. The Z pulse-distortion model pe-
nalizes CZ gates for large frequency excursions. The re-
laxation and dephasing models penalize SQ and CZ gates
for approaching relaxation and dephasing hotspots, while
incorporating coupler physics, qubit hybridization, state-
dependent transitions, and hardware-accurate frequency
trajectories. Finally, the qubit-crosstalk model penalizes
for frequency collisions between nearest-neighbor (NN)
and diagonal next-nearest-neighbor (NNN) qubits, while
incorporating qubit hybridization and the mapping of the
repetition code circuit onto our processor. These con-
stituent models are determined via theory and/or exper-
iment, consolidated, and then trained to be predictive of
experimentally measured error benchmarks via machine
learning.

To determine a frequency configuration that mitigates
error, we optimize the error model with respect to gate
frequencies. Optimization is complex since the error
model spans 41 frequency variables, is non-convex, and
time-dependent [26]. Furthermore, since each frequency
variable is constrained to ~10? values by the control
hardware and qubit-circuit parameters, the optimiza-
tion search space is ~2272, which significantly exceeds
the Hilbert-space dimension 22!. Given the optimization
complexity, exhaustive search is intractable and global
optimization is too slow and inefficient. To quickly and
efficiently find locally optimal gate-frequency configura-
tions and maintain them in the presence of drift, we use
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our Snake optimizer [27].

To illustrate the performance of our error mitigation
strategy, we conduct a qubit-crosstalk mitigation experi-
ment (see Fig. S28). In this experiment, we first optimize
our processor employing one of three qubit-crosstalk mit-
igation strategies. We then calibrate the processor and
run the bit-flip repetition code. The three mitigation
strategies are labelled “none”, “partial”’, and “full”, ac-
cording to the expected degree of crosstalk protection. In
the “none” strategy, we do not penalize for crosstalk. In
the “partial” strategy, we penalize for crosstalk accord-
ing to the cross-entropy benchmarking (XEB) circuit [1],
which we often use in calibration. Although XEB and the
repetition code have different circuits and serve different
purposes, their respective circuits have similar gate pat-
terns (see Fig. S25 of Ref. [1]). Because of this similarity,
penalizing for crosstalk according to XEB should also of-
fer partial crosstalk protection for the repetition code.
Finally, in the “full” strategy, we penalize for crosstalk
according to the repetition code circuit that we run.

To quantify the efficacy of the three mitigation strate-
gies, we inspect bit-flip repetition-code detection event
fractions (DEF). We see that by increasing the degree of
crosstalk mitigation from “none” to “partial” to “full”,
the median DEF is reduced by 33% and 7%, respectively.
Furthermore, the DEF standard-deviation is reduced by
82% and 51%, respectively. In total, this amounts to a
38% reduction in median DEF and a 91% reduction in
the DEF standard-deviation, representing a significant
performance boost. We delegate error mitigation data
for other error mechanisms to a future publication.
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FIG. S28. Qubit-crosstalk mitigation. a, The repetition code, with three distinct temporal slices indicated by dashed
boxes. The empty boxes in the lowest temporal slice are either H or I depending on whether we run the bit- or phase-flip code.
b, Simultaneously active SQ (H or I) and CZ gates (blue nodes and edges, respectively) at each temporal slice. The geometry
of active gates is determined by the repetition code circuit and its mapping onto our processor. Simultaneously active gates
can crosstalk due to parasitic interactions between NN and NNN qubits. ¢, Crosstalking SQ and CZ gates (orange nodes and
edges, respectively) for one active SQ or CZ (blue nodes and edges, respectively) gate at each temporal slice. We mitigate
crosstalk and other error mechanisms by constructing and optimizing an error model with respect to gate-frequencies. d, Three
crosstalk mitigation strategies illustrated for one active CZ gate in the upper temporal slice in a - ¢. The strategies are labelled
“full”, “partial”, and “none”, according to the degree of expected crosstalk protection. Each strategy can be characterized by
domains (red) in which crosstalk is penalized. e, Bit-flip repetition code benchmarks for each mitigation strategy. The points
and error bars represent the DEF median and standard-deviation, respectively. By increasing the mitigation strength from
“none” to “full”, the DEF median and standard-deviation are reduced by 38% and 91%, respectively.

XIII. OVERVIEW OF ERROR CORRECTION
EXPERIMENTS

In Table S7, we list experimental implementations of
quantum error correction as a reference.
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TABLE S7. Various error correction and error detection experiments. Experiments using “classical” codes (i.e. codes that only
detect one type of error e.g. only phase flips or only bit flips) use classical [n, k, d] code notation instead of quantum [[n, k, d]]
code notation. Entries with an N/A are experiments related to embedding error correction into the physical qubits as opposed
to layering the error correction on top of the physical qubits. Note that there is, as of yet, no experiment exploring a range of
rounds and a range of code distances using a non-classical code.

Paper Year Code name [[#data,#logical,distance]] Physical qubits ~ Rounds  Physical qubit type

[28] 1998 Repetition Code [3,1,3] 3 single shot NMR

[29] 2001 Perfect Code [[5,1,3]] 5 single shot NMR

[30] 2011 Repetition Code (3,1,3] 3 3 Ion trap

[31] 2011 Repetition Code [3,1,3] 3 2 NMR

[32] 2011 Repetition Code [3,1,3] 3 single shot NMR

[33] 2012 Repetition Code (3,1,3] 3 single shot ~ Superconducting

[34] 2012 Perfect Code [[5,1,3]] 5 single shot NMR

[35] 2014 Surface Code [[4,1,2]] 4 single shot Photons

[9] 2014 Repetition Code [3,1,3]-]5,1,5] 9 8 Superconducting

[36] 2014 Color Code [[7,1,3]] 7 single shot Ion trap

[37] 2014 Repetition Code [3,1,3] 4 single shot NV center

[38] 2015 Repetition Code [3,1,3] 5 single shot  Superconducting

[39] 2015 Bell State [12,0,2]] 4 single shot ~ Superconducting

[40] 2016 Repetition Code [3,1,3] 4 1-3 Superconducting

[41] 2016 Cat States N/A 1 1-6 3D cavity

[42] 2017 Color Code [[4,2,2]] 5 single shot ~ Superconducting

[43] 2017 Color Code [[4,2,2]] 5 single shot Ion trap

[44] 2017 Cat States N/A 1 N/A superconducting

[45] 2018 Repetition Code [3,1,3]-]8,1,8] 15 single shot =~ Superconducting

[46] 2018 Color Code [[4,2,2]] 5 single shot  superconducting

[47] 2019 Bell State [12,0,2]] 3 1-12 Superconducting

[48] 2019 Perfect Code [[5,1,3]] 5 single shot  Superconducting

[49] 2019 Binomial Bosonic States N/A 1 1-19 3D cavity

[50] 2019 Color Code [[4,2,2]] 4 single shot  superconducting

[51] 2020 Repetition Code [3,1,3]-[22,1,22] 5-43 single shot  Superconducting

[52] 2020 Cat States N/A 1 single shot ~ Superconducting

[6] 2020 Surface Code [[4,1,2]] 7 1-11 Superconducting

[53] 2020 Bell State [12,0,2]] 3 1-26 Superconducting

[54] 2020 Bacon-Shor Code [19,1,3]] 15 single shot Ion trap

[55] 2020 Bacon-Shor Code [19,1,3]] 11 single shot Photons

[56] 2020 GKP States N/A 1 1-200 3D cavity
This work 2021 Repetition Code [3,1,3]-[11,1,11], [[4,1,2]] 5-21 1-50 Superconducting
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