Supplementary Information

A multi-responsive healable supercapacitor

Haili Qin¹, Ping Liu¹, Chuanrui Chen¹, Huai-Ping Cong^{1*}, Shu-Hong Yu^{2*}

¹ Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009, P. R. China

²Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, Institute of Energy, Hefei Comprehensive National Science Center, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, 230026, P. R. China

Supplementary Figure 1. (a) SEM image of Fe₃O₄ nanospheres. (b, c) Different magnifications of TEM images of Fe₃O₄ nanospheres. (d) Optical images show magnetic response of Fe₃O₄ aqueous dispersion with a magnet. (e) SEM image of Fe₃O₄@Au nanocomposites. (f, g) Different magnifications of TEM images of Fe₃O₄@Au nanocomposites. (h) HRTEM image of Fe₃O₄@Au nanocomposite in the squared area of (g).

Supplementary Figure 2. Magnetic hysteresis loops of Fe₃O₄ nanospheres and Fe₃O₄@Au nanocomposites.

Supplementary Figure 3. XRD patterns of Fe_3O_4 nanospheres and Fe_3O_4 @Au nanocomposites.

Supplementary Figure 4. (a) Survey XPS spectrum of Fe_3O_4 @Au nanocomposites. (b) Core-leveled Au 4*f* XPS spectrum of Fe_3O_4 @Au nanocomposites.

Supplementary Figure 5. SEM images of (a) CCP hydrogel and (b) PMP hydrogel.

Supplementary Figure 6. Toughness of CCP, PMP and MFP hydrogels.

Supplementary Figure 7. (a) Tensile stress-strain curves of MFP hydrogels with different contents of $Fe_3O_4@Au$ nanocomposites. (b) Strains of MFP hydrogels notched with different sizes. The content of $Fe_3O_4@Au$ is 0.4, 1.0, 2.0 and 4.0 mg mL⁻¹, respectively.

Supplementary Figure 8. Optical images of the shape changes of (a) MFP hydrogel, (b) CCP hydrogel and (c) PMP hydrogel during the compress-release process.

Supplementary Figure 9. Optical images for the self-healing experiment of MFP hydrogels heated in the oven as the thermal stimulus.

Supplementary Figure 10. Temperature change of MFP hydrogels with different contents of $Fe_3O_4@Au$ nanocomposites during the irradiation of NIR laser (content: 0.4, 1.0, 2.0 and 4.0 mg mL⁻¹).

Supplementary Figure 11. Optical image of high stretchability of the healed hydrogel pieces consisting of MFP hydrogel and CCP hydrogel.

Supplementary Figure 12. Time-dependent temperature change of Fe₃O₄ nanospheres under the alternating magnetic field.

Supplementary Figure 13. (a) Schematic illustrating the ion transfer pathway in the hydrogel electrode. (b) Detailed analysis of pore structure for CCP/PPy, PMP/PPy and MFP/PPy hydrogel electrodes using MIP.

Supplementary Figure 14. (a) SEM image of AgNWs. (b) Cross-sectional SEM image of the current collector. (c-f) SEM images of the current collector during the continuous stretching process at strains from 200 % to 1000%.

Supplementary Figure 15. Areal capacitance of the supercapacitor as a function of scan rate (a) and current density (b) calculated from CV and GCD curves, respectively.

Supplementary Figure 16. Cycling performance of the supercapacitor before (a) and after (b) healing based on GCD curves at a current density of 10 mA cm⁻².

Supplementary Figure 17. (a) Monitoring the water content of hydrogel electrolyte when exposed to the air (ambient humidity: $40 \sim 50\%$). (b) Capacitance investigation on the dehydration effect of the MFP hydrogel electrolyte when employed for assembly of supercapacitors.

Supplementary Figure 18. (a) Monitoring the water content of hydrogel-based supercapacitor when exposed to the air (ambient humidity: 40~50 %). (b) Capacitance retention derived from GCD curves of the device with varying water content.

Supplementary Figure 19. (a) CV curves at scan rate of 10 mV s⁻¹ and (b) GDC curves at current density of 3 mA cm⁻² of the supercapacitor devices assembled from CCP/PPy, PMP/PPy and MFP-PPy electrode, respectively.

Supplementary Figure 20. EIS spectra of the supercapacitor devices assembled from CCP/PPy, PMP/PPy and MFP-PPy electrode, respectively.

Supplementary Figure 21. (a) Temperature changes of the MFP-PPy electrodes under the stimuli of NIR laser, electric current and magnetic field. (b) Strains and healing efficiency of original and healed electrodes under different stimuli. Error bars show the SD with sample size of 3.

Supplementary Figure 22. EIS spectra of the supercapacitor during the electrical (a) and magnetic (b) healing processes over ten cutting-healing cycles. The inset showing the EIS spectra in the high-frequency region.

Supplementary Figure 23. SEM image (a) and enlarged SEM image (b) of the healed interface of the supercapacitor under alternating magnetic field.

Supplementary Figure 24. Optical images show high electrical conductivity of the healed supercapacitor at large stretching deformations.

Supplementary Table 1. Comparison of the self-healing performance of the MFP-based supercapacitor with the previously-reported self-healable supercapacitors.

Electrode	Electrolyte	Healing	Healable	Integrated	Multi-	Specific	Ref.
		mechanism	layer	configurati	responsiv	capacitance/	
				on	eness	Current	
				(Y/N)	(Y/N)	density	
SWCNT	PVP-H ₂ SO ₄	Self-healable	Electrode	N	N	35 F g ⁻¹	1
films		substrate				(1 A g^{-1})	
PPy/Fe ₃ O ₄	PVA-H ₃ PO ₄	Self-healable	Electrode	N	N	61.4 mF	2
/yarn		PU				cm ⁻²	
						(10 mV s^{-1})	
CNT/Ag	PVA-H ₂ SO ₄	Self-healable	Electrode	N	N	140.0 F g ⁻¹	3
NW/CNT		polymer core				(0.33 Ag^{-1})	
network							
PPy/RGO/	PVA-H ₃ PO ₄	Healable PU	Electrode	N	N		4
CNT							
SWCNT/P	PVA-H ₂ SO ₄	Hydrogen	Electrolyte	N	N	15.8 mF	5
ANI		bond				cm ⁻²	
						(0.044 mA	
						cm ⁻²)	
Graphene	Fe ³⁺ /PAA-K	Hydrogen	Electrolyte	N	N	90.3 F g ⁻¹	6
foam@PPy	Cl	bonding/ionic				(0.5 A g^{-1})	
		bond					
Activated	SA-g-DA/K	Catechol-bora	Electrolyte	N	N	97 F g ⁻¹	7
carbon	Cl	te ester bond				(1 A g^{-1})	
Activated	PVA-g-PAA/	Diol-borate	Electrolyte	N	N	85.4 F g ⁻¹	8
carbon	KCl	ester bond				(1 A g^{-1})	
PPy@CNT	VSNPs-PAA	Healable	Electrolyte	N	N		9
paper		electrolyte					
Activated	PVA-g-TMA	Diol-borate	Omni	Y	N	89 F g ⁻¹	10
carbon	C/KCl	ester bond				(1 A g^{-1})	
GCP@PPy	GP	Metal-thiolate	Omni	Y	Y	885 mF cm^{-2}	11
		bond			(Optical/	(1 mA cm^{-2})	(Our
					electrical		previo
					healing)		us
							work)
MFP-PPy	MFP	Ag, Au-RS	Omni	Y	Y	1264 mF	This
hydrogel	hydrogel	bond			(Optical/	cm ⁻²	work
					electrical/	(3 mA cm^{-2})	
					magnetic		
					healing)		

Supplementary References

- Wang, H. *et al.* A mechanically and electrically self-healing supercapacitor. *Adv. Mater.* 26, 3638-3643 (2014).
- Huang, Y. *et al.* Magnetic-assisted, self-healable, yarn-based supercapacitor. ACS Nano 9, 6242-6251 (2015).
- 3. Sun, H. et al. Self-healable electrically conducting wires for wearable microelectronics. Angew. Chem. Int. Ed. 53, 9526-9531 (2014).
- 4. Wang, S. *et al.* Highly stretchable and self-healable supercapacitor with reduced graphene oxide based fiber springs. *ACS Nano* **11**, 2066-2074 (2017).
- 5. Guo, Y., Zheng, K. & Wan, P. A flexible stretchable hydrogel electrolyte for healable all-in-one configured supercapacitors. *Small* **14**, 1704497 (2018).
- 6. Guo, Y. *et al.* A self-healable and easily recyclable supramolecular hydrogel electrolyte for flexible supercapacitors. *J. Mater. Chem. A* **4**, 8769-8776 (2016).
- Tao, F., Qin, L., Wang, Z. & Pan, Q. Self-healable and cold-resistant supercapacitor based on a multifunctional hydrogel electrolyte. *ACS Appl. Mater. Interfaces* 9, 15541-15548 (2017).
- 8. Wang, Z., Tao, F. & Pan, Q. A self-healable polyvinyl alcohol-based hydrogel electrolyte for smart electrochemical capacitors. *J. Mater. Chem. A* **4**, 17732-17739 (2016).
- 9. Huang, Y. et al. A self-healable and highly stretchable supercapacitor based on a dual crosslinked polyelectrolyte. *Nat. Commun.* **6**, 10310 (2015).
- 10. Wang, Z. & Pan, Q. An omni-healable supercapacitor integrated in dynamically crosslinked polymer networks. *Adv. Funct. Mater.* **27**, 1700690 (2017).
- 11. Chen, C. R., Qin, H., Cong, H. P. & Yu, S. H. A highly stretchable and real-time healable supercapacitor, *Adv. Mater.* **31**, 201900573 (2019).