Supplementary material to:

## Morphological response accompanying size reduction of belemnites during an Early Jurassic hyperthermal event modulated by life history

Paulina S. Nätscher<sup>1\*</sup>, Guillaume Dera<sup>2</sup>, Carl J. Reddin<sup>3</sup>, Patrícia Rita<sup>4</sup>, Kenneth De Baets<sup>1</sup>

<sup>1</sup> Geozentrum Nordbayern, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany

<sup>2</sup> GET, Université Paul Sabatier, CNRS UMR 5563, IRD, Toulouse, France

<sup>3</sup> Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin,

Germany

<sup>4</sup> MARE (Marine and Environmental Sciences Centre), 3004-517 Coimbra, Portugal

\* Corresponding author

E-Mail address: paulina.naetscher@fau.de (PSN)

Table S1: p-values of differences in robustness between pairs of belemnite species represented in the dataset. Results were obtained by running an ANOVA and a consecutive Tukey post-hoc test.

| ANOVA between species PC1                             | diff   | lower  | upper  | р        |     |
|-------------------------------------------------------|--------|--------|--------|----------|-----|
| Bairstowius sp. A-Acrocoelites sp.                    | -0.014 | -0.134 | 0.106  | 0.999    |     |
| bisulcata-Acrocoelites sp.                            | 0.136  | 0.018  | 0.253  | 0.012    | *   |
| Hastitidae sp. indetAcrocoelites sp.                  | 0.054  | -0.094 | 0.201  | 0.952    |     |
| longiformis-Acrocoelites sp.                          | 0.036  | -0.08  | 0.156  | 0.979    |     |
| milleri-Acrocoelites sp.                              | 0.098  | -0.024 | 0.22   | 0.215    |     |
| Parapassaloteuthis aff. zieteni-Acrocoelites sp.      | 0.204  | 0.08   | 0.328  | < 0.0001 | *** |
| Passaloteuthis sp. juv-Acrocoelites sp.               | 0.134  | 0.007  | 0.262  | 0.032    | *   |
| <i>bisulcata-Bairstowius</i> sp. A                    | 0.15   | 0.103  | 0.196  | < 0.0001 | *** |
| Hastitidae sp. indetBairstowius sp. A                 | 0.068  | -0.033 | 0.168  | 0.442    |     |
| longiformis-Bairstowius sp. A                         | 0.05   | 0.006  | 0.094  | 0.014    | *   |
| milleri-Bairstowius sp. A                             | 0.112  | 0.055  | 0.17   | < 0.0001 | *** |
| Parapassaloteuthis aff. zieteni-Bairstowius sp. A     | 0.218  | 0.156  | 0.28   | < 0.0001 | *** |
| Passaloteuthis sp. juv-Bairstowius sp. A              | 0.148  | 0.08   | 0.217  | < 0.0001 | *** |
| Hastitidae sp. indetbisulcata                         | -0.082 | -0.179 | 0.015  | 0.164    |     |
| longiformis-bisulcata                                 | -0.099 | -0.135 | -0.064 | < 0.0001 | *** |
| milleri-bisulcata                                     | -0.038 | -0.089 | 0.013  | 0.321    |     |
| Parapassaloteuthis aff. zieteni-bisulcata             | 0.069  | 0.013  | 0.124  | 0.006    | **  |
| Passaloteuthis sp. juv-bisulcata                      | -0.001 | -0.065 | 0.062  | 1        |     |
| longiformis-Hastitidae sp. indet.                     | -0.017 | -0.113 | 0.078  | 0.999    |     |
| <i>milleri-Hastitidae</i> sp. indet.                  | 0.045  | -0.058 | 0.147  | 0.884    |     |
| Parapassaloteuthis aff. zieteni-Hastitidae sp. indet. | 0.151  | 0.045  | 0.256  | 0.001    | *** |
| Passaloteuthis sp. juv-Hastitidae sp. indet.          | 0.081  | -0.029 | 0.19   | 0.315    |     |
| milleri-longiformis                                   | 0.062  | 0.013  | 0.11   | 0.003    | **  |
| Parapassaloteuthis aff. zieteni-longiformis           | 0.168  | 0.114  | 0.221  | < 0.0001 | *** |
| Passaloteuthis sp. juv-longiformis                    | 0.098  | 0.037  | 0.159  | < 0.0001 | *** |
| Parapassaloteuthis aff. zieteni-milleri               | 0.106  | 0.041  | 0.171  | < 0.0001 | *** |
| Passaloteuthis sp. juv-milleri                        | 0.036  | -0.035 | 0.108  | 0.774    |     |
| Passaloteuthis sp. juv-Parapassaloteuthis sp. 1       | -0.07  | -0.145 | 0.005  | 0.088    |     |

Table S2: Changes in GPA centroid size in *P. bisulcata*, *C. longiforma* and the full assemblage between consecutive ammonite subzones. Effect size is represented by Hedge's g and differences were tested for with Mann-Whitney U tests.

| P.bisulcata  | p V     | V    | Hedges' g           | lower 95Cl | upper 95Cl | Sign. level |
|--------------|---------|------|---------------------|------------|------------|-------------|
| SolElis.     | 0.845   | 55   | 0.029 (negligible)  | -0.841     | 0.899      |             |
| ElisMir.     | 0.604   | 52   | 0.415 (small)       | -0.521     | 1.351      |             |
| MirSemic.    | 0.287   | 22   | 0.652 (medium)      | -0.721     | 2.025      |             |
| C.longiforma |         |      |                     |            |            |             |
| ElisMir.     | < 0.001 | 326  | 1.226 (large)       | 0.536      | 1.917      | ***         |
| MirSemic.    | 0.015   | 53   | -1.02 (large)       | -1.799     | -0.24      | *           |
| assemblage   |         |      |                     |            |            |             |
| SolElis      | 0.146   | 1108 | 0.368 (small)       | -0.062     | 0.799      |             |
| ElisMir.     | 0.018   | 1026 | 0.435 (small)       | -0.022     | 0.892      | *           |
| MirSemic.    | 0.337   | 304  | -0.015 (negligible) | -0.556     | 0.527      |             |
| SemicEleg.   | 0.006   | 0    | -6.302 (large)      | -8.586     | -4.018     | ***         |

Table S3: Changes in robustness (PC1) in *P. bisulcata, C. longiforma* and the full assemblage between consecutive ammonite subzones. Effect size is represented by Hedge's g and differences were tested for with Mann-Whitney U tests.

|              |       |     |                     | lower  | upper  | Sign. |
|--------------|-------|-----|---------------------|--------|--------|-------|
| P.bisulcata  | р     | W   | Hedges' g           | 95CI   | 95CI   | level |
| SolElis.     | 0.431 | 46  | -0.329 (small)      | -1.205 | 0.547  |       |
| ElisMir.     | 0.043 | 20  | -1.054 (large)      | -2.042 | -0.066 | *     |
| MirSemic.    | 0.077 | 4   | -1.165 (large)      | -2.592 | 0.262  | ·     |
| C.longiforma |       |     |                     |        |        |       |
| ElisMir.     | 0.02  | 111 | -0.845 (large)      | -1.506 | -0.183 | *     |
| MirSemic.    | 0.592 | 124 | 0.229 (small)       | -0.508 | 0.966  |       |
| assemblage   |       |     |                     |        |        |       |
| SolElis.     | 0.943 | 945 | -0.078 (negligible) | -0.506 | 0.349  |       |
| ElisMir.     | 0.107 | 612 | -0.335 (small)      | -0.79  | 0.12   |       |
| MirSemic.    | 0.402 | 311 | -0.283 (small)      | -0.827 | 0.261  |       |
| SemicEleg.   | 0.055 | 44  | 1.218 (large)       | -0.291 | 2.728  |       |



Figure S1: Absolute abundances of the taxa found in this study through the 5 subzones labelled "P1, P2, P3, P4, P5" here, corresponding to Solare, Elisa, Mirabile, Semicelatum, Elegantulum subzones in the manuscript



Figure S2: Results of the resampling method to determine non-randomness in changes of community composition over time. Grey rectangles represent the range within the relative abundance of a species in a specific bed is explainable by random sampling, n=29, 500 iterations



Figure S3: The geometric mean, which has been successfully used as a proxy for body size in previous studies, is highly correlated to centroid size, the size part in geometric morphometrics, which is used for scaling ( $R^2 = 0.75$ , p < 0.0001). Therefore, centroid size is used as a geometric morphometric body size proxy in this study.

Table S4: Linear regression models with developmental stage as an ordinal variable show that life stages do not play a significant role in the morphological variability in *P. bisulcata*. However, in *C. longiforma* developmental stage is a good predictor for morphological variation. Additionally, the linear model that includes life stage shows a more parsimonious fit than the null-model.

| P. bisulcata   | adj. R2 | р       | DF | AICc     |
|----------------|---------|---------|----|----------|
| with dev_stage | 0.21    | 0.202   | 4  | 0.751    |
| no dev_stage   |         | 0.493   |    | -6.495   |
| C. longiforma  |         |         |    |          |
| with dev_stage | 0.078   | 0.024   | 51 | -173.386 |
| no dev_stage   |         | < 0.001 |    | -170.319 |

Table S5: The results of a Mood's median and post-hoc pairwise median test on the PC1 of both species (*C. longiforma* and *P. bisulcata*) among subzones, show a significant change in robustness in the pooled neanic and adult group across the boundary in *C. longiforma*. Juveniles in *P. bisulcata* change significantly through time, but changes across consecutive subzones are not significant.

|              | p (Mood's) | X-squared | p (pairwiseMEDIAN adj.) | Hedges' g           |
|--------------|------------|-----------|-------------------------|---------------------|
| C.longiforma |            |           |                         |                     |
| juveniles    | 0.123      | 4.2       |                         |                     |
| ElisMir.     |            |           | 0.742                   | -0.374 (small)      |
| MirSemic.    |            |           | 0.777                   | -0.017 (negligible) |
| neanic&adult | 0.064.     | 5.512     |                         |                     |
| ElisMir.     |            |           | 0.054.                  | -0.904 (large)      |
| MirSemic.    |            |           | 0.268                   | 0.337 (small)       |
| P.bisulcata  |            |           |                         |                     |
| juveniles    | 0.005 **   | 10.5      |                         |                     |
| SolElis.     |            |           | 0.527                   | NA                  |
| ElisMir.     |            |           | 0.575                   | NA                  |
| MirSemic.    |            |           | 1                       | -0.502 (medium)     |
| neanic&adult | 0.929      | 0.148     |                         |                     |
| SolElis.     |            |           | 0.902                   | 0.079 (negligible)  |
| ElisMir.     |            |           | 1                       | -0.478 (small)      |
| MirSemic.    |            |           | 0.635                   | NA                  |



Figure S4: Independent effects of selected environmental and sedimentological parameters on the morphological variance among belemnite rostra. Significance indicated by asterixis (See Table S6). Table S6: Independent effects of  $\delta^{18}$ O,  $\delta^{13}$ C,  $\delta^{11}$ B and lithology on the morphological variance of the assemblage, quantified through variation partitioning. The adjusted R<sup>2</sup> and p values were attained through a redundancy analysis.

|                          | indep. effect | rda adj R <sup>2</sup> | р     |    |
|--------------------------|---------------|------------------------|-------|----|
| δ <sup>18</sup> <b>0</b> | -0.006        | 0.05                   | 0.005 | ** |
| δ <sup>13</sup> C        | -0.003        | -0.003                 | 0.484 |    |
| δ <sup>11</sup> <b>B</b> | 0.008         | 0.025                  | 0.028 | *  |
| lithology                | 0.014         | 0.086                  | 0.002 | ** |



Figure S5: Plot of the correlation coefficients between the environmental parameters used in the gls models ( $\delta^{18}$ O,  $\delta^{13}$ C, and  $\delta^{11}$ B extracted from Müller et al., 2020).

Table S7: AICc values of the different generalised least squares (gls) models describing the effects of palaeotemperature ( $\delta^{18}$ O), carbon cycle perturbations ( $\delta^{13}$ C) and seawater acidification ( $\delta^{11}$ B) (all from Müller et al. 2020), on the belemnite robustness of the whole assemblage, *P. bisulcata* and *C. longiforma*, corrected for the effect of lithology. The lowest AICc score indicating the most parsimonious model for each of the groups is marked in yellow. For the entire assemblage the null-model is the most parsimonious. Morphological variations in *P. bisulcata* correlate best with boron isotopes as seawater pH proxy, while the full model with all environmental parameters ( $\delta^{18}$ O,  $\delta^{13}$ C and  $\delta^{11}$ B) is the best model for *C. longiforma*.

| assemblage                                                             | AICc     |
|------------------------------------------------------------------------|----------|
| ~ 1                                                                    | -348.398 |
| $\sim \delta^{13}C$                                                    | -346.706 |
| ~ δ <sup>18</sup> Ο                                                    | -346.362 |
| $\sim \delta^{11}B$                                                    | -341.428 |
| $\sim \delta^{13}$ C + $\delta^{18}$ O                                 | -344.781 |
| ${}^{\sim}\delta^{13}C+\delta^{11}B$                                   | -339.84  |
| $\sim \delta^{18}$ O + $\delta^{11}$ B                                 | -339.366 |
| ${}^{\sim}\delta^{18}\text{O}+\delta^{13}\text{C}+\delta^{11}\text{B}$ | -337.693 |
| P. bisulcata                                                           |          |
| ~ 1                                                                    | -107.336 |
| ~ δ <sup>13</sup> C                                                    | -105.537 |
| ~ δ <sup>18</sup> Ο                                                    | -105.109 |
| $\sim \delta^{11}B$                                                    | -110.882 |
| $\sim \delta^{13}$ C + $\delta^{18}$ O                                 | -103.288 |
| $\sim \delta^{13}C + \delta^{11}B$                                     | -108.168 |
| $\sim \delta^{18}$ O + $\delta^{11}$ B                                 | -109.09  |
| ${}^{\sim}\delta^{18}\text{O}+\delta^{13}\text{C}+\delta^{11}\text{B}$ | -106.168 |
| C. longiforma                                                          |          |
| ~ 1                                                                    | -168.785 |
| ~ δ <sup>13</sup> C                                                    | -166.516 |
| ~ δ <sup>18</sup> Ο                                                    | -170.434 |
| $\sim \delta^{11}B$                                                    | -167.615 |
| $\sim \delta^{13}$ C + $\delta^{18}$ O                                 | -168.315 |
| $\sim \delta^{13}$ C + $\delta^{11}$ B                                 | -166.885 |
| $\sim \delta^{18}$ O + $\delta^{11}$ B                                 | -170.49  |
| $\sim \delta^{18}$ O + $\delta^{13}$ C + $\delta^{11}$ B               | -174.333 |

Table S8: Statistical parameters of the selected gls models comparing rostrum robustness with palaeotemperature ( $\delta^{18}$ O), carbon cycle perturbations ( $\delta^{13}$ C) and seawater acidification ( $\delta^{11}$ B) (all from Müller et al. 2020), corrected for the effects of lithology. (SE = standard error, DF = degrees of freedom)

| assemblage                    | value   | SE    | t-value | p-value | DF  | residual | p (ANOVA best<br>model vs null-<br>model) |
|-------------------------------|---------|-------|---------|---------|-----|----------|-------------------------------------------|
| (intercept)                   | -0.0003 | 0.001 | -0.034  | -0.034  | 144 | 143      | -                                         |
| P. bisulcata                  |         |       |         |         | 35  | 33       | 0.014                                     |
| intercept                     | 2.329   | 0.742 | 3.137   | 0.004   |     |          |                                           |
| Residuals ~ $\delta^{11}B$    | -0.16   | 0.052 | -3.055  | 0.004   |     |          |                                           |
| C. longiforma                 |         |       |         |         | 53  | 49       | 0.005                                     |
| intercept                     | 1.421   | 0.435 | 3.263   | 0.002   |     |          |                                           |
| Residuals ~ $\delta^{18}O$    | 0.116   | 0.034 | 3.428   | 0.001   |     |          |                                           |
| Residuals ~ $\delta^{13}C$    | -0.026  | 0.01  | -2.655  | 0.011   |     |          |                                           |
| Residuals $\sim \delta^{11}B$ | -0.093  | 0.029 | -3.195  | 0.002   |     |          |                                           |
|                               |         |       |         |         |     |          |                                           |

Table S9: AICc values of the different generalised least squares (gls) models describing the effects of palaeotemperature ( $\delta^{18}$ O) (Suan et al. 2008), carbon cycle perturbations ( $\delta^{13}$ C) (Hesselbo et al., 2007) and volcanism (Hg/TOC) (Percival et al., 2015), on the belemnite robustness of the whole assemblage, *P. bisulcata* and *C. longiforma*, corrected for the effect of lithology. The lowest AICc score, and therefore most parsimonious model, for each of the groups is marked in yellow. For the entire assemblage and *P. bisulcata*, the null-model is the most parsimonious, while the full model with all environmental parameters ( $\delta^{18}$ O,  $\delta^{13}$ C and Hg/TOC) is the best model for *C. longiforma*.

| assemblage                                      | AICc     |
|-------------------------------------------------|----------|
| ~ 1                                             | -348.398 |
| $\sim \delta^{13}C$                             | -346.765 |
| ~ δ <sup>18</sup> Ο                             | -346.29  |
| ~ Hg/TOC                                        | -276.394 |
| $\sim \delta^{13}C + \delta^{18}O$              | -344.625 |
| ~ $\delta^{13}C$ + Hg/TOC                       | -274.214 |
| $\sim \delta^{18}$ O + Hg/TOC                   | -274.23  |
| $\sim \delta^{18}$ O + $\delta^{13}$ C + Hg/TOC | -272.014 |
| P. bisulcata                                    |          |
| ~ 1                                             | -107.336 |
| $\sim \delta^{13}C$                             | -105.839 |
| ~δ <sup>18</sup> Ο                              | -107.046 |
| ~ Hg.TOC                                        | -81.645  |
| $\sim \delta^{13}C + \delta^{18}O$              | -104.32  |
| $\sim \delta^{13}C$ + Hg/TOC                    | -79.156  |
| $\sim \delta^{18}$ O + Hg/TOC                   | -79.619  |
| $\sim \delta^{18}$ O + $\delta^{13}$ C + Hg/TOC | -76.373  |
| C. longiforma                                   |          |
| ~ 1                                             | -168.785 |
| $\sim \delta^{13}C$                             | -166.725 |
| ~ δ <sup>18</sup> Ο                             | -166.97  |
| ~ Hg.TOC                                        | -170.407 |
| $\sim \delta^{13}C + \delta^{18}O$              | -165.113 |
| ~ $\delta^{13}C$ + Hg/TOC                       | -167.976 |
| $\sim \delta^{18}$ O + Hg/TOC                   | -169.551 |
| $\sim \delta^{18}$ O + $\delta^{13}$ C + Hg/TOC | -173.74  |

Table S10: Statistical parameters of the selected gls models comparing rostrum robustness with palaeotemperature ( $\delta^{18}$ O) (Suan et al. 2008), carbon cycle perturbations ( $\delta^{13}$ C) (Hesselbo et al. 2007) and volcanism (Hg/TOC) (Percival et al. 2015), corrected for the effects of lithology. (SE = standard error, DF = degrees of freedom)

|                                                     |               |                |                |                |     |          | p<br>(ANOVA<br>best<br>model vs<br>null- |
|-----------------------------------------------------|---------------|----------------|----------------|----------------|-----|----------|------------------------------------------|
| assemblage                                          | value         | SE             | t-value        | p-value        | DF  | residual | model)                                   |
| Residuals ~ 1 (intercept)                           | -0.0003       | 0.001          | -0.034         | 0.973          | 144 | 143      | -                                        |
| P. bisulcata                                        |               |                |                |                |     |          |                                          |
| Residuals ~ 1 (intercept)                           | 0.062         | 0.018          | 3.529          | 0.001          | 35  | 34       | -                                        |
| C. longiforma                                       |               |                |                |                |     |          |                                          |
| intercept                                           | 0.114         | 0.062          | 1.834          | 0.073          | 53  | 49       | 0.007                                    |
| Residuals ~ $\delta^{18}O$                          | 0.255         | 0.084          | 3.033          | 0.004          |     |          |                                          |
| Residuals ~ $\delta^{13}C$                          | 0.05          | 0.018          | 2.724          | 0.009          |     |          |                                          |
| Residuals ~ Hg/TOC                                  | 0.365         | 0.101          | 3.626          | 0.001          |     |          |                                          |
| Residuals ~ δ <sup>13</sup> C<br>Residuals ~ Hg/TOC | 0.05<br>0.365 | 0.018<br>0.101 | 2.724<br>3.626 | 0.009<br>0.001 |     |          |                                          |