Supporting Information

The Preparation of CuInS₂-ZnS-Glutathione Quantum Dots and its Application on the Sensitive Determination of Cytochrome c and Imaging of HeLa Cells

Xiangyang An^a, Yuemei Zhang^a, Jing Wang^a, De-ming Kong^{a,b,c}, Xi-wen He^a, Langxing Chen^{*a,b,c}, and Yukui Zhang^{a,d}

^aCollege of Chemistry, Nankai University, Tianjin 300071, P. R. China.

^bTianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, P. R. China.

^cState Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, P. R. China.

^dDalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China.

Corresponding author: *Prof. L. X. Chen

E-mail: <u>lxchen@nankai.edu.cn</u>

Figure S1. FT-IR spectrum of GSH (a) and $CuInS_2$ -ZnS-GSH QDs (b).

Figure S2. XRD patterns of CuInS₂-ZnS QDs (a) and CuInS₂-ZnS-GSH QDs (b).

Figure S3. The influence of ZnS shell on the optical properties of $CuInS_2$ QDs. From left to right (A-D), the $CuInS_2$ -ZnS-GSH QDs were prepared with molar mass of Cu^{2+} precursor of 0.01, 0.01, 0.01, and 0.0006 mmol, respectively, and the corresponding Zn²⁺ precursor of 0.16, 0.08, 0.01, and 0.01 mmol, respectively.

Figure S4. Hydrodynamic diameter variation of CuInS₂ (a) and CuInS₂-ZnS-GSH QDs (b). (c) The zeta potential of CuInS₂-ZnS-GSH QDs and CuInS₂-ZnS-Cys QDs in PBS (9.0). (d) PL intensity change of CuInS₂-ZnS-GSH QDs during a period of 15 days (n=3).

Figure S5. PL decay curve of $CuInS_2$ -ZnS-GSH (a) and $CuInS_2$ -ZnS-GSH QDs in Cyt c solution (b).

Figure S6. Effect of pH (a) and incubated time (b) on the detection of Cyt c by $CuInS_2$ -ZnS-GSH QDs. The error bars represent the standard deviations from the mean of three independent experiments.

Figure S7. (a) The selectivity response of CuInS₂-ZnS-GSH QDs towards Cyt c, Mb, Hb and BSA at different pH in the presence of 10 μ mol L⁻¹ for Cyt c, BSA, Hb, and Mb respectively; (b) Selectivity of CuInS₂-ZnS-GSH QDs for Cyt c determination detection. From column 1 to 11, Cys, Glc, Asp, Tyr, Lys, Thr, Ser, Arg, Glu, ATP and urea at a concentration of 200 μ mol L⁻¹; From column 12 to 21, Fe³⁺, Na⁺, K⁺, Fe²⁺, Ca²⁺, Mg²⁺, CO₃²⁻, Cl⁻, SO₄²⁻, or NO₃⁻ at a concentration of 80 μ mol L⁻¹; BSA, Hb, HSA, Mb, Lyz and IgG at a concentration of 2 μ mol L⁻¹; Column 28, Cyt c at a concentration of 0.4 μ mol L⁻¹. The error bars represent the standard deviations from the mean of three independent experiments.

Figure S8. Cell viability of Hela cells in the presence of various concentration of CuInS₂-ZnS-GSH QDs. The error bars represent the standard deviations from the mean of three independent experiments.

Figure S9. Fluorescence spectra of $CuInS_2$ -ZnS-GSH QDs in the presence of various concentrations of etoposide.

Table S1. The PL lifetime of CuInS₂-ZnS-GSH QDs in PBS, Cyt c and BSA solution, respectively.

	χ ²	$\tau_1(ns)$	Rel%	$\tau_2(ns)$	Rel%	τ (ns)
CuInS ₂ -ZnS-GSH	1.109	38.8	12.77	240.1	87.23	214.4
CuInS ₂ -ZnS-GSH +Cyt c	1.078	29.1	21.10	182.0	78.90	149.7
CuInS ₂ -ZnS-GSH QDs+BSA	1.155	37.0	12.64	239.4	87.36	213.8

Method	Material	Bioimagi ng	Detection range	Detection limit	Comment	Ref.
Turn-off	Hb/Au NCs	embryonic	0-10 μΜ	14.3 nM	Time,5 s; Aptamer,high-	1
fluorescence	DNA/Ag NCs	kidney cells	0-1.0 μM	15.7 nM	0cost; Relatively simple	
HPLC		/	0-40 pM	0.1 pM	Time,20 min; Operation complex	2
Turn-on fluorescence	Aptamer/g-C ₃ N ₄	Hela cells	16-140 nM	2.6 nM	Time,10 min; Aptamer,high-cost; low- toxicity	3
Fluorescence	GQDs/GO	A549 cells	0.25-14 μM	0.25 μΜ	Time,10 s; High detection limit ; low-toxicity	4
Turn-off	TGA/CdTe QDs	SKIN	0.5-2.5 μM	0. 5 µM	narrow linearity range;	5
fluorescence		cells			heavy metal ion contained	
Electrochemical	AuNP/PDA	/	0.1–100 μM	30 nM	Time 1 h, Antibody ,high cost; Operation complex	6
MIP	N-GQDs/SiO ₂ /MIP	/	0.2-60 μM	0.11 µM	Time 10 min; Operation complex	7
ICP-MS	Aptamer-AuNPs	/	0.1-20 nM	0.03 nM	Time 8 h; Instrument expensive; Aptamer,high cost	8
Turn-off fluorescence	CIS-ZnS-GSH QDs	Hela cells	0.01-7 μΜ	1.1 nM	Time 4 min; Laber-free, Low-cost; low- toxicity; high selectivity (Hb, Mb and BSA)	This work

Table S2. The comparison of methods for the determination of Cyt c.

References

1. Shamsipur, M., Molaabasi, F., Hosseinkhani, S. & Rahmati, F. Detection of Early Stage Apoptotic Cells Based on Label-Free Cytochrome c Assay Using Bioconjugated Metal Nanoclusters as Fluorescent Probes. *Anal. Chem.* **2016**, *88*, 2188-2197.

Crouser, E. D.; Gadd, M. E.; Julian, M. W.; Huff, J. E.; Broekemeier, K. M.; Robbins, K. A.;
Pfeiffer, D. R. Quantitation of cytochrome c release from rat liver mitochondria. *Anal. Biochem.* 2003, *317*, 67-75.

3. Salehnia, F.; Hosseini, M.; Ganjali, M. R. A fluorometric aptamer based assay for cytochrome C using fluorescent graphitic carbon nitride nanosheets. *Microchimica. Acta* **2017**, *184*, 2157-2163.

4. Cao, L.; Li, X. Q.; Qin, L. X.; Kang, S. Z.; Li, G. D. Graphene quantum dots supported by graphene oxide as a sensitive fluorescence nanosensor for cytochrome c detection and intracellular imaging. *J. Mater. Chem. B* **2017**, *5*, 6300-6306.

Amin, R. M.; Elfeky, S. A.; Verwanger, T.; Krammer, B. Fluorescence-based CdTe nanosensor for sensitive detection of cytochrome C. *Biosens. Bioelectron.* 2017, *98*, 415-420.
Wen, Q.; Zhang, X.; Cai, J.; Yang, P. H. A novel strategy for real-time and in situ detection of cytochrome c and caspase-9 in Hela cells during apoptosis. *Analyst* 2014, *139*, 2499-2506.
Yan, Y. J., He, X. W., Li, W. Y. & Zhang, Y. K. Nitrogen-doped graphene quantum dots-labeled epitope imprinted polymer with double templates via the metal chelation for specific recognition of cytochrome c. *Biosens. Bioelectron.* 2017, *91*, 253-261.

8. Liu, J. M.; Yan, X. P. Ultrasensitive, selective and simultaneous detection of cytochrome c and insulin based on immunoassay and aptamer-based bioassay in combination with Au/Ag nanoparticle tagging and ICP-MS detection. *J. Anal. At. Spectrom.* **2011**, *26*, 1191-1197.