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SUMMARY
Branched Lipid II, required for the formation of indirectly crosslinked peptidoglycan, is generated byMurM, a
protein essential for high-level penicillin resistance in the human pathogen Streptococcus pneumoniae. We
have solved the X-ray crystal structure of Staphylococcus aureus FemX, an isofunctional homolog, and have
used this as a template to generate a MurM homology model. Using this model, we performmolecular dock-
ing and molecular dynamics to examine the interaction of MurM with the phospholipid bilayer and the mem-
brane-embedded Lipid II substrate. Our model suggests that MurM is associated with the major membrane
phospholipid cardiolipin, and experimental evidence confirms that the activity of MurM is enhanced by this
phospholipid and inhibited by its direct precursor phosphatidylglycerol. The spatial association of pneumo-
coccal membrane phospholipids and their impact on MurM activity may therefore be critical to the final ar-
chitecture of peptidoglycan and the expression of clinically relevant penicillin resistance in this pathogen.
INTRODUCTION

The peptidoglycan (PG) of the bacterial cell wall is a polymer

consisting of alternating b-1,4-linked N-acetyl glucosamine

(GlcNAc) and N-acetyl muramic acid (MurNAc) residues. Ap-

pended to the MurNAc sugar is a pentapeptide stem that can

be crosslinked directly or indirectly to form a rigid mesh-like

structure (Bugg et al., 2011). PG biosynthesis begins with the

cytoplasmic formation of a Park nucleotide, which is subse-

quently converted into a lipid-linked PG precursor known as

Lipid II. Lipid II is then transported across the membrane, where

it is polymerized and crosslinked by the penicillin-binding pro-

teins (PBPs) (Figure 1). PG is an essential component of the

cell wall, involved in cell growth and division, maintaining struc-

tural integrity, and resisting high osmotic pressures. Inhibition of

cell wall biosynthesis is a key mechanism for many antibiotics,

including b-lactams, glycopeptides, and amino acid analogs

(Schneider and Sahl, 2010).

InStreptococcus pneumoniae and other Gram-positive bacte-

ria, the glutamate at the second position of the Lipid II pentapep-

tide is a-amidated to form iso-glutamine by the essential GatT/

MurD complex (Figueiredo et al., 2012; M€unch et al., 2012; Za-

pun et al., 2013; Morlot et al., 2018). In addition, branched Lipid
Structure 29, 731–74
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II, capable of generating indirect crosslinks, can be formed by

the non-essential aminoacyl-tRNA-dependent ligases, MurM

and MurN. MurM and MurN are responsible for the sequential

addition of amino acids to the third-position lysine of the penta-

peptide stem of Lipid II (Filipe et al., 2000). MurM can append

either L-serine or L-alanine at the first position of the dipeptide

bridge, while MurN extends this modification by addition of an

invariable L-alanyl moiety. Branched PG precursors are also

found in several other Gram-positive bacterial pathogens, for

example the glycyl-tRNAGly-dependent enzymes FemX, FemA,

and FemB are responsible for the addition of a pentaglycyl

bridge inStaphylococcus aureus (Schneider et al., 2004). In com-

parison with other Gram-positive organisms, the PG of S. pneu-

moniae is highly heterogeneous: the predominant C-terminal

amino acid at position 1 of the dipeptide and the proportion of in-

direct crosslinks throughout the PG vary significantly between

different strains (Severin and Tomasz, 1996; Garcia-Bustos

et al., 1987;Garcia-Bustos and Tomasz, 1990). In vitro and in vivo

studies indicate that MurM from the penicillin-resistant strain S.

pneumoniae(159) preferentially incorporates L-alanine, while

MurM from a penicillin-sensitive strain S. pneumoniae(Pn16)

preferentially incorporates L-serine (Lloyd et al., 2008). In addi-

tion, penicillin-resistant strains demonstrated higher levels of
2, July 1, 2021 ª 2021 The Authors. Published by Elsevier Ltd. 731
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:s.khalid@soton.ac.uk
mailto:david.roper@warwick.ac.uk
https://doi.org/10.1016/j.str.2021.03.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.str.2021.03.001&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1. The PG biosynthesis pathway

(1) The cytoplasmic stage is characterized by the formation of UDP-MurNAc-pentapeptide (UDP-MurNAc-5P) by MurA-MurF. The pentapeptide stem peptide

usually comprises L-Ala-g-D-Glu-L-Lys-D-Ala-D-Ala in most Gram-positive organisms including the pneumococcus.

(2) At the internal face of the cytoplasmic membrane, MraY catalyzes the formation of Lipid I from UDP-MurNAc-5P to undecaprenyl-pyrophosphate, which is

then converted to Lipid II by MurG. In S. pneumoniae, the second position D-glutamyl a-carboxyl is amidated to D-iso-glutamine (iGln) by the MurT/GatD

complex, and in some cases a dipeptide branch of either L-Ser/L-Ala or L-Ala/L-Ala may be appended at the ε-amino group of the third-position lysine by MurM

and MurN, respectively. The exact order of the cytoplasmic membrane steps remains uncertain, but here for clarity they appear as a linear sequence, with

conversion to Lipid II occurring before peptide stem modifications, and amidation occurring before branching. Lipid II is translocated across the membrane

by MurJ.

(3) At the external face of the cytoplasmicmembrane, class A PBPs and complexes of SEDs-Class B PBPs form glycan chains by transglycosylation (TG), with the

concomitant release of undecaprenyl-pyrophosphate, and form either direct or indirect crosslinks throughout the PG layer via transpeptidation (TP). Nucleotide

sugars UDP-GlcNAc andUDP-MurNAc and the sugars GlcNAc andMurNAc are signified by blue, violet, dark-blue, and purple elongated hexagons, respectively.

Figure created using BioRender.com.
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indirect crosslinking in the PG compared with penicillin-suscep-

tible isolates, although the overall degree of crosslinking re-

mained constant (Garcia-Bustos and Tomasz, 1990).

Resistance to b-lactam antibiotics in S. pneumoniae is char-

acterized by extensive interspecies recombination of PBP

transpeptidase domains, which results in sequence heteroge-

neity within and around the mosaic PBP active site with a

consequential lowering of b-lactam binding affinity (Smith

et al., 1991). This mechanism of resistance contrasts with

that of many other bacteria that have acquired genes for

b-lactamase enzymes which inactivate the antibiotic before

it binds to and inhibits the PBPs. Interestingly, deletion of

the murM gene in S. pneumoniae eliminates indirect cross-

links from the PG and results in a complete loss of penicillin

resistance (Filipe et al., 2001). It has been proposed that the

changes to the PBP active site, which prevent b-lactam bind-

ing, may also alter the Lipid II substrate specificity such that

the PBPs bind branched Lipid II more tightly than unbranched
732 Structure 29, 731–742, July 1, 2021
Lipid II. MurM is therefore necessary but not sufficient for

resistance in clinical strains of S. pneumoniae, making it an

interesting target for the development of new inhibitors of anti-

microbial resistance (Filipe and Tomasz, 2000).

The cytoplasmic membrane of S. pneumoniae contains two

phospholipids, phosphatidylglycerol and cardiolipin (Trombe

et al., 1979; Pesakhov et al., 2007), where cardiolipin synthase

is responsible for generating cardiolipin from two molecules of

phosphatidylglycerol (Schlame, 2008). The proportion of cardio-

lipin and phosphatidylglycerol, as a percentage of the overall

membrane lipids, varies in S. pneumoniae between anaerobic

and aerobic growth conditions. Cardiolipin was found to

decrease from 15.3% to 8.3% while phosphatidylglycerol

increased from 12.7% to 16.3% in anaerobic conditions

compared with aerobic conditions (Pesakhov et al., 2007). The

peptidoglycan precursor, Lipid II, is tethered to the cell mem-

brane by virtue of its C55 Lipid II tail. Therefore, MurM acts on

its lipid substrate in close proximity to the cytoplasmic leaflet

http://BioRender.com


Table 1. Summary of crystallographic data collection and

refinement statistics from the S. aureus FemX structure

FemX

Data collection

Synchrotron radiation detector,

wavelength (Å)

Pilatus 6M-F, 0.920

Unit cell a, b, c (Å), a, b, g (�) 45.01, 83.62, 133.93, 90.0,

90.0, 90.0

Space group P212121

Resolution (Å) 52.27–1.62 [1.66–1.62]

Observations 422,822 [29,596]

Unique reflections 65,058 [4,782]

I/s(I) 15.7 [2.6]

Rsym
a 0.065 [0.567]

Rmeas 0.078 [0.690]

Rp.i.m 0.031 [0.273]

Completeness (%) 99.7 [99.8]

Refinement

Non-hydrogen atoms 3,397 (including 177 waters)

Rcryst
b 0.221 [0.262]

Reflections used 61,691 [4,531]

Rfree
c 0.262 [0.296]

Reflections used 3,294 [244]

Rcryst (all data)
b 0.222

Average temperature factor (Å2) 26

RMSDs from ideal values

Bonds (Å) 0.013

Angles (�) 1.5

DPI coordinate error (Å)d 0.098

Ramachandran plote

Favored (%) 98.0

Outliers (%) 0.0

The highest-resolution bin of data is indicated by square brackets.

Numbers in square brackets refer to values in the highest-resolution shell.
aRsym = SjSh

�
�Ih;j � < Ih> =SjSh<Ih>, where Ih,j is the is the jth observation

of reflection h, and Ih is the mean intensity of that reflection.
bRcryst = SjjFobsj � jFcalc jj =SjFobsj, where Fobs and Fcalc are the

observed and calculated structure factor amplitudes, respectively.
cRfree is equivalent to Rcryst for a 4% subset of reflections not used in the

refinement (Br€unger, 1992).
dDPI refers to the diffraction component precision index (Cruick-

shank, 1999).
eAs calculated by MolProbity (Williams et al., 2008).
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of the cell membrane and is potentially influenced by membrane

phospholipid composition.

Previously, MurM inhibitors have been identified; however,

none have shown growth inhibition or any effect on penicillin

minimum inhibitory concentration, indicating that these com-

pounds cannot effectively cross the cytoplasmic membrane of

S. pneumoniae (Cressina et al., 2007, 2009). MurM has thus far

resisted extensive crystallization in our laboratory, and conse-

quently its X-ray-solved structure is not available. However, in

a related study we were able to solve the X-ray structure of the

isofunctional homolog of MurM from S. aureus (FemX), which
we have used here as a template for homology modeling of

MurM. Using this MurM homology model, we have successfully

identified the Lipid II binding site and have used molecular dy-

namics (MD) simulations to investigate interactions between

MurM and both membrane phospholipids and its Lipid II sub-

strate (Witzke et al., 2016). We subsequently studied the effects

of thesemembrane-embedded phospholipids, on the enzymatic

activity of MurM in vitro, corroborating our in silico analysis.

These studies provide insights into the structure and activity of

MurM, providing a link between phospholipid membrane

composition and peptidoglycan architecture. This may be useful

for the development of chemical probes for these proteins and

has important implications for future studies on penicillin resis-

tance mechanisms in S. pneumoniae.

RESULTS

X-ray crystallography and structure determination of
S. aureus FemX
The crystal structure of S. aureus FemX was solved to a resolu-

tion of 1.62 Å, and the structure was deposited in the PDB with

accession number PDB: 6SNR. A summary of the data collection

and refinement statistics is given in Table 1.

The final solved structure of S. aureus FemX contains a glob-

ular domain and a coiled-coil domain. Similar to FemA (Benson

et al., 2002), the globular domain can be divided into two subdo-

mains. Each subdomain contains a central five-stranded mixed-

polarity b sheet surrounded by four a helices. Subdomain 1A

comprises residues 1–145 and 384–421 while subdomain 1B

comprises residues 146–234 and 298–383. Unfortunately, resi-

dues 403–421 were not present in the density. The coiled-coil

domain consists of two antiparallel a helices, comprising resi-

dues 235–297. FemX and FemA can be superimposed onto

each other with a root-mean-square deviation (RMSD) of

�2.7 Å over 384 residues. Similarly to FemA, FemX has a deep

L-shaped channel of about 20 3 40 Å located alongside the

globular domain andmainly in subdomain 1B. This channel com-

prises a peptidoglycan precursor binding site which was previ-

ously identified in S. aureus FemA (Benson et al., 2002). The

identity of this peptidoglycan precursor binding site has been

further confirmed by crystallographic analysis of Weissella viri-

descens FemX complexed with substrates (Biarrotte-Sorin

et al., 2004).

Homology modeling of S. pneumoniae MurM
The structures of two MurM homologs, S. aureus FemA and W.

viridescens FemX, were solved previously by X-ray crystallog-

raphy (Benson et al., 2002; Fonvielle et al., 2013; Biarrotte-Sorin

et al., 2004). The S. aureus FemA structure was subsequently

used as a template for homology modeling of MurM by Fiser

et al. (2003). However, alignment of S. aureus FemA, S. aureus

FemX, S. pneumoniae MurM, and W. viridescens FemX (Fig-

ure S1) showed that S. aureus FemX possesses the highest

sequence identity to MurM and is also more functionally homol-

ogous toS. pneumoniaeMurM, as it appends the first amino acid

of the cross-bridge to the Lipid II precursor (Matsuhashi et al.,

1967; Schneider et al., 2004). In contrast, S. aureus FemA ap-

pends the second and third amino acid residues of the cross-

bridge to the a-amino group of a glycyl residue appended to
Structure 29, 731–742, July 1, 2021 733



Figure 2. Cartoon representation of MurM

predicted structure

Fourteen a helices (red), 12 b sheets (yellow), and

unstructured regions (green). Best model obtained

based on SOAP and DOPE scores following ho-

mologymodeling usingMODELLERwithS. aureus

FemX as a template. The structure was rendered

in PyMOL (version 2.2.0).
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the ε-amino group of the stem peptide L-lysyl residue of the Lipid

II precursor. Therefore, given the difficulties in obtaining MurM

crystals, we were motivated to solve the structure of its func-

tional homolog (S. aureus FemX) by X-ray crystallography to ac-

cess the structure of MurM in silico.

Using the structure of S. aureus FemX, we generated a homol-

ogy model for MurM, which consists of a globular domain

comprising two subdomains and a coiled-coil helical arm (Fig-

ure 2). Each subdomain comprises two twisted b-sheet cores

surrounded by a helices; subdomain 1A is formed of residues

1–153 and 382–401, while subdomain 1B is made up of residues

154–241 and 294–381. The coiled-coil domain comprises resi-

dues 242–293. While the MurM homology model presented

here is similar to the previous model (Fiser et al., 2003), the

RMSD of the two models is 3.8 Å over 368 residues, indicating

that there are some key structural differences, namely: loss of

N-terminal b1 and antiparallel b6/b13 from the previous model;

addition of a5 and b11/b12; and presence of an a-helical sec-

ondary structure proximal to the C-terminal end of this

MurM model.

Identification of a possible Lipid II binding site of MurM
Our MurMmodel revealed a binding pocket that was not present

in the previous model of MurM produced by Fiser et al. (2003).

Structural comparison betweenW. viridescens FemX co-crystal-

lized with its uridine diphosphate (UDP)-MurNAc-pentapeptide

substrate and this MurM model allowed identification of a Lipid

II binding site that corresponds to the peptidoglycan precursor

binding sites identified previously in S. aureus FemA and W. vir-

idescens FemX (Benson et al., 2002; Biarrotte-Sorin et al., 2004)

and in our structure of S. aureus FemX. When this MurM model

and theW. viridescens FemX were aligned and overlaid, the pro-

posed MurM binding site appeared to easily accommodate the

soluble UDP-MurNAc-pentapeptide substrate well (Figure 3A).

The following eight residues—Tyr103, Lys36, Asn38, Trp39,

Thr209, Arg211, Try215 and Tyr256—were independently pro-

posed to be involved in substrate binding in the peptidoglycan

precursor and tRNA liganded W. viridescens FemX structures

(Biarrotte-Sorin et al., 2004; Fonvielle et al., 2013). The corre-
734 Structure 29, 731–742, July 1, 2021
spondingMurM residues, defined as hav-

ing residues which have similar proper-

ties, and occupying a similar location

and orientation in physical space with

side chains facing the binding pocket,

were identified in the MurM structure as

Phe103, Lys35, Trp38, Arg215, and

Tyr219; therefore, these residues may

also be important for substrate binding

in MurM.
Next, molecular docking using AutoDock Vina (Trott and Ol-

son, 2010) was conducted to independently investigate docking

of the Lipid II substrate to the MurMmodel we generated. Lipid II

is a large molecule that is, in general, unsuitable for molecular

docking studies. In addition, the lipid tail is embedded in the

membrane, and so is not itself available for binding to MurM.

Therefore, a truncated Lipid II molecule, composed of a methyl

capped diphospho GlcNAc-MurNAc-pentapeptide, was used

for these docking experiments (Figure S2).

When AutoDock Vina was allowed to search the entire protein

surface of MurM, all docking results returned were within the

identified binding site, indicating that there are no other suitable

binding sites on the protein. The search was then restricted to

the binding site, and the top ten results were obtained. The top

five results obtained all had identical binding affinities; however,

two of these docking orientations, where the phosphates are

located deep within the binding pocket, would be physically

impossible for the natural substrate (Lipid II) in vivo, since the

membrane-embedded prenyl lipid tail is appended via the phos-

phate. The remaining three docking orientations all orient the

phosphates close to the opening of the binding site with the

pentapeptide chain disappearing deep into the binding pocket.

The exact orientation of the pentapeptide chain is variable, indi-

cating that the binding site is spacious and that Lipid II may be

accommodated in a number of different possible orientations.

Figure 3B shows one conformation in which the docking of

truncated Lipid II is similar to the orientation of the soluble

UDP-MurNAc-pentapeptide from W. viridescens FemX overlaid

with MurM (Figure 3A), the remaining four substrate orientations

are shown in Figure S3. A key limitation of docking is that it con-

siders the protein as rigid; therefore, multiple substrate orienta-

tions may indicate that conformational changes within the bind-

ing site may occur upon substrate binding or during catalysis.

Additional docking studies were performed to further explore

the Lipid II binding pose in the putative MurM binding site and

establish whether this binding site shows specific affinity for

Lipid II or is indiscriminate between different lipid species. There-

fore, Lipid II, cardiolipin, phosphatidylglycerol, and phosphati-

dylethanolamine lipids (full molecules) were docked into the



Figure 3. Surface representation of MurM binding site

(A) MurM159 model aligned and overlaid with the UDP-MurNAc-pentapeptide substrate, which was co-crystallized with W. viridescens FemX.

(B) MurM159 model with truncated Lipid II docked in the binding site, using AutoDock Vina.

(C) MurM159 model with Lipid II in the binding site, from membrane simulations. Figures were created with PyMOL (version 2.2.0) and Chimera (version 1.13.1).

See also Figures S2 and S3.
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putative binding site, where the binding site is defined by the res-

idues Lys35, Trp38, Phe103, Arg215, and Tyr219. We found

Lipid II bound into this site with atoms of the headgroup within

3 Å of the residues Lys35, Trp38, Phe215, and Arg219, and

with the Lipid II tail outside of this site. In stark contrast, the car-

diolipin and phosphatidylethanolamine headgroups did not

show any preference for this site; instead the binding poses

showed their tails inserted into the cavity. There was one binding

pose for phosphatidylglycerol whereby the phospholipid head-

group was in the putative binding site, although a portion of

the tail was also inside it; the remaining two phosphatidylglycerol

poses had the tails inserted into this cavity. For each lipid type

the top cluster of binding poses produced by HADDOCK2.4

(Van Zundert et al., 2016) were analyzed, and the top three bind-

ing poses for each lipid are shown in Figure S4.

Interactions between MurM and the lipid bilayer
Given the docking studies are performed in the absence of the

membrane environment, a set of coarse-grainedMD simulations

was next performed to establish the likelihood ofMurMbeing ori-

ented on the membrane such that the putative binding site is

available to Lipid II. MD simulations were used tomodel the inter-

actions of MurM with the lipid bilayer. Six independent coarse-

grained simulations were conducted for each of threemembrane

systems described in Table S1. In 16 of these simulation runs,

MurM readily associated with the membrane in <3 ms and its

orientation with respect to the membrane remained unchanged

for the remaining 2 ms (Figure S5). In addition, in the same mem-

brane leaflet as the peripheral MurM, more than 50% of Lipid II

molecules were located within 2 nm of the protein. MurM asso-

ciated with the membrane in a number of different orientations,

which can be classified into two groups: those in which the bind-

ing site predicted from docking studies is available for lipid bind-

ing and those in which it is not. Table 2 shows that in 18 unbiased
simulations; MurM adhered to the membrane in 16 of the simu-

lations and of these, the binding site was available for Lipid II

binding in 11 and unavailable in only 5. In 3 of these 18 unbiased

simulations, MurM was oriented such that the Lipid II molecule

was located in the putative binding site, which demonstrates

that Lipid II is able to successfully enter this binding site even

on the short timescale of anMD simulation (Figure 4). Back map-

ping of one of these systems to all-atom resolution allowed the

binding site to be explored in more detail. Three independent

atomistic simulations each of 250 ns duration found Lipid II

located in the same binding site of MurM that was identified dur-

ing molecular docking of the truncated Lipid II substrate, and in

the co-crystal structure of UDP-MurNAc-pentapeptide with W.

viridescens FemX (Figure 3A). In both the molecular docking

and atomistic simulations, the Lipid II headgroup forms stable in-

teractions with Lys35, Trp38, Arg215, and Tyr219.

Similarly to the molecular docking findings, this MD simulation

shows that theMurMbinding site is flexible and allows the Lipid II

molecule to adopt awide variety of conformations (Figure 5). This

may suggest that binding of a second substrate or a large

conformational change may be required for catalysis.

Interactions between MurM and membrane
phospholipids
MD simulations were used to investigate the effects of mem-

brane phospholipids (cardiolipin and phosphatidylglycerol) on

MurM at the cytoplasmic membrane interface. To investigate

local lipid enrichment/depletion, we calculated two-dimensional

enrichment maps across the entire membrane and depletion-

enrichment (D-E) indices within 1.1 nm of MurM, as described

by Corradi et al. (2018) (see STAR Methods). A D-E index <0,

or an enrichment percentage <0%, indicated that the specified

lipid was depleted with respect to the bulk membrane composi-

tion. Figure 6 shows that upon association of MurM with the
Structure 29, 731–742, July 1, 2021 735



Table 2. Summary of MurM adherence to and orientation on the

three different membrane systems

Membrane AvailableUnavailable

Non-

adherence

Lipid II in

binding site

1 (0%

cardiolipin)

4 1 1 1

2 (12%

cardiolipin)

4 1 1 2

3 (16%

cardiolipin)

3 3 0 0

Orientation of MurM was categorized such that the putative binding site

was either available for Lipid II binding (facing/close to the membrane) or

unavailable for Lipid II binding (facing away from the membrane).
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cytoplasmicmembrane, therewas no effect on the distribution of

phosphatidylglycerol or phosphatidylethanolamine. However, in

membranes containing 8% or 16% cardiolipin, cardiolipin was

enriched at the MurM:membrane interface.

The importance of these observations was considered in vitro

by measuring the enzymatic activity of MurM in the presence of

varying concentrations of cardiolipin or phosphatidylglycerol.

These enzymatic studies show that cardiolipin activates MurM

while phosphatidylglycerol inhibits MurM in a concentration-

dependent manner. Figure 6E shows the enzymatic activation

of MurM with respect to cardiolipin concentration whereby a

9.1-fold activation of MurM was achieved, with 50% activation

occurring at 0.4 mM cardiolipin. Figure 6F shows that the activity

of MurM could be completely inhibited by phosphatidylglycerol,

with an IC50 of 0.2 mM. Furthermore, Hill coefficients of 2.7 ± 0.3

and 2.8 ± 0.2 for cardiolipin and phosphatidylglycerol, respec-

tively, indicate that both these phospholipids exhibit their effects

on MurM in a cooperative manner. Phosphatidylethanolamine,

used in the construction of the model pneumococcal membrane

to which MurM bound, when tested at a concentration of

0.72 mM, only slightly activated MurM activity by 0.32-fold

(duplicate determination with a difference of <10%). In compar-

ison, 0.72 mM cardiolipin activated MurM by 8-fold (Figure 6E).

Therefore, the impact of phosphatidylethanolamine on the

disposition of MurM relative to its interaction with Lipid II and

the phospholipid bilayer could be neglected.
DISCUSSION

The crystal structure of S. aureus FemX has allowed us to

generate an improved homology model of MurM leading to the

identification of a putative Lipid II binding site. Fiser et al.

(2003) proposed a different MurM model and speculated about

an alternative binding site based on structural and functional

analogy between MurM and N-myristoyltransferase (NMT) pro-

teins. However, while the substrates of both NMT proteins and

MurM are lipids, they are contextually very different. The NMT

proteins are cytoplasmic proteins that contain a deep, narrow

pocket which is highly specific for the myristoyl fatty acyl chain

(Wright et al., 2010; Heuckeroth et al., 1988). In contrast, MurM

binds the disaccharide headgroup and pentapeptide side chain

of Lipid II, and the undecaprenyl C55 lipid tail is embedded in the

membrane. Despite similarities with NMT proteins, the substrate
736 Structure 29, 731–742, July 1, 2021
binding site we propose more closely resembles those ofW. vir-

idescens FemX, S. aureus FemX, and FemA.

The orientations of truncated Lipid II in docking studies and

Lipid II in MD simulations are strikingly similar to each other

and also the orientation of UDP-MurNAc-pentapeptide sub-

strate co-crystallized in W. viridescens FemX. This is consistent

with the observation that, although inefficient compared with

Lipid II, UDP-MurNAc pentapeptide is a MurM substrate (Lloyd

et al., 2008). In all cases, the diphosphates are near the surface

of the protein, and the protruding pentapeptide reaches into the

binding pocket with the third-position lysine on the left-hand side

of the binding pocket. In addition, previous studies suggest that

the height of the Lipid II headgroup is 19 Å (Ganchev et al., 2006),

and the binding pocket of this model was measured to be 15 Å.

Since the Lipid II headgroup is flexible and the binding site pro-

vides enough room for the substrate to bend, these measure-

ments are consistent. Together with our findings, this strongly

supports the identification of this cavity as the Lipid II binding

site and suggests that the Lipid II binds to MurM in an orientation

similar to that of W. viridescens FemX binding to its substrate.

Alanyl-phosphatidylglycerol synthase (PDB: 4v34), similarly to

MurM, also utilizes both lipid and alanyl-tRNAAla substrates (He-

becker et al., 2015). To successfully bring these two substrates

together for catalysis it possesses two binding sites, located

on opposite sides of the protein, which are connected by a chan-

nel. The protein itself provides a barrier between the hydropho-

bic lipid and the hydrophilic tRNA, such that they do not come

into close proximity with each other. The negatively charged sur-

face patch identified previously (Fiser et al., 2003) remains pre-

sent on this homology model of MurM and is located on the

opposite side of the protein with respect to the Lipid II binding

site, which is located within a positively charged surface patch.

This negative patch is unsuitable for the binding of negatively

charged tRNA, so it is unlikely that MurM shares the samemech-

anism of action as alanyl-phosphatidylglycerol synthase. The

negatively charged surface patch may, however, be important

for protein-protein interactions occurring either at the cell sur-

face or in the cytoplasm.

These modeling studies reveal that the stem peptide pro-

trudes perpendicular to the surface of the membrane into the

active site of MurM. Therefore, in order for alanyl-tRNAAla to

simultaneously interact with MurM, while it is located over its

lipid substrate the highly negatively charged hydrophilic tRNA

would have to be brought into close proximity with the negatively

charged phospholipid headgroups and/or the hydrophobic

phospholipid tails below them. Given that this would be a highly

unfavorable interaction, we propose an alternative ‘‘ping-pong’’

mechanism of action for MurM whereby MurM is initially amino-

acylated by alanyl- or seryl-tRNA in the cytoplasm before trans-

location to the cell membrane for aminoacyl transfer to Lipid II.

While the MurM is in the cytoplasm and not interacting with the

membrane, the positively charged patch, of the proposed Lipid

II binding site, may facilitate interaction with a polyanionic sub-

strate such as tRNA. Once this has occurred, subsequent inter-

action of the aminoacyl-MurM with the surface of the membrane

could accommodate the correct and catalytically productive

interaction of aminoacylated-MurM with Lipid II. Although

this proposed mechanism is at variance with the sequential

mechanism of catalysis proposed for W. viridescens FemX



Figure 4. Lipid II binding to the putative MurM binding site

(A), (B), and (C) show the three simulations whereby Lipid II was found to bind in the putativeMurM binding site. Each panel shows theMurM binding to Lipid II with

respect to the membrane (top), and an enlarged image of the MurM binding to Lipid II, with the membrane removed (bottom). MurM binding site residues K35,

W38, R215, and Y219 are depicted in yellow; the Lipid II headgroup and prenyl chain are rendered in red and blue, respectively.

See also Figure S1.
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(Hegde and Blanchard, 2003), here both substrates are highly

hydrophilic nucleotide or polynucleotide derivatives in the

same cellular subcompartment and are therefore without bio-

physical impediment with regard to their proximity during catal-

ysis. Here, with regard to MurM, the chemical properties and

location of both substrates indicate an advantage to a mecha-

nism that avoids their simultaneous binding.

The pneumococcal peptidoglycan is heterogeneous with

respect to its composition of directly and indirectly crosslinked

stem peptides. It remains unclear as to whether the activity of
MurM, and therefore the generation of indirect crosslinks, is

distributed equally around the entire cell surface or whether it

is localized to specific sites. Phospholipids are known to be

involved in the spatial and temporal biochemistry of cells (Lin

et al., 2019), and cardiolipin was shown to be enriched at the

poles and septa of Escherichia coli and Bacillus subtilis, local-

izing specific membrane-associated proteins to these regions

(Bramkamp and Lopez, 2015). Our simulations indicate that,

while cardiolipin enrichment occurs within the membrane in the

presence of MurM, this phospholipid is not essential for
Figure 5. Different conformations of Lipid II

inside MurM binding site

(A and B) MurM (gray) with Lipid II binding, colored

on a blue to white to red scale with respect to

simulation time, in system 5 (Table S2).
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Figure 6. Interactions between MurM and membrane phospholipids

(A–C) Depletion-enrichment (D–E) indices for phosphatidylethanolamine (PE), phosphatidylglycerol (PG), and cardiolipin (CL) occurring within a 1.1-nm perimeter

of the MurM protein for (A) Systems 4 and 5 (molar ratio of 75% phosphatidylethanolamine and 25% phosphatidylglycerol), (B) Systems 6 and 7 (molar ratio of

76% phosphatidylethanolamine, 16% phosphatidylglycerol, and 8% cardiolipin), and (C) Systems 8 and 9 (molar ratio of 72% phosphatidylethanolamine, 12%

phosphatidylglycerol, and 16% cardiolipin). The D-E index was determined from 150 to 250 ns in 50-ns blocks for all repeats for a total of eight values per plot.

(D) Example of a D-E map with MurM at the membrane. White dots represent the center of geometry of each protein amino acid residue, and the percentage

enrichment of phospholipid is indicated by the color.

(E) Activation of MurM was calculated as the product of subtraction of MurM velocity in the absence of cardiolipin (v0(�C)) from MurM velocity in the presence of

cardiolipin (v0(+C)) divided by v0(�C) and was plotted versus cardiolipin concentration.

(F) Inhibition of MurM was calculated as [(v0(-PhG)) � (v0(+PhG))]/v0(�PhG) 3 100 (where PhG denotes phosphatidylglycerol) and was plotted versus phosphati-

dylglycerol concentration. Data were fitted as described in the text. GraphPad Prism (version 8.4.1) andMatplotlib (version 3.0.3) were used for data analysis and

figure preparation.

See also Figure S2.
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membrane association of MurM to occur. Therefore, it remains

uncertain as to whether in vivo cardiolipin is highly concentrated

in patches in the membrane and is used to recruit MurM to that

location or whether association of MurM with the membrane

drives the enrichment of cardiolipin in the membrane.

Despite this uncertainty, we show that cardiolipin stimulates

the enzymatic activity of MurM, and while it is not clear if this

increased activity is a result of a direct effect on the protein or

the Lipid II substrate, or both, the spatial association of cardioli-

pin to the MurM protein suggests that at least some of this effect

may be due to direct interactions with the MurM protein.

Cardiolipin has previously been found to bind to and activate a

wide range of proteins including MurG (van den Brink-van der

Laan et al., 2003), rat liver protein kinase N (Morrice et al.,

1994; Peng et al., 1996), porcine heart AMP deaminase (Pur-

zycka-Preis and Zydowo, 1987), rat liver multi-catalytic protein-

ase (Ruiz de Mena et al., 1993), E. coli glycerol-3-phosphate

acyltransferase (Scheideler and Bell, 1989), E. coli dnaA (Seki-

mizu and Kornberg, 1988), and streptococcal hyaluronan syn-
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thases (Tlapak-Simmons et al., 1999a, 1999b, 2004; Weigel

et al., 2006; Tlapak-Simmons et al., 1998). This further supports

the contention that cardiolipin affects MurM activity by directly

interacting with MurM. Similar cardiolipin-mediated sigmoidal

stimulatory effects have been seen with other streptococcal

membrane proteins such as the hyaluronan synthases from

Streptococcus pyogenes and Streptococcus equisimilis (Tla-

pak-Simmons et al., 1999a, 1999b, 2004; Weigel et al., 2006).

In these examples, up to 16 cardiolipin molecules are believed

to associate with single hyaluronan synthase molecule (Tlapak-

Simmons et al., 1998).

We also show that phosphatidylglycerol inhibits the catalytic

activity of MurM and that the concentration of this lipid in the

membrane environment surrounding the MurM changes very lit-

tle. Therefore, the inhibitory effect of phosphatidylglycerol may

be exerted by altering the presentation of the Lipid II substrate

to MurM rather than by having a direct effect on the protein itself.

It is possible that in S. pneumoniae, as in E. coli and B. subtilis,

cardiolipin gathers in specific regions of the membrane, where
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in the pneumococcus it localizes and upregulates the activity of

MurM, resulting in higher levels of indirect crosslinking in these

regions.

While MurM alone is not sufficient for penicillin resistance, the

enzyme is crucial together with mosaic S. pneumoniae PBPs for

the generation of a highly resistant phenotype. Deletion ofmurM

from resistant strains resulted in a virtual abolition of penicillin

resistance that could not be restored by PBP DNA. Indeed, addi-

tional murM DNA from a resistant strain was required for full

expression of donor-level penicillin resistance (Filipe and Tom-

asz, 2000; Smith and Klugman, 2001). Given the importance of

MurM for penicillin resistance, the enrichment of cardiolipin at

the MurM:membrane interface which activates MurM, and the

inhibition of MurM activity by phosphatidylglycerol may regulate

the penicillin resistance phenotype imparted by MurM activity,

which may therefore be regulated by cardiolipin synthase activ-

ity. These findings have therefore revealed a crucial and hitherto

unexplored facet of penicillin resistance suggesting the involve-

ment of other areas of pneumococcal metabolism in the expres-

sion of clinical antibiotic resistance.

Conclusions
The MurM structural model presented in this work allowed

identification of the Lipid II binding site and the contextual pre-

sentation of this substrate to MurM. Furthermore, this work

characterized the impact of membrane phospholipids on

MurM at the MurM:membrane interface and may have spatial

mechanistic implications for the catalytic activity of this protein.

MD enabled the in silico investigation into MurM-membrane in-

teractions, which are often overlooked when studying enzymes

that act at the cytoplasmic membrane interface. The subse-

quent in vitro experiments on the importance of phospholipids

for MurM activity corroborate the in silico findings, supporting

the role of phospholipids as an important contributor to the

regulation of MurM at the membrane. These studies provide

insights into the structure of MurM, which may guide future

mutational studies and allow a more detailed analysis of the

structure-function relationship of this protein. This research

contributes important findings toward achieving a more com-

plete understanding of the role of MurM in pneumococcal peni-

cillin resistance mechanisms.

STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY
B Lead contact

B Materials availability

B Data and code availability

d EXPERIMENTAL MODEL AND SUBJECT DETAILS

d METHOD DETAILS

B Cloning, overexpression and purification of S.

aureus FemX

B FemX crystallisation and data collection

B Cloning, Overexpression and Purification of S. pneu-

moniae(159) MurM
B Cloning, Overexpression and Purification of S. pneu-

moniae(Pn16) AlaRS

B Preparation of MurM substrates

B S. pneumoniae MurM enzymology

B Computational studies overview

B Homology modelling of MurM

B Molecular docking of truncated Lipid II to MurM

B Molecular docking of Lipid II, Cardiolipin, Phosphati-

dylglycerol and Phosphatidylethanolamine to the puta-

tive MurM binding site.

B Coarse-grained molecular dynamics simulations

B All-atom molecular dynamics simulations

d QUATIFICATION AND STATISTICAL ANALYSIS

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.str.

2021.03.001.

ACKNOWLEDGMENTS

This research was supported in part by the Midlands Integrative Biosciences

Training Partnership (MIBTP) BBSRC grant BB/J014532/1, and the Center

for Doctoral Training in Theory and Modeling in Chemical Sciences (TMCS

DTC) EPSRC grant EP/L015722/1, as well as MRC grants G1100127,

G0400848, MR/N002679/1 and BBSRC grant BB/N003241/1. The authors

would like to acknowledge the help of the Media Preparation Facility in the

School of Life Sciences at the University of Warwick. We would also like to

thank Dr Allister Crow for his help and support with using PyMOL.

AUTHOR CONTRIBUTIONS

Conceptualization, A.Y., A.J.L., D.I.R., and S.K.; Investigation, K.F., K.J.H.,

V.F., A.J.L., A.Y., J.S., and C.I.d.G.; Methodology/software/formal analysis,

C.I.d.G., J.S., A.Y., and S.K.; Writing – original draft, A.Y., J.S., and C.I.d.G.;

Writing – review & editing, A.Y., A.J.L., S.K., D.I.R., and C.G.D.; Funding acqui-

sition, A.Y., J.S., andC.G.D.; Supervision, A.J.L., D.I.R., S.K., andC.G.D.; Proj-

ect administration, A.Y.; Visualization, A.Y., A.J.L., J.S., and S.K.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: June 20, 2020

Revised: January 13, 2021

Accepted: March 1, 2021

Published: March 18, 2021

REFERENCES

Abraham, M.J., Murtola, T., Schulz, R., Páll, S., Smith, J.C., Hess, B., and
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REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and Virus Strains

E. coli BL21 Star (DE3): F- ompT hsdSB

(rB
- mB

-) gal dcm rne131 (DE3)

Invitrogen Cat# C601003

E. coli B834 (DE3) - F- ompT hsdSB

(rB
- mB

-) gal dcm met (DE3)

Novagen Cat# 69401

E.coli Rosetta 2 (DE3). F- ompT hsdSB(rB- mB-)

gal dcm (DE3) pRARE2 (CamR)

Novagen Cat# 71405

E. coli BL21 Star pRosetta2 (DE3) - F- ompT hsdSB

(rB- mB-) gal dcm rne131 pRARE (DE3)

Lloyd et al. (2008) N/A

E. coli C41 (DE3) (a derivative of BL21(DE3) [F_ ampT

hsdS8 (r8m8)gal dcm DE3]) pRIL (CamR)

Lloyd et al. (2008) N/A

E. coli B834 (DE3): pRosetta2 - F- ompT hsdSB (rB
- mB

-)

gal dcm met pRARE2 (DE3)

Novagen Cat# 69041

M. flavus (M. luteus) (Stanley130.21) NCIMB Cat# 8166

Chemicals, Peptides, and Recombinant Proteins

Poly(ethylene glycol) 8000 Fluka Cat# 81272

L-Alanine, [2,3-3H] Moravek Cat# MT-886

Lipid II (Lys) BACWAN/Lloyd et al. (2008) Cat# C55-LII-5K

Phosphatidylglycerol

L-alpha-Phosphatidyl-DL-glycerol sodium salt from

egg yolk lecithin, =99% (TLC), lyophilized powder

MERCK LIFE SCIENCE UK LTD Cat# P8318

Cardiolipin

Cardiolipin sodium salt from bovine heart, =98% (TLC),

lyophilized powder

MERCK LIFE SCIENCE UK LTD Cat# C0563

JCSG-plus� crystallization screen Molecular Dimensions Cat# MD1-37

PACT premier� crystallization screen Molecular Dimensions Cat# MD1-29

Morpheus� crystallization screen Molecular Dimensions Cat# MD1-46

Cobalt TALON resin Takara Cat# 635502

Nickel- Chelating Sepharose Cytiva Cat# 17526801

Superdex 75 Size exclusion media Cytiva Cat# 17104404

Sephacryl S200 size exclusion media Cytiva Cat# 17058401

Selenomethionine Acros Organics Cat# 259960025

Tomato etch virus (TEV) Protease New England Biolabs Cat# P8112

BsaI New England Biolabs Cat# R0535S

Xho1 New England Biolabs Cat# R0146S

Hen egg white lysozyme MERCK LIFE SCIENCE UK LTD Cat# L6976

Deposited Data

S. aureus FemX This paper PDB: 6SNR

Oligonucleotides

FemX Forward TTTGCGGGTGGTCTCCCATGGAAA

AGATGCATATCACTAATCAGG

IDT DNA N/A

S. aureus FemX Reverse

TTTGCGCTCGAGGCCCTGAAAATACAG

GTTTTCTTTTCGTTTTAATTTACGAGATA

TTTTAATTTTAGC

IDT DNA N/A

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Recombinant DNA

pRosetta 2 (purified from Escherichia coli

RosettaTM 2 (DE3))

Novagen Cat# 71405

pET28a(+) Novagen Cat# 69864

pET21b::MurM159 Lloyd et al. (2008) N/A

pET26b::alaRS Lloyd et al. (2008) N/A

pET28::FemX This paper N/A

Software and Algorithms

GraphPad Prism Version 8.4.1. GraphPad Soft-ware,

San Diego, CA, USA.

www.graphpad.com

Xia2 Winter (2010) https://xia2.github.io/

XDS package Kabsch (2010) http://xds.mpimf-heidelberg.mpg.de

SHELX suite Sheldrick (2010) https://www.shelxle.org/shelx/

eingabe.php

ARP/wARP Langer et al. (2008) https://www.embl-hamburg.de/ARP/

REFMAC Vagin et al. (2004) https://www2.mrc-lmb.cam.ac.uk/

groups/murshudov/content/refmac/

refmac.html

COOT Emsley et al. (2010) https://www2.mrc-lmb.cam.ac.uk/

personal/pemsley/coot/

MODELLER Eswar et al. (2006); Martı́-Renom

et al., 2000; sali and Blundell

(1993); Fiser et al. (2000)

https://salilab.org/modeller/

Chimera (Version 1.13.1) Pettersen et al., (2004) https://www.cgl.ucsf.edu/chimera/

Discrete Optimized Protein Energy (DOPE-HR) Shen and sali (2006)

Statistically Optimized Atomic Potentials (SOAP) Dong et al. (2013) https://github.com/salilab/SOAP

PyMOL (Version 2.2.0) Schrodinger, LLC. 2010.

The PyMOL Molecular

Graphics System, Version 2.1.0

https://pymol.org/2/#download

Avogadro2 software Hanwell et al. (2012) https://www.openchemistry.org/

downloads/

AutoDock Vina Trott and Olson (2010) http://vina.scripps.edu/

download.html

HADDOCK web server Van Zundert et al. (2016) https://bianca.science.uu.nl/

haddock2.4/

GROMACS package (Version 2018) Abraham et al. (2015) http://www.gromacs.org/

Auto-mated topology builder (ATB) web-interface Malde et al. (2011) https://atb.uq.edu.au/

PyCGTOOL Graham et al. (2017) https://pypi.org/project/pycgtool/

CHARMM-GUI web interface Jo et al. (2017) http://charmm-gui.org/

backward script Wassenaar et al. (2014) http://www.cgmartini.nl/index.php/

downloads/tools/240-backward

Particle mesh Ewald (PME) algorithm Darden et al. (1993) N/A

Visual Molecular Dynamics (VMD) Humphrey et al. (1996) https://www.ks.uiuc.edu/

Research/vmd/
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Data and code availability
No novel code was generated during this work. Modelling scripts and raw data are available from the authors upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

E. coli B834 (DE3) - F- ompT hsdSB (rB- mB-) gal dcmmet (DE3), referred to as E. coli B834 (DE3) in the method details section was

transformed with pRosetta2 to yield E. coli B834 (DE3): pRosetta2 - F- ompT hsdSB (rB
- mB

-) gal dcmmet (DE3) which was employed

as the expression host for selenomethionine substituted S. aureus FemX. E. coliC41 (DE3) (a derivative of BL21(DE3) [F_ ampT hsdS8

(r8m8)gal dcm DE3]) was transformed with pRIL (CamR)). The resulting transformant referred to as E. coli C41 (DE3)/pRIL in the

method details section was employed as the expression host for expression of S. pneumoniae (159) MurM. E. coli BL21 Star

(DE3): F- ompT hsdSB (rB
- mB

-) gal dcm rne131 (DE3) was transformed with pRosetta2 to yield E. coli BL21 Star pRosetta2 (DE3) -

F- ompT hsdSB (rB- mB-) gal dcm rne131 (DE3) referred to as E. coli BL21(DE3) star/pRosetta2 in the methods details section which

was utilized as the expression host for expression of S. pneumoniae (Pn16) alanyl-tRNAAla synthetase (AlaRS). Expression of sele-

nomethionine-labelled FemX was performed in M9 media supplemented with all 19 canonical amino acids and 40 mg mL�1 [LA1] L-

selenomethionine in place in L-methionine. Expression of the remaining proteins were performed in luria broth. For all expression

experiments freshly transformed expression hosts were cultured shaken at 180–200 rpm at 37�C in the presence of the appropriate

antibiotics (30 mg mL�1 kanamycin, 30 mg mL�1 chloroamphenicol for FemX; 50 mg mL�1 carbenicillin, 30 mg mL�1 chloroamphe-

nicol for MurM and 30mgmL�1 kanamycin, 30mgmL�1 chloroamphenicol for AlaRS) until mid-exponential phase (Optical density at

600 nm (OD600) = 0.4–0.6). At this point, cultures were supplemented with fresh antibiotics and protein expression was induced by 1

mM isopropyl-D-1-thiogalactopyranoside at 25�C for 4 h. Micrococcus flavus (Synonymous with M. luteus) was cultured shaken at

200 rpm at 37�C in tryptic soy broth to late exponential phase (OD600 of 4).

METHOD DETAILS

Cloning, overexpression and purification of S. aureus FemX
The S. aureus Mu50 FemX gene was amplified from chromosomal DNA using Oligonucleotides FemX forward:

TTTGCGGGTGGTCTCCCATGGAAAAGATGCATATC ACTAATCAGG and FemX Reverse: TTTGCGCTCGAGGCCCTGAAAATACAG

GTTTC TTTTCGTTTTAATTTACGAGATATTTTAATTTTAGC. The resulting PCR fragment was cleaved with BsaI and XhoI and cloned

into pET28 between theNcoI andXhoI restriction sites to create pET28::FemX, containing a Tobacco Etch Virus (TEV) protease cleav-

able C-terminal hexa-histidine tag. E. coli B834 (DE3) harbouring plasmid pRosetta2 (which supplies seven rare tRNAs to support

expression of genes in E. coli and derived from the Rosetta 2(DE3) strain) were transformed with pET28::FemX. Transformed

E. coli B834 (DE3) pRosetta2 were used to inoculate M9 media supplemented with 30 mg mL�1 kanamycin, 30 mg mL�1 chloroam-

phenicol, and 40 mg mL�1 of each of the canonical amino acids [LA1] except L-methionine, which was replaced by 40 mg mL�1

(Doublié, 1997). Transformants were cultured at 37�C at 180 rpm until an optical density at 600 nm (OD600) of 0.4-0.6 was reached.

Protein expression was induced by 1 mM isopropyl-D-1-thiogalactopyranoside at 25�C for 4 hours. Cells were harvested by centri-

fugation at 6,000 xg for 15 minutes and cell pellets containing 4-6 g of cells were resuspended in 20 mL of 50 mM sodium phosphate

pH 7.0, 1M NaCl and 2.5 mg.mL-1 lysozyme to which one tablet of Pierce EDTA free Protease Inhibitor was added. The cell suspen-

sion was incubated with slow rotation for 30minutes at 4�Cbefore disruption using a Bandelin Sonopuls sonicator with 3 x 30 second

bursts at 70% power. The lysate was clarified by centrifugation at 50,000 xg at 4�C for 30 minutes. FemX was then purified by im-

mobilised metal affinity chromatography (IMAC) using a 5 mL gravity fed column of cobalt Talon resin equilibrated with 50 mL of

50 mM sodium phosphate pH 7.0, 500 mM NaCl, 20% (v/v) glycerol (equilibration buffer) supplemented with 10 mM imidazole.

Once the 50,000 xg supernatant was loaded onto the column, it was eluted sequentially with 50 mL of equilibration buffer with

10 mM imidazole, 30 mL of equilibration buffer with 50 mM imidazole and 30 mL of equilibration buffer with 200 mM imidazole.

10 mL Fractions were analysed by SDS-PAGE and those containing FemX were pooled and concentrated, using a vivaspin 20 cen-

trifugal concentrator (10,000 molecular weight cut off (MWCO), as required. Size exclusion chromatography in 50 mM sodium phos-

phate pH 7.0, 500 mM NaCl and 20% (v/v) glycerol was used to further purify FemX on a Superdex 75 10/300 column. The histidine

tag was then removed from the FemX protein by digestion with histidine-tagged TEV protease at a molar ratio of 100:1 FemX : TEV

protease at 4�C overnight. Cleaved and uncleaved protein were separated by a reverse IMAC following the procedure

described above.

FemX crystallisation and data collection
FemX was exchanged into 50 mM ethanolamine pH 10.0, 100 mM NaCl and 20% (v/v) glycerol, concentrated to 15 mg.mL-1 using a

vivaspin 20 centrifugal concentrator column with a 10,000 MWCO and screened for suitable crystallisation conditions using a

honeybee 963 crystallisation robot against JCSG plus, PACT primer and Morpheus crystallisation screens. Crystals obtained

from theMorpheus screen were used directly for data collection experiments, although crystallization conditions were further refined

to 0.12 M ethylene glycol, 0.1 MMES/imidazole pH 6.3 and 28% (w/v) ethylene glycol-PEG 8000. Crystals were frozen directly for X-

ray diffraction data experiments on the I04-1 beamline at the Diamond synchrotron (Didcot, UK) using a Pilatus 6M-F detector. Data

were processed automatically using Xia2 (Winter, 2010) to 1.62 Å. Molecular replacement was not successful so selenomethionine

containing FemX protein was produced and used to obtain FemX crystals (FemX-SeMet) in the same crystallisation conditions and
Structure 29, 731–742.e1–e6, July 1, 2021 e3
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the structure was solved by single anomalous diffraction (Leahy et al., 1992). X-ray data from the FemX-SeMet crystal were collected

on the I02 beamline at the Diamond synchrotron (Didcot, UK) using a Pilatus 6M detector. All data were indexed, integrated and

scaled using the XDS package (Kabsch, 2010). All 10 of expected selenium atoms in the asymmetric unit were located and refined

by the SHELX suite (Sheldrick, 2010). These sites were used to obtain preliminary phases. The startingmodel was built by ARP/wARP

(Langer et al., 2008). This model was used to refine the higher resolution data. The structure was refined using iterative cycles of RE-

FMAC (Vagin et al., 2004) and model building/solvent addition with COOT (Emsley et al., 2010).

Cloning, Overexpression and Purification of S. pneumoniae(159) MurM
As described in Lloyd et al. (2008), theMurM allele of S. pneumoniae(159) was cloned with a C-terminal histidine tag into pET21b and

over-expressed in E. coli C41 (DE3)/pRIL. Cells were harvested by centrifugation and treated with 2.5 mg.mL-1 hen egg white lyso-

zyme prior sonication. MurMwas solubilised with 1MNaCl and fractionated between 25% and 50% of saturation ammonium sulfate

followed by purification by size exclusion chromatography with Sephacryl S-200 and by immobilized metal affinity chromatography

(IMAC) using cobalt Talon resin. The purity and identity of the final products of these purifications were assessed by SDS-PAGE.

Cloning, Overexpression and Purification of S. pneumoniae(Pn16) AlaRS
As described in Lloyd et al. (2008), the AlaRS allele of S. pneumoniae(Pn16) was cloned into pET26a and over-expressed in E. coli

BL21(DE3) star/pRosetta2 The soluble protein was purified using nickel-chelated Chelating sepharose, desalted and further purified

by anion exchange chromatography on a 0.98mlMonoQTM, column. The purity and identity of the final products of these purifications

were assessed by SDS-PAGE.

Preparation of MurM substrates
The substrates used for assays of MurM were prepared as follows:

Lipid II(Lys): The peptidoglycan intermediate Lipid II(Lys) (undecaprenyl pyrophosphoryl N-N-acetyl muramyl (N-acetyl glucosa-

minyl) L-alanyl-g-D-glutamyl-L-lysyl-D-alanyl-D-alanine) was prepared by re-capitulation of the peptidoglycan synthesis pathway as

described (Lloyd et al., 2008).

[3H]-Alanyl-tRNAAla:Micrococcus flavus tRNA was isolated from cell pellets ofM. flavus cultures grown to late exponential phase

by phenol extraction followed by isopropanol precipitation, anion exchange chromatography and ethanol precipitation as described

by Zubay (1962) as adapted by Lloyd et al. (2008). tRNAs were renatured in 2 mMMgCl2 at 60
�C and aminoacylated with [2,3-3H]-L-

alanine S. pneumoniae (Pn16) AlaRS as described by Lloyd et al. (2008) and quantitated by liquid scintillation counting.

S. pneumoniae MurM enzymology
MurM was assayed as described by Lloyd et al. (2008) in duplicate in a final volume of 35 ml of 50 mM 3-(N-morpholino)-propane

sulphonic acid adjusted to pH 6.8, 30 mM KCl, 10 mM MgCl2, 1.5% (w/v) CHAPS (Assay Buffer), 1 mM DTT, 1 mM L-alanine,

10 mM Lipid II-Lys and 24.3 nM MurM. Reactions were initiated by the addition of 0.45 M [3H]-alanyl-tRNAAla (1000 cpm.pmol-1)

and were incubated at 37�C for two minutes, over which time frame, product accumulation was linear with respect to time. Where

the impact of cardiolipin or phosphatidylglycerol on MurM activity was assessed, the required amounts of 10 mg/mL stocks of each

phospholipid in ethanol or chloroform/methanol (49:1) were dried down in the reaction vials the assays were to be performed in, and

solubilised by addition of assay buffer. Reactions were terminated by the addition of 35 ml of ice-cold 6 M pyridinium acetate pH 4.5

and 70 ml ice-cold n-butanol. The incubations were rapidly mixed and centrifuged for 5 minutes at 1�C at 13,000 xg, after which time

the n-butanol phase was washed with 70 ml of water and then assayed for [3H]-Lipid II-L-Ala by liquid scintillation counting. Tritium

counts accumulated in control reactions performed without Lipid II(Lys) were subtracted from corresponding data acquired in the

presence of this substrate. MurM activities in the presence of phospholipid were related to the activity of the enzyme in the absence

of phospholipid and plotted as fold activation or percentage inhibition vs phospholipid concentration. The data were then fitted using

GraphPad Prism (Version 8.4.1) to either of equations 1 or 2 as appropriate:

Fold Activation =
Maximum Activation:½Cardiolipin�h

S0:5ðActivationÞ
h + ½Cardiolipin�h (Equation 1)
% Inhibition =
100:½Phosphatidylglycerol�h
IC50

h + ½Phosphatidylglycerol�h (Equation 2)

Maximum activation and S0.5 (Activation) (Equation 1) corresponded to the degree of activation at infinite cardiolipin concentration

and the cardiolipin concentration required to elicit half maximal activation respectively. IC50 (Equation 2) corresponds to the phos-

phatidylglycerol concentration that elicited half maximal inhibition. For both equations, h denoted the Hill coefficient.

Computational studies overview
A number of computational techniques were used in this study, to assist the reader in understanding the logistics of these methods,

we have provided a summary flowchart (supplemental information: Figure S6).
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Homology modelling of MurM
Due to the natural ability of streptococci to undergo homologous recombination, S. pneumoniaeMurM genes are highly mosaic, and

so, in line with the enzymology studies, the MurM sequence used for homology modelling was that of S. pneumoniae MurM159. S.

pneumoniae MurM, S. aureus FemX (PDB ID: 6SNR) and FemA (PDB ID: 1LRZ), and Weissella viridescens FemX (PDB ID: 3GKR)

were aligned (supplemental information: Figure S1) by multiple sequence alignment using Clustal Omega to determine sequence

identity (Sievers et al., 2011).

The structure of S. aureus FemXwas used as the template for homologymodelling due to its high relatedness withMurM.S. aureus

FemX and MurM159 sequences were aligned, and using MODELLER (Eswar et al., 2006; Martı́-Renom et al., 2000; sali and Blundell,

1993; Fiser et al., 2000) a test model was generated to verify the validity of the template and the alignment. This model was evaluated

by computing its energy profile according to the DOPE-HR (high-resolution version of the Discrete Optimized Protein Energy) (Shen

and sali, 2006), smoothed via window averaging with a size of 15 residues. The profiles of template and model were compared (sup-

plemental information: Figure S7), and further refinement was conducted in the region between Lys230 and Pro299, as well as in all

loop regions. This optimisation was conducted by performing a very slow MD annealing on the selected regions, whilst maintaining

the remaining structure. The scoring of the resulting conformations was obtained via a function built specifically to evaluate the ge-

ometry of loops. For this step, 64 different base models were created and their secondary structure was refined independently 16

times. The resulting 1024 models were evaluated and ranked using DOPE-HR as well as the SOAP (Statistically Optimized Atomic

Potentials) (Dong et al., 2013). The 10 best scoringmodels for each score were selected and evaluated based on the number of phys-

ical constraint violations present.

The best model of MurM159 was aligned with the previously published MurM model (Fiser et al., 2003) orW. viridescens Femx ho-

mologues (Fonvielle et al., 2013; Biarrotte-Sorin et al., 2004) for visualisation and analysis in PyMOL (Version 2.1.0).

Molecular docking of truncated Lipid II to MurM
A truncated Lipid II substrate (supplemental information: Figure S2) was created for initial molecular docking simulations. The trun-

cated Lipid II was drawn in ChemDraw Professional (Version 17.1) and converted to a pdb file using Avogadro (Version 1.2.0). To

prepare the ligand file for docking, the protonation state in H2O at pH 7.4 was computed. Subsequently the equilibrium geometry

minimizing the potential energy was computed using the general amber force field (GAFF) (Wang et al., 2004) from within the Avoga-

dro2 software (Hanwell et al., 2012). Molecular docking was conducted using AutoDock Vina (Trott andOlson, 2010), for which pdbqt

files were generated from the pdb files of receptor model and ligands using AutoDock Tools (Morris et al., 2009). Initially the location

of the binding site was verified by providing the algorithm with a search space that included the entire protein. Docking was then

repeated by restricting the search space to the identified binding site, in order to obtain the final docked conformation.

Molecular docking of Lipid II, Cardiolipin, Phosphatidylglycerol and Phosphatidylethanolamine to the putative MurM
binding site.
Using the HADDOCK2.4 web server (Van Zundert et al., 2016), full length Lipid II, cardiolipin and phosphatidylglycerol and phospha-

tidylethanolamine were docked into the putative MurM binding site, where the binding site is defined by the residues Lys35, Trp38,

Phe103, Arg215 and Tyr219.

Coarse-grained molecular dynamics simulations
All coarse-grained simulations were carried out with the GROMACS package (Version 2018) and the Martini (Version 2.2) forcefield

(Abraham et al., 2015; de Jong et al., 2012). Simulations at the coarse-grained and atomstic resolutions were carried out at 313 K. For

coarse-grained simulations, a stochastic velocity rescale thermostat with a coupling constant of 1:0 ps controlled the temperature.

The coordinates of the MurM homology model were used to generate a coarse-grained model using the ‘martinise.py’ script (de

Jong et al., 2013). The protein was coarse grained to the ElNeDyn model (Periole et al., 2009) with an elastic network strength and

cutoff of 500 kJmol-1nm-2 and 0:9 nm, respectively. The Lipid II model for inclusion in the membrane was parameterised using a

united atommodel (Gromos 53a6) generated by the Auto-mated topology builder (ATB) web-interface (Malde et al., 2011). Following

this, the coarse-grained mapping was pursued iteratively, and the bonded terms were fitted with PyCGTOOL (Graham et al., 2017).

Since the pneumococcal membrane comprises a complex mixture of lipids, a simplified membrane composition was required for

the simulations. In order to elucidate the effects of phosphatidylglycerol and cardiolipin on MurM, a non-pneumococcal lipid, phos-

phatidylethanolamine, was used as the majority lipid. Simulations were conducted with three different membrane systems (supple-

mental information: Table S1). System 1 comprised phosphatidylethanolamine and phosphatidylglycerol in a molar ratio of 75% and

25% respectively, system 2 contained phosphatidylethanolamine, phosphatidylglycerol and cardiolipin in a molar ratio of 76%, 16%

and 8% respectively and system 3 comprised phosphatidylethanolamine, phosphatidylglycerol and cardiolipin at a molar ratio of

72%, 12% and 16% respectively. The membrane systems of size �16x16x11:5 nm were generated with the CHARMM-GUI

web interface (Jo et al., 2017). Each system was relaxed with a series of minimisation and equilibration steps with timesteps of

5-20 fs, for up to 30 ns. The equilibration steps utilised a semi-isotropic Berendsen barostat, with a 4:0 ps coupling constant

(Berendsen et al., 1984). Following equilibration, Lipid II molecules (10 in total) were added to each membrane. The systems were

then minimised and equilbriated (for 10 ns), followed by a 2 ms production run to ensure sufficient mixing of all the lipid components.

All production runs were carried out using a 10 fs timestep and a Parrinello-Rahman semi-isotropic barostat with a 12 ps coupling

constant (Parrinello and Rahman, 1981). The Lennard-Jones potential was cutoff using the Potential shift Verlet scheme at long
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ranges. The reaction field method (Tironi et al., 1995) was used for electrostatics calculations, with dielectric constants of 15 and in-

finity for charge screening in the short- and long-range regimes, respectively. The short-range cutoff for non-bonded and electro-

static interactions was 1:2 nm. Once lipid mixing was ensured, the size of each system was increased to �32 nm in the dimension

perpendicular to the membrane andMurMwas added in a random orientation around 8 nm above eachmembrane. Biologically rele-

vant salt concentrations (0.15 M NaCl) were added and 10% of the water molecules were changed to antifreeze particles to prevent

localised freezing during simulations. After minimisation and 1 ns of equilibration, during which the protein backbone was restrained

with 1000 kJmol-1nm-2 harmonic restraints, 6x5 ms production runs were generated per membrane composition (supplemental infor-

mation: Table S1).

All-atom molecular dynamics simulations
Atomistic simulations were conducted using the CHARMM36m forcefield (Huang et al., 2017). The Lipid II model used here was also

used in previous work (Witzke et al., 2016), while all other lipid models were obtained from the CHARMM-GUI membrane builder

module (Jo et al., 2008). For each coarse-grained membrane system, two repeats were chosen where: 1) the last frame of the

production run had a distinct orientation ofMurM, relative to themembrane 2)MurM adhered to themembrane surface (supplemental

information: Table S2). The last frame of the chosen coarse-grained repeats were then backmapped to the all-atommodel, using the

backward script (Wassenaar et al., 2014). Unfavourable ring conformers were corrected by carrying our minimisation and equilibra-

tion steps with dihedral restraints of 25000 kJmol-1rad-2 on key ring torsions. After the transformation was carried out, each system

was cropped in the z dimension to a height of 16:5 nm, to remove unnecessary H2O molecules.

Each system was minimised and equilibrated for a total of 1 ns, while the backbone of the protein was restrained with

1000 kJmol-1nm-2 harmonic restraints. Two production runs of 250 ns were carried out for each system. During the production

runs a timestep of 2 fs was used, and the pressure (1 bar) regulated with a semi-isotropic Parrinello-Rahman barostat, with a

coupling constant of 5:0 ps. The Lennard-Jones potential was cutoff with the Force-switch modifier from 1:0 to 1:2 nm. The short

range cutoff for the electrostatic interaction was also 1:2 nm and the Particle mesh Ewald (PME) algorithm (Darden et al., 1993)

was used for the long-range regime.

Analysis was carried out over the final 100 ns of each simulation, unless stated otherwise. All simulations were visualised using

Visual Molecular Dynamics (VMD) or PyMOL (Version 2.2.0) (Humphrey et al., 1996). Other analysis tools were written with a com-

bination of GROMACS tools and in house scripts, that utilised the python module MDAnalysis (Gowers et al., 2016). The deple-

tion/enrichment (D-E) indices were determined by first counting the number of lipids with a centre of geometry within 1.1 nm of

the protein and then comparing this number to the number expected in the bulk of the membrane, using the procedure described

by Corradi et al. (2018). The D-E index was obtained by dividing the lipid composition in the 1.1 nm shell around the protein by

the bulk membrane composition. Thus a D-E index >1 indicates enrichment, while a D-E index <1 indicates depletion. The D-E index

was determined for the last 100 ns of each simulation in 50 ns blocks for all repeats. For a givenmembrane composition, 8 D-E indices

were obtained for each lipid, from which the average and standard errors were calculated. The enrichment maps were generated by

first determining the 2D densitymap of themembrane using theGROMACS tool densmap. Following this, the enrichment percentage

was determined using the procedure described by Corradi et al. (2018). An enrichment percentage <0% indicated that local mem-

brane composition was depleted with respect to the bulk membrane composition. The code for the 2D enrichment maps and D-E

indices was reported in Shearer et al. (2019).

QUATIFICATION AND STATISTICAL ANALYSIS

Crystallographic statistics were calculated using software/programs as described in themethods, and values are reported in Table 1.

Enzyme assays were performed in duplicate, generating data that differed by no more than 10%. Average values were then plotted.

The standard errors of the fits of constants defining the relationships between the response of MurM to phospholipid and phospho-

lipid concentration according to equations 1 and 2 were calculated by GraphPad Prism (Version 8.4.1).
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Table S1. Summary of course grained simulations, Related to STAR Methods 
 
System Membrane 

size (nm) 
Time (µs) Membrane % Composition 

PE PhG CL 
1 16.1x16.1 6x5 75 25 0 
2 16.1x16.1 6x5 76 16 8 
3 16.3x16.3 6x5 72 12 16 

 
 
Table S2. Summary of atomistic simulations, Related to STAR Methods 
CG label refers to the coarse grained system (Table S1) from which the simulations were 
constructed.  
 
System Time (µs) CG Label  
4 2x0.25 1 r1 
5 2x0.25 1 r2 
6 2x0.25 2 r1 
7 2x0.25 2 r6 
8 2x0.25 3 r1 
9 2x0.25 3 r4 



Figure S1. Sequence alignment showing putative MurM binding site residues, 
Related to STAR Methods and Figure 4. Alignment of W. viridescens FemX, S. 
pneumoniae MurM, S. aureus FemA and S. aureus FemX using CLUSTAL Omega 
(1.2.4). The sequence identity between MurM and S. aureus FemA, S. aureus FemX and 
W. viridescens FemX was 20.25 %, 26.93 % and 24.38 % respectively. Residues of the 
putative MurM binding site, proposed to interact with the Lipid II substrate are indicated 
by red boxes. 
 
  

10/27/2020 https://www.ebi.ac.uk/Tools/services/rest/clustalo/result/clustalo-I20201028-002838-0030-70297618-p2m/aln-clustal_num

https://www.ebi.ac.uk/Tools/services/rest/clustalo/result/clustalo-I20201028-002838-0030-70297618-p2m/aln-clustal_num 1/1

CLUSTAL O(1.2.4) multiple sequence alignment 
 
 
W.vi_FemX      --MPVLNLNDPQAVERYEEFMRQSPYGQVTQDLGWAKVK--NNWEPVDVYLEDDQGAIIA 56 
S.pn_MurM      MYRYQLG----IPLSEYDGFVKEHPMVNLLQSSAWEKVK--SDWNHERLGVYEGE-NLLA 53 
S.au_FemA      --MKFTN----LTAKEFGAFTDSMPYSHFTQTVGHYELKLAEGYETHLVGIKNN--NNEV 52 
S.au_FemX      --MEKMH----ITNQEHDAFVKSHPNGDLLQLTKWAETKKLTGWYARRIAVGRDG-EVQG 53 
                             ...  *  . *  .. *     : *   .:    : :  .       
 
W.vi_FemX      AMSMLLGDTPT--DKKFAYASKGPVMDVTDVDLLDRLVDEAVKA-LDGRAYVLRFDPEVA 113 
S.pn_MurM      VASILIKSLPL--GYKMFYIPRGPILDYRDTELLKFVLQSIKSYARSKRAVFVTFDPSIC 111 
S.au_FemA      IAACLLTAVPVMKVFKYFYSNRGPVIDYENQELVHFFFNELSKYVKKHRCLYLHIDPYLP 112 
S.au_FemX      VAQLLFKKVPKL-PYTLCYISRGFVVDYSNKEALNALLDSAKEIAKAEKAYAIKIDPDVE 112 
                   *:   *     .  *  :* ::*  : : :. ..:.  .     :.  : :** :  
 
W.vi_FemX      YSDEFNT-----------TLQDHGYVTRNRNVADAGMHATIQPRLNMVLDLTKFPDAKTT 162 
S.pn_MurM      LSQHLVNQDKREYPENLAIVEILGQLGVKWSGRTIEMDDTIQPRIQAKIYKENFEEDKL- 170 
S.au_FemA      YQYLNHDGEITGNAGNDWFFDKMSNLGFEHTGFHKGFDPVLQIRYHSVLDLKDKTADDI- 171 
S.au_FemX      V-----------DKGTD-ALQNLKALGFKHKGFKEGLSKDYIQPRMTMITPIDKNDDEL- 159 
                                  .:    :  : .     :           :   .    .   
 
W.vi_FemX      LDLYPSKTKSKIKRPFRDGVEVHSGNSATELDEFFKTYTTMAERHGITHRPIEYFQRMQA 222 
S.pn_MurM      ----SKSTRQAIRTARNKGLEIQYGG-LELLDSFSELMKKTEKRKEIHLRNEAYYKKLLD 225 
S.au_FemA      IKNMDGLRKRNTKKVKKNGVKVRFLS-EEELPIFRSFMEDTSESKAFADRDDKFYYNRLK 230 
S.au_FemX      LNSFERRNRSKVRLALKRGTTVERSD-REGLKTFAELMKITGERDGFLTRDISYFENIYD 218 
                       :   :   . *  :.  .    *  * .      : . :  *   :: .    
 
W.vi_FemX      AFDADTMRIF-------------------------------------------------- 232 
S.pn_MurM      NFKEDSYITLTSL--DVSKRLRELEEQLEKNRVVAEKF-ND-----------ATRSSKVQ 271 
S.au_FemA      YYKDRVLVPLAYI--NFDEYIKELNEERDILNKDLNKALKDIEKR-PENKKAHNKRDNLQ 287 
S.au_FemX      ALHEDGDAELFLVKLDPKENIAKVNQELNELHAEIAKWQQKMETSEKQAKKAQNMINDAQ 278 
                 .      :                                                   
 
W.vi_FemX      --------------------VAEREGKLLSTGIALKYGRKIWYMYAGSMDG-NTYYAPYA 271 
S.pn_MurM      ENIKEKERLKEEIDFLQGYMNMGKSNIPLAATLSLEFGNTSVNLYAGMDDDFKRYNAPIL 331 
S.au_FemA      QQLDANEQKIEEGKRLQ---EEHGNELPISAGFFFINPFEVVYYAGGTSNAFRHFAGSYA 344 
S.au_FemX      NKIAKNEDLKRDLEALE---KEHPEGIYLSGALLMFAGSKSYYLYGASSNEFRDFLPNHH 335 
                                       .   ::  : :          ..  :  . :      
 
W.vi_FemX      VQSEMIQWALDTNTDLYDLGGIESESTD----DSLYVFKHVFVKDAPREYIGEIDKVLDP 327 
S.pn_MurM      TWYETARYAFERGMVWQNLGGVENS-----LNGGLYQFKEKFNP-TIEEYLGEFTMPT-H 384 
S.au_FemA      VQWEMINYALNHGIDRYNFYGVSGKFTEDAEDAGVVKFKKGYNA-EIIEYVGDFIKPINK 403 
S.au_FemX      MQYTMMKYAREHGATTYDFGGTDNDPDKDSEHYGLWAFKKVWGT-YLSEKIGEFDYILNQ 394 
                     .:* : .    :: * ...        .:  **. :      * :*::       
 
W.vi_FemX      EVYAELVKD------------- 336 
S.pn_MurM      PLYPLLRLALDFRKTLRKKHRK 406 
S.au_FemA      PVYAAYTALKKVKDRIF----- 420 
S.au_FemX      PLYQLIEQ-------------- 402 
                :*                    



Figure S2. Structures of lipids investigated in these studies, Related to Figure 3 
and Figure 6. A) UDP-MurNAc-pentapeptide (Lysine variant), B) Lipid II, C) Truncated 
Lipid II structure where the C55 prenyl chain has been replaced with a methyl group, D) 
cardiolipin, E) phosphatidyl-glycerol and F) phosphotidylethanolamine. All Lipid II 
precursors and variants contain L-Lysine at the third position of the pentapeptide chain. 
Structures produced in ChemDraw (Version 19.1). 
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Figure S3. The remaining four highest scoring poses from molecular docking of 
truncated Lipid II to MurM using AutoDock Vina, Related to Figure 3. All possessed 
identical binding affinities A) and B) show the phosphate group located near the entrance 
of the cavity, with the pentapeptide located deeper into the pocket. C) and D) show 
orientations that are not considered possible, since the phosphate group would be linked 
to the membrane embedded Lipid II, and this would prevent the phosphate from being 
located deep in the binding site as shown. 
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C D



 

 
 
Figure S4. Top 3 binding poses for the docking of different lipids to the MurM 
binding site, Related to STAR Methods. Docking of A) Lipid II, B) cardiolipin, C) 
phosphatidyglycerol and D) phosphotidylethanolamine to the MurM binding site, where 
residues K35, W38, R215 and Y219 are shown in yellow. 
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Figure S5. The association of coarse-grained MurM to the surface of the membrane, 
Related to STAR Methods. A) The minimum distance between MurM and the membrane 
surface for System 1 (top), System 2 (middle) and System 3 (bottom). Snapshots taken 
of the B) first and C) last frame of repeat 2 (r2), for System 1 (Supplemental Information: 
Table S1) Colour key: red = Lipid II, blue = protein, and grey = membrane. 
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Figure S6. Flow chart showing the logistics of the computational studies, Related 
to STAR Methods. 
 

Molecular docking 1:
Docking of a truncated Lipid II to identify plausible 
Lipid II binding sites

Coarse Grained (CG) MD simulations:
Orientations in which MurM adheres to the 
membrane, and any orientations which permit Lipid 
II binding are identified

Coarse Grained (CG) MD simulations:
The impact of MurM binding upon the local 
membrane environment is investigated

Atomistic MD simulations:
Atomistic MD simulations are employed to refine 
the Lipid II-MurM complex obtained from docking 
and CG MD

Molecular docking 2:
Docking of full length Lipid II, cardiolipin, 
phophatidylglycerol and phosphatidylethanolamine 
to the putative MurM binding site in order to 
confirm specificity of lipid binding



 
 
Figure S7. Discrete Optimized Protein Energy Profile for MurM and FemX, Related 
to STAR Methods. Comparison of DOPE-HR profiles for MurM model (red) and FemX 
template (green). 
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