Syntheses and analytical characterizations of novel (2aminopropyl)benzo[b]thiophene (APBT) based stimulants

Simon D. Brandt,^{1,*} Laura Carlino,^{1,2} Pierce V. Kavanagh,³ Folker Westphal,⁴ Wolfgang Dreiseitel,⁵ Geraldine Dowling,^{3,6} Michael H. Baumann,⁷ Harald H. Sitte,⁸ Adam L. Halberstadt ^{9,10}

¹ School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK

² School of Chemical Engineers, University of Upper Alsace, 68093 Mulhouse, France

³ Department of Pharmacology and Therapeutics, School of Medicine, Trinity Centre for Health Sciences, St. James Hospital, Dublin 8, Ireland

⁴ State Bureau of Criminal Investigation Schleswig-Holstein, Section Narcotics/Toxicology, Mühlenweg 166, D-24116 Kiel, Germany

⁵ Hessian State Bureau of Criminal Investigation, Hölderlinstraße 1–5, Wiesbaden, Germany

⁶ Department of Life Sciences, School of Science, Sligo Institute of Technology, Ash Lane, Sligo, F91YW50, Ireland

⁷ Designer Drug Research Unit, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA

⁸ Medical University of Vienna, Center for Physiology and Pharmacology, Institute of Pharmacology, Währinger Straße 13a, A-1090 Vienna, Austria.

⁹ Department of Psychiatry, University of California San Diego, La Jolla, CA 92093-0804, USA

¹⁰ Research Service, VA San Diego Healthcare System, La Jolla, CA, USA

* Correspondence to: Simon D. Brandt, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK. E-Mail: s.brandt@ljmu.ac.uk

Content	Page							
NMR data of nitrostyrene intermediates (2-, 3-, 5-, and 6-APBT)	S3							
EI mass spectra of all six APBT isomers	S4							
Alternative suggestions for formations of m/z 147 and m/z 97 (EI-MS)								
EI-QqQ-MS/MS spectra of all six APBT isomers using m/z 147 as precursor ion								
Proposed fragmentation pathways (EI-MS/MS of m/z 147)								
Proposed fragmentation pathways (CI-MS)								
CI-QqQ-MS/MS spectra of all six APBT isomers using m/z 149 as precursor ion	S9							
Proposed fragmentation pathways (CI-MS/MS of m/z 149)	S10							
CI-QqQ-MS/MS spectra of all six APBT isomers using m/z 175 as precursor ion	S11							
Proposed fragmentation pathways (CI-MS/MS of m/z 175)	S12							
CI-QqQ-MS/MS spectra of all six APBT isomers using m/z 177 as precursor ion	S13							
Proposed fragmentation pathways (CI-MS/MS formation of m/z 149 from m/z 177)	S13							
Proposed fragmentation pathways (CI-MS/MS of m/z 177)	S14							
Proposed fragments and fragmentation pathways of acetamido and HFB derivatives (GC-MS)	S15							
Proposed fragments and fragmentation pathways of ethoxycarbonyl and methanesulfonamide	S16							
derivatives (GC-MS)								
ESI single quadrupole mass spectra (in-source CID) of all six APBT isomers and experimental conditions	S17							
QTOF tandem mass spectra of all six APBT isomers								
Calculated masses and molecular formulae obtained from QTOF-MS/MS and proposed fragmentation	S19							
schemes for some ions derived from 4-, 5-, and 7-APBT								
HPLC-DAD UV spectra of all six APBT isomers	S20							
NMR spectra of 2-APBT HCI (¹ H, ¹ H / ¹ H COSY, ¹³ C DEPTQ, HSQC and HMBC)	S21–S25							
NMR spectra of 3-APBT HCI (¹ H, ¹ H / ¹ H COSY, ¹³ C DEPTQ, HSQC and HMBC)	S26–S30							
NMR spectra of 4-APBT HCI (¹ H, ¹ H / ¹ H COSY, ¹³ C, HSQC and HMBC)	S31–S35							
NMR spectra of 5-APBT HCI (¹ H, ¹ H / ¹ H COSY, ¹³ C DEPTQ, HSQC and HMBC)								
NMR spectra of 6-APBT HCI (¹ H, ¹ H / ¹ H COSY, ¹³ C DEPTQ, HSQC and HMBC)								
NMR spectra of 7-APBT HCI (¹ H, ¹ H / ¹ H COSY, ¹³ C, HSQC and HMBC)	S46–S50							
IR spectra of 2-APBT (ATR-IR HCI, ATR-IR base, GC-sIR)	S51–S53							
IR spectra of 3-APBT (ATR-IR HCI, ATR-IR base, GC-sIR)	S54–S56							
IR spectra of 4-APBT (ATR-IR HCI, ATR-IR base, GC-sIR)	S57–S59							
IR spectra of 5-APBT (ATR-IR HCI, ATR-IR base, GC-sIR)								
IR spectra of 6-APBT (ATR-IR HCI, ATR-IR base, GC-sIR)								
IR spectra of 7-APBT (ATR-IR HCI, ATR-IR base, GC-sIR)								
IR table: including aromatic ring C-C stretches; aromatic ring C-H in-plane bends; aromatic C-H out-of-	S69							
plane bends								
GC-sIR partial spectra: overtone bands (~1700–2000 cm ⁻¹)	S70							
GC-sIR partial spectra: 2- and 3-APBT	S71							
GC-sIR partial spectra: 4- and 7-APBT	S72							
GC-sIR partial spectra: 5- and 6-APBT	S73							

Isomer	2	2	3	8		5	6		
Position	¹ H	¹³ C	¹ H	¹³ C	¹ H	¹³ C	¹ H	¹³ C	
2	-	134.90	7.70 (s)	129.03	7.56 (d, <i>J</i> = 5.4 Hz)	128.06	7.59 (d, <i>J</i> = 5.4 Hz)	129.28	
3	7.68 (s)	132.07	-	128.23	7.42 (d, <i>J</i> = 5.4 Hz)	124.00	7.38 (d, J = 5.4 Hz)	123.82	
3а	-	138.62 or 141.94	-	138.30	-	139.92	-	140.23	
4	7.91–7.86 (m)	124.75	7.91 (dist. d, <i>J</i> = 7.8 Hz)	121.77	7.91 (s)	125.46 or 125.48	7.88 (d, <i>J</i> = 8.3 Hz)	123.98	
5	7.49–7.43 (m)	126.66 or 125.28	7.54–7.51 (m)	125.14 or 125.15	-	128.56	7.44 (dd, <i>J</i> = 8.3, 1.4 Hz)	125.95	
6	7.49–7.43 (m)	126.66 or 125.28	7.50–7.47 (m)	125.52	7.42 (dd, <i>J</i> = 8.4, 1.6 Hz)	125.46 or 125.48	-	128.43	
7	7.91–7.86 (m)	122.35	7.94 (dist. d, <i>J</i> = 7.8 Hz)	122.92	7.97 (d, <i>J</i> = 8.4 Hz)	123.01	7.97 (s)	124.43	
7a	-	138.62 or 141.94	-	139.51	-	141.29	-	140.63	
8	8.37–8.36 (m)	127.73	8.38–8.37 (m)	125.14 or 125.15	8.25 (s)	133.98	8.22 (s)	133.83	
9	-	146.17	-	148.28	-	147.37	-	147.37	
10	2.66 (d, <i>J</i> = 0.4 Hz)	14.28	2.57 (d, <i>J</i> = 0.8 Hz)	14.70	2.54 (d, <i>J</i> = 1.0 Hz)	14.19	2.53 (d, <i>J</i> = 0.9 Hz)	14.26	

Table 1. NMR data for nitrostyrene intermediates (CDCl₃, 600/150 MHz).

Electron ionization mass spectra of APBT isomers

Alternative suggestions for m/z 147 and m/z 97 (EI-MS)

EI-MS/MS of m/z 147

 CI-MS analysis

Supporting Information – Drug Testing and Analysis

ÓН

or possibly an oxidation product from air in the system ?

5-APBT

CI-MSMS of m/z 175

m/z 175 m/z 160

m/z 134

S12

CI-MSMS m/z 177

AC derivatives

EC derivatives

S

3-APBT

m/z 147

In-source CID mass spectra - liquid chromatography electrospray ionization mass spectrometry

This consisted of an Agilent 1100 LC system coupled to a Hewlett Packard/Agilent 1100 MSD (Santa Clara, CA, USA). The following conditions were used: capillary voltage 3500 V, drying gas (N₂) 12 L/min at 350 °C and nebulizer (N₂) pressure 50 psig. The mass spectrometer was tuned according to the manufacturer's instructions using ESI Tuning Mix G2421A (Agilent Technologies). Chromatography was performed using an Allure PFP Propyl column (5 μ m, 50 x 2.1 mm; Restek, Bellefonte, PA, USA): eluent A – methanol containing 0.1% formic acid, eluent B – water containing 0.1% formic acid); 20 % A (0 - 2 min.) followed by a linear gradient up to 80 % A at 22 min, 80 % A for 1 min, linear gradient down to 20 % A at 25 min, 20 % A for 5 min (run-time 30 min); flow rate of 600 μ L/min, 10 μ L of a 50 μ g/mL injected. The mass spectrometer was run in ESI mode (m/z 70–500, with a fragmentor voltage set at 90 V for in-source CID).

		2-APBT		3-APBT		4-APBT		5-APBT		6-APBT		7-APBT	
Calc. m/z	Formula	Obs. m/z	Δ	Obs. m/z	Δ	Obs. m/z	Δ	Obs. m/z	Δ	Obs. m/z	Δ	Obs. m/z	Δ
			(ppm)		(ppm)		(ppm)		(ppm)		(ppm)		(ppm)
192.0842	$C_{11}H_{14}NS^{+}$	192.0842	0	192.0842	0	192.0842	0	192.0842	0	No $[M+H]^+$		192.0842	0
175.0576	$C_{11}H_{11}S^{+}$	175.0576	0	175.0576	0	175.0576	0	175.0576	0	175.0576	0	175.0576	0
160.03412	C ₁₀ H ₈ S⁺⁺	_	-	160.03412	0	-	-	_	-	-	_	_	-
149.0420	C₀H₀S⁺	149.0420	0	-	-	-	-	-	-	-	_	-	-
147.0263	C9H7 _S ⁺	_	-	147.0263	0	147.0263	0	147.0263	0	147.0263	0	147.0263	0
142.0777	C ₁₁ H ₁₀ **	_	-	-	-	142.0777	0	142.0777	0	-	_	_	-
135.0263	C ₈ H ₇ S⁺	_	-	-	-	-	-	135.0263	0	-	_	-	-
134.0185	C8H6S**	134.0185	0	134.0185	0	-	-	_	-	-	_	_	-
58.0651	$C_3H_8N^+$	_	-	_	_	_	-	_	_	-	_	58.0651	0
44.0495	$C_2H_6N^+$	44.0495	0	44.0495	0	-	-	-	_	-	_	_	_

4- and 5-APBT

m/z 175 C₁₁H₁₁S⁺ Calc. 175.0576

7-APBT

m/z 142 C₁₁H₁₀⁺⁺ Calc. 142.0777 (and 5- isomer)

 m/z 175
 m/z 142

 C₁₁H₁₁S⁺
 C₁₁H₁₀⁺⁺

 Calc. 175.0576
 Calc.142.0777

5-APBT

Proposed fragments related to 2-APBT and 3-APBT shown in main text of manuscript

HPLC-DAD UV spectra

S31

S32

Supporting Information – Drug Testing and Analysis

ppm

S46

Isomer		Aromatic ring C-C stretches	Aromatic ring C-H in-plane bends	Aromatic C-H out-of-plane bends
		(1400–1500, 1585–1600 cm ⁻⁺)	(1000–1250 cm ⁻¹)*	(675–900 cm ⁻¹)**
2	HCI (ATR-IR)	1430.5, 1456.4, 1496.9,	1005.3, 1015.0, 1066.1, 1088.5, 1111.7, 1124.0,	709.2, 726.8, 756.1, 811.3, 844.2
		1575.2, 1602.0	1154.3, 1197.4, 1251.1, 1228.5, 1253.9	
	Base (ATR-IR)	1435.1, 1456.6, 1569.5	1014.8, 1066.3, 1120.0, 1132.8, 1155.5, 1187.3	707.9, 725.9, 743.5, 813.2, 858.5
	Base (GC-sIR)	1437.3, 1458.3, 1538.7,	1015.9, 1066.6, 1120.7, 1133.4, 1155.4, 1183.6,	708.1, 728.1, 749.1, 812.7, 861.7
		1581.6	1215.1, 1255.3	
3	HCI (ATR-IR)	1425.5, 1459.0, 1515.1,	1021.4, 1043.6, 1092.8, 1130.5, 1156.3, 1210.1,	703.4, 736.9, 759.1, 767.6, 781.7, 834.1, 842.6
		1539.1, 1568.5, 1592.7	1243.3, 1262.8	
	Base (ATR-IR)	1426.1, 1457.6, 1576.9	1020.1, 1038.8, 1095.1, 1137.6, 1157.0, 1221.0,	705.5, 730.3, 756.3, 766.9, 829.7
			1261.3	
	Base (GC-sIR)	1427.4, 1459.0, 1580.3	1020.7, 1038.4, 1075.1, 1095.6, 1110.8, 1135.5,	705.1, 733.9, 758.8, 769.0, 827.3, 874.4
			1157.3, 1197.4, 1261.6	
4	HCI (ATR-IR)	1411.8, 1450.9, 1461.9,	1055.1, 1091.0, 1117.7, 1129.2, 1155.4, 1167.4,	690.8, 710.3, 758.9, 798.5, 860.3
		1515.9, 1569.4, 1589.7	1209.1, 1239.5, 1257.9	
	Base (ATR-IR)	1412.2, 1450.9, 1570.5	1053.9, 1088.0, 1164.3, 1203.3	689.3, 702.4, 758.4, 796.1, 818.1, 860.3
	Base (GC-sIR)	1413.2, 1452.3, 1582.9	1048.8, 1085.2, 1132.4, 1150.2, 1163.8, 1205.1,	689.4, 703.7, 762.2, 796.3, 829.5, 861.4
			1252.2	
5	HCI (ATR-IR)	1421.0, 1437.7, 1499.6, 1605.0	1000.8, 1021.6, 1050.4, 1085.4, 1128.8, 1145.5,	694.6, 714.3, 770.0, 798.9, 836.5
			1211.0, 1224.8, 1251.0	
	Base (ATR-IR)	1421.6, 1435.7, 1455.7, 1570.9	1050.1, 1089.0, 1145.7, 1159.7, 1224.2, 1261.4	689.5, 703.4, 754.7, 769.1, 800.8, 831.9, 894.0
	Base (GC-sIR)	1421.5, 1437.0, 1504.9,	1051.0, 1072.5, 1089.0, 1109.9, 1134.4, 1146.0,	690.5, 705.5, 756.9, 768.9, 801.8, 832.7, 868.3,
		1581.4, 1605.4	1159.5, 1224.9, 1261.7	895.2
6	HCI (ATR-IR)	1466.2, 1497.1, 1570.9, 1617.6	1015.7, 1050.2, 1085.5, 1126.4, 1144.4, 1202.6,	702.4, 716.5, 763.2, 787.2, 806.2, 840.2, 889.4
			1245.1	
	Base (ATR-IR)	1439.0, 1462.5, 1478.8, 1571.7	1047.5, 1083.3, 1093.2, 1185.5, 1203.6, 1261.9	691.5, 755.9, 785.9, 807.2, 836.5, 885.3
	Base (GC-sIR)	1451.8, 1465.5, 1490.2,	1019.1, 1048.2, 1072.6, 1084.2, 1104.4, 1133.3,	694.9, 710.4, 757.6, 785.7, 806.9, 837.7, 882.1
		1581.0, 1604.9	1170.9, 1203.1, 1261.5	
7	HCI (ATR-IR)	1459.3, 1506.4, 1572.9	1041.5, 1094.2, 1134.8, 1167.8, 1208.5, 1261.0	700.4, 773.7, 786.3, 835.5, 885.0
	Base (ATR-IR)	1458.0, 1572.9	1038.0, 1084.5, 1106.4, 1164.5, 1220.1	686.4, 701.8, 773.5, 791.2, 833.6
	Base (GC-sIR)	1395.4, 1459.0, 1574.1	1038.7, 1082.6, 1106.6, 1113.3, 1164.7, 1220.5,	704.7, 773.5, 792.6, 833.6, 867.6
			1254.3	

* Also C–N stretch (aliphatic amines) from 1250–1020 cm⁻¹ ** Also C-S stretches in this region

GC-sIR partial spectrum - overtone bands

Supporting Information – Drug Testing and Analysis

GC-sIR partial spectrum

