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Table S1:  Summary table of parameters. 

Parameter Description 

MinCoverage 
Minimum number of reads spanning each splice junction (Default = 

10). 

MinReadQuality 
Mapping quality. By default, only uniquely mapped reads are 

included (Default = 10). 

MinIntronLength 
Minimum intron length. Default value is optimal for analysis using 

human RNA-seq data (Default = 30) 

ChromsList 
List of chromosome names (Default: chr1-720, I-XVI, 2L, 2R, 3L, 

3R, Z, W.) 

FilterLevel 

(1) keep all introns in the genome regardless of overlaps with other 

genomic elements. 

(2) select only introns whose splice junctions do not overlap any exon 

in different genes 

(3) select only introns that do not overlap with any exon of the same 

or different gene (Default). 

IERatio 
Running mode that additionally outputs the Inverse Intron Expression 

Ratio (IER). Requires FilterLevel 3.  

NProcesses 

Multiple concurrent processes are used to minimize running times and 

the number of processes can be adjusted by the user through this 

parameter.  

 

 

 



 

Fig. S1: SPLICE-q’s inverse intron expression ratio (IER) workflow. Dashed lines indicate 

steps which depend on parameter settings. Solid lines represent the mandatory steps of the 

workflow. Boxes illustrate data types: input (red), intermediate data items (white) and output 

(green). I = intron; E= exon; SJ = splice junction; TSV = tab-separated values. Levels of 

restrictiveness: L3 (Level 3). 



 

 

 

 

 

 

 

Fig. S2: SPLICE-q’s run time and memory usage. a) Run time for approximately 100 

million input reads mapped to the human genome (Linux, 64x AMD Opteron 6282 SE, 

516GB). b) Memory usage for 1.4GB GTF. Time in seconds. p = Number of processes 

(NProcesses). 
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Fig. S3: Splicing kinetics using IER. Time-series nascent and steady-state (total) RNA-seq of 

labeled HEK293 cells. 

 



 

Fig. S4: Comparison of SE and IER scores.  Time-series nascent RNA-seq of labeled HEK293 cells.



 

Fig. S5: Difference between IER and SE scores.  Time-series nascent RNA-seq of labeled 

HEK293 cells. RMSE = Root-mean-square error. The distributions are slightly shifted towards 

positive values, indicating that IER scores are on average higher than SE scores. The closer the 

scores get to the maximum of 1 over the time course (compare to Fig. 4a in the paper and Fig. 

S3 here), the smaller the differences get between SE and IER; this is also evident from the 

decreasing RMSE. 

 

 

 

 

 

 

 

 



 

Fig. S6: Comparison of SE and IER scores for prostate tumor sample.  Total RNA from 

prostate cancer tissue along with a matched normal control sample. 

 

Fig. S7: Difference between IER and SE scores for prostate tumor sample. Total RNA 

from prostate cancer tissue along with a matched normal control sample. RMSE = Root-mean-

square error. 

 

Table S2: SE and IER of selected introns in control and tumor samples.  

 Normal Tumor 

 SE* IER* SE* IER* 

PCA3 (chr9:76,782,833-76,783,704) 0.57 0.76 0.90 0.96 

RORβ (chr9:74,630,368-74,634,630) 0.99 1.00 0.63 0.77 

RORβ (chr9:74,634,773-74,642,413) 0.98 0.99 0.60 0.64 

SRPX2 (chrX:100,662,368-100,664,773) 0.59 0.79 0.90 0.85 

*SE and IER scores are averaged over the two replicates of the tumor sample 

and the normal control, respectively.  

 

                

    

    

    

    

    

                    
          

 
 
  
 
  

 
 

  

                

    

    

    

    

    

                    
         

 
 
  
 
 
 
 

  

      

      

 
  
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

                                      

     

      

 
  
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

                                      

                        



 

Fig. S8: Read coverage of selected introns in the prostate cancer and the normal control 

sample, showing the individual replicates. Tumor and normal samples are represented in red 

and blue, respectively. The introns shown are the same as those in Fig. 5 of the paper: a) PCA3, 

intron located at chr9:76,782,833-76,783,704; b) RORB, introns located at chr9:74,630,368-

74,634,630 and at chr9:74,634,773-74,642,413; c) SRPX2, intron located at 

chrX:100,662,368-100,664,773. 



 

 

Fig. S9: Concordance of SE and IER scores across replicates. SE scores (a and c) and IER scores (b and d) are highly correlated across the two replicates 

of the prostate cancer tissue (c and d) and the normal control tissue (a and b). Note: some variation is to be expected, but the correlations shown here 

largely reflect the overall similarity of ρ = 0.90 (normal) and ρ = 0.92 (tumor) between the replicates (determined using DeepTools2.0 [5]).   



Materials and Methods 

BrU-chase, RNA-seq and read mapping 

Human embryonic kidney cells (HEK293) cells were incubated for 15 minutes with 2mM of 

5-bromouridine (BrU, pulse). Then, the cells were either collected immediately (0 minutes) or 

chased for 15, 30 and 60 minutes prior to RNA purification and selection of BrU-labeled RNA 

as described in [1]. The sequencing library was prepared with the TrueSeq Stranded Total RNA 

Kit (Illumina). Sequencing was performed in triplicate on the Illumina HiSeq 2500 platform to 

obtain an average of ~200 million reads per sample. Replicates read coverage are highly 

correlated with an average ρ = 0.95 which satisfies the ENCODE consortium recommendations 

for biological replicates [2]. The strand-specific reads were mapped to the human reference 

genome GRCh38.p10 with STAR v2.7.1a [3] according to recommendations from the STAR 

manual 2.4.0.1.  The genome index for STAR was built on the genome annotation from 

GENCODE v271. An average of ~85% of the reads in all samples were uniquely mapped. The 

GEO [4] accession numbers for these sequencing data are GSE92565, GSE83561 and 

GSE84722. 

 

 

 

 

 

 

 

 
1ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release27/gencode.v27.annot ation.gtf.gz 



Other datasets 

The other datasets processed and analyzed are described below. 

Table S3: Datasets used in the study. 

Accession/ 

Reference 

Genome/ 

Annotation 
Description 

GSE84722 

[6] 

GRCh38.p10/ 

gencode v27 

Total RNA-seq of HEK293 cells. Sequenced on 

HiSeq2500. 

GSE70378 

[7] 
Ensembl R64-1-1 

S. cerevisiae labeled with 4tU labeling for 1.5, 2.5 

and 5 minutes. Total RNA-seq also performed. All 

experiments were performed in triplicate. Sequenced 

on HiSeq2500. 

GSE133626 

[8] 

GRCh38.p10/ 

gencode v27 

Total RNA from fresh frozen prostate cancer tissue 

along with a matched normal control sample. Patient 

15 of the dataset. Sequenced in duplicate on 

HiSeq2000. 

 

Statistics and other methods 

DeepTools2.0 [5] was used to assess genome-wide similarity of the sequencing 

replicates. All statistical tests were performed in R 3.6.1 (https://cran.r-project.org/). SPLICE-

q’s workflow Figures were generated with Drawio (available at 

https://github.com/jgraph/drawio). 
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