
Additional File 2

Usage examples and performance evaluation for SPLICE-q

SPLICE-q: a Python tool for genome-wide quantification of

splicing efficiency

Verônica R Melo Costa1,2,*, Julianus Pfeuffer1,3,4, Annita Louloupi5, Ulf A V Ørom6,

Rosario M Piro7,*

1 Institute of Computer Science and Institute of Bioinformatics, Freie Universität Berlin,

Berlin, Germany
2 Department of Computational Molecular Biology, Max Planck Institute for Molecular

Genetics, Berlin, Germany
3 Department of Computer Science, Eberhard Karls Universität Tübingen, Tübingen,

Germany
4 Institute for Bioinformatics and Medical Informatics Tübingen, Eberhard Karls Universität

Tübingen, Tübingen, Germany
5 Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular

Medicine, Berlin, Germany
6 Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
7 Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan,

Italy

* Correspondence

veronica.melocosta@gmail.com

rosariomichael.piro@polimi.it

mailto:rosariomichael.piro@polimi.it
mailto:veronica.melocosta@gmail.com

Contents

1. SPLICE-q’s basic usage..3

2. Output..5

2.1. Standard output...5

2.2. IER output...5

3. Comparison of SPLICE-q to the Převorovský et al. workflow for quantification of splicing

efficiency in yeast...7

3.1. Comparision of splicing efficiency values..9

3.2. Comparision of run time / performance..10

4. Comparision of SPLICE-q to IRFinder...11

4.1. Comparision of run time / performance..12

5. Comparision of SPLICE-q to iREAD...14

5.1. Comparision of run time / performance..15

6. PCA3, RORB and SPRX2 introns in IRFinder and iREAD...18

7. Simulation of intron retention levels or reduced splicing efficiency...................................19

References..22

List of Figures and Tables

Table S1: SPLICE-q’s standard output (SE)..6

Table S2: SPLICE-q’s IER output...6

Fig. S1: Comparison of splicing efficiency values..10

Table S3: Run-time measurements for SPLICE-q and Převorovský et al.’s workflow...........11

Fig. S2: Comparison of SPLICE-q and IRFinder scores for nascent RNA-seq data...............13

Fig. S3: Difference between SPLICE-q and IRFinder scores for nascent RNA-seq data.......14

Fig. S4: Comparison of SPLICE-q and iREAD for nascent RNA-seq data............................17

Fig. S5: Intron retention/splicing efficiency detection results with simulated RNA-seq data.21

2

1. SPLICE-q’s basic usage

SPLICE-q (https://github.com/vrmelo/SPLICE-q) requires Python 3.6+ and can be

easily installed via pip.

$ pip install SPLICE-q

To run SPLICE-q with default parameters, it requires aligned RNA-seq reads (i.e., a

BAM file) and a genome annotation file in GTF format provided by GENCODE or Ensembl:

$ SPLICE-q.py -b <file.bam> -g <annotation.gtf>

By default, SPLICE-q prints results on the standard output, but an alternative output file

name can be specified using the option -o <outfile>.

Below are further examples illustrating different use cases for SPLICE-q.

⇨ Chromosome names

SPLICE-q was developed to parse genomic features from the annotation file of most

species. By default, it considers chromosomes chr1-720 (with or without the prefix “chr”), I-

XVI, 2L, 2R, 3L, 3R, Z, W. If the BAM file contains different chromosome names or the user

wishes to work with a particular subset of chromosomes, a list can be provided through the

parameter --ChromsList or -x:

$ SPLICE-q.py -b <file.bam> -g <annotation.gtf> -x "1,2,3,4,X"

This is telling SPLICE-q to compute splicing efficiency measures for introns from

chromosomes 1, 2, 3, 4 and X.

⇨ Coverage and mapping quality

By default, when computing SE scores, SPLICE-q works with uniquely mapped reads

and a minimum of 10 reads mapping to each of the two splice junctions of an intron. These

parameters can also be adjusted. For example:

$ SPLICE-q.py -b <file.bam> -g <annotation.gtf> -c 5 -r 1

3

-c 5 (or --MinCoverage 5) tells SPLICE-q to include introns whose splice junctions are

covered by a minimum of 5 reads each.

-r 1 (or --MinReadQuality 1) tells SPLICE-q to include all reads with MAPQ >= 1.

⇨ Multiprocessing

Multiple concurrent processes can be used to minimize running times. The number of

processes can be adjusted by the user through -p or --NProcesses:

$ SPLICE-q.py -b <file.bam> -g <annotation.gtf> -p 4

This option requires a BAM index file (.bai). SPLICE-q automatically checks if one is

available and generates one in case it is not. By default, SPLICE-q instantiates four processes

(-p 4).

⇨ Overlap of genomic elements

SPLICE-q is sensitive to the overlap of genomic elements. This means the tool takes

into consideration when a genome shows overlapping features that can cause issues with a

correct assignment of reads to specific introns or exons. For example, for introns which

overlap exons of other genes can be filtered out. The different levels of restrictiveness

for strand-specific filtering are:

● Level 1: keeps all introns in the genome regardless of overlaps with other genomic

elements.

● Level 2: selects only introns whose splice junctions do not overlap any exon of a

different gene.

● Level 3: selects only introns that do not overlap with any exon of the same or a

different gene. This is the default option.

Users wishing to select levels 1 or 2 for their analysis can simply use the parameter --

FilterLevel or -f. For example:

4

$ SPLICE-q.py -b <file.bam> -g <annotation.gtf> -f 2

This will run SPLICE-q on Level 2.

⇨ Reverse Intron Expression Ratio (IER)

As an alternative measure for splicing efficiency, SPLICE-q computes an inverse

intron expression ratio (IER), which compares the introns’ expression levels with those of

their flanking exons. IER can be quantified with the options -e or --IERatio:

$ SPLICE-q -b <file.bam> -g <annotation.gtf> -e

This option requires filtering level -f 3 (default). The other parameters can be adjusted

without restrictions when computing IER (except --MinCoverage/-c, i.e., the minimum

coverage at splice junctions, which is ignored)

2. Output

2.1 Standard output

The standard output is a 14-column tab-separated values (TSV) file containing:

chromosome, strand, gene ID, transcript ID, intron number (within the gene), SJ5’ start

position, SJ5’ end position, SJ5’ split read count, SJ5’ unsplit read count, SJ3’ start position,

SJ3’ end position, SJ3’ split read count, SJ3’ unsplit read count, SE score. See Table S1 for

an example.

2.2 IER output

When running with the inverse intron expression ratio option, the program outputs a

15-column TSV consisting of chromosome, intron start position, intron end position, strand,

intron number, gene ID, transcript ID, 5’ exon median coverage, SJ5’ split read count, SJ5’

unsplit read count, intron median coverage, SJ3’ split read count, SJ3’ unsplit read count, 3’

exon median coverage and IER. See Table S2 for an example.

5

Table S1: SPLICE-q’s standard output (SE)

chr
stran

d
gene_ID transcript_ID

intron

_ ID
sj5start sj5end

sj5_cov_nonsp

lit

sj5_cov_spl

it
sj3start sj3end

sj3_cov_

nonsplit

sj3_cov_

split
SE

1 +
ENSG00000000460

.16

ENST0000041381

1.3
3

1698009

71

6980097

2
22 9

1698026

20

1698026

21
25 4 0.7833

1 +
ENSG00000000460

.16

ENST0000041381

1.3
4

1698027

25

1698027

26
16 4

1698031

68

1698031

69
16 2 0.8421

1 +
ENSG00000000460

.16

ENST0000041381

1.3
9

1698234

72

1698234

73
9 10

1698270

50

1698270

51
9 3 0.5806

17 -
ENSG00000108654

.13

ENST0000058123

7.2
2

6450054

8

6450054

9
63 320

6450032

6

6450032

7
66 166 0.2097

Table S2: SPLICE-q’s IER output

chr IStart IEnd strand
intron_

ID
gene_ID transcript_ID

exon5_

cov

sj5_cov

_

split

sj5_cov_

nonsplit

intron_

cov

sj3_cov_

split

sj3_cov_

nonsplit

exon3_

cov
IER

1
1698009

71

16980262

0
+ 3

ENSG000000004

60.16

ENST00000413

811.3
17.0 22 9 2.0 25 4 22.0 0.8974

1
1698027

25

16980316

8
+ 4

ENSG000000004

60.16

ENST00000413

811.3
22.0 16 4 1.0 16 2 10.0 0.9375

1
1698234

72

16982705

0
+ 9

ENSG000000004

60.16

ENST00000413

811.3
21.0 9 10 2.0 9 3 11.0 0.8750

17
6450032

6
64500548 - 2

ENSG000001086

54.13

ENST00000581

237.2
387.0 63 320 193.0 66 166 148.0 0.2785

6

3. Comparison of SPLICE-q to the Převorovský et al. workflow for quantification of

splicing efficiency in yeast

Převorovský et al. [1] presented a workflow for genome-wide determination of

splicing efficiency in yeast. The workflow starts from FASTQ files and first performs quality

control, then read mapping and finally the quantification of splicing efficiency for each splice

junction separately. This workflow relies on numerous pre-installed open-source tools

(FastQC, HISAT2, Samtools, Regtools and Bedtools) and custom shell and R scripts and was

explicitly developed for Saccharomyces cerevisiae (the file names of the reference genome

and annotation file are hard-coded and any change requires to adapt the source code of the

scripts accordingly). The set of scripts can be downloaded from the supplementary material

of the original paper by Převorovský et al. [1] and needs to be thoroughly adapted for RNA-

seq datasets other than those used by the original authors, requiring thus familiarity with shell

and R scripting. The supplementary material, provided by the authors, includes also an

alternative version of the workflow for processing RNA-seq data from Schizosaccharomyces

pombe.

Apart from the installation of the above mentioned tools, the time used to manually

adapt Převorovský et al.’s workflow was considerable. Furthermore, some of the parameters

of the pre-installed tools used by the workflow’s script were outdated and needed to be

corrected in the code. The following changes had to be made before running the workflow for

the 4tU-seq yeast data and the prostate cancer data used in our paper:

1. In the main shell script of the workflow (workflow.sh):

a) We commented out FastQ file merges which were required for the data originally

used by the authors for their publication, e.g.:

▪ cat ./FASTQ/1-BY4741-b_1.fq.gz ./FASTQ/13-BY4741-

_1.fq.gz > ./FASTQ/WT_1.fastq.gz

a) We updated the use of “regtools junctions extract” by workflow.sh,

due to a change of the regtools command line interface since the publication of the

workflow:

▪ previous version:

-i ${min_intron} -I ${max_intron}

7

▪ now:

-m ${min_intron} -M ${max_intron} -s 1

where “${min_intron}“ is a minimum intron length of 20 and “$

{max_intron}“ is a maximum intron length of 10000, both hard-coded in

the workflow.sh script, and “-s 1“ stands for “first-strand/RF”, indicating

strand-specific RNA-seq data where the first read (or the only read in case of

SE) is from the opposite strand (alternatively, “-s 2“ can be used for second-

strand data and “-s 0“ for unstranded data).

2. In the R script which identifies intron-exon boundaries and counts junction reads

(junctions.R):

a) The script was written for (and works well with) yeast data, but introduces

problems for human data because it writes large chromosomal coordinates in

scientific notation in output files (e.g., “1.4e+07” instead of “14000000”). This

causes errors in downstream analysis steps. To circumvent the problem, the

following R command can be added to the beginning of the script:

▪ options(scipen=999)

3. In the R script which computes the splicing efficiencies (efficiency.R):

a) We changed hard-coded sample names, e.g.:

▪ comparisons <- t(matrix(c('14-prp45-_1', '13-BY4741-

_1', '7-AVY17-b_1', '1-BY4741-b_1', 'prp45_1',

'WT_1'), nrow = 2, ncol = 3))

b) If desired, the user has to change the hard-coded default threshold for the

minimum number of reads located at each splice junction of an intron:

▪ threshold.counts <- 5

To run the workflow on data from other species, also the names of the reference

genome and the annotation file need to be manually changed in the workflow scripts.

8

The most important manual modifications to the workflow, however, that a potential

user should keep in mind, regard the strandness of the RNA-seq data to be analyzed. The

strandness needs to be correctly specified in the function call of the HISAT2 read aligner, the

function call of regtools (see above), and for bedtools multicov. From the description of these

necessary modifications, it should be clear that running the workflow correctly is a significant

challenge for users unfamiliar with shell scripting and R programming.

To produce a comparable output with SPLICE-q, we adjusted the parameters to match

the gene annotation and cutoffs hard-coded in Převorovský et al.’s workflow as follows:

$ SPLICE-q.py -b <in.bam> -g Saccharomyces_cerevisiae.R64-

1-1.84.gtf -f 1 -l 20 -c 5

Thus, we ignore overlaps of genomic elements, consider only introns with a minimum

length of 20 bp and include introns whose splice junctions are covered by a minimum of 5

reads each. While SPLICE-q provides a single output containing all the information used for

the splicing efficiency (SE) quantification, allowing the user to easily access information such

as read counts and coordinates, the Převorovský et al.’s workflow outputs 12 files distributed

in 3 folders (not shown here).

3.1 Comparison of splicing efficiency values

The workflow [1] quantifies the splicing efficiencies for each intron’s 5’ splice site

and 3’ splice site separately as the number of “transreads”, i.e., split reads spanning from

exon to exon divided by the number of reads covering the first or last base of the intron. To

compare the output to the one obtained for SPLICE-q, we used the 4tU-seq data from S.

cerevisiae (time point 1.5 minutes) [2] used in our paper.

Although the authors call their metric “splicing efficiency”, the values are not limited

to a range from 0 to 1. In fact, some of the outliers had extremely high values (“splicing

efficiency” > 5000) making the workflow’s scores not directly comparable to SPLICE-q’s

SE. Hence, we limit our analysis to correlations between the two measurements, but ignore

absolute differences between the scores obtained by the two methods.

While there are notable differences between SPLICE-q and Převorovský et al.’s

workflow, overall, the splicing efficiencies for individual introns provided by the two

measures are strongly correlated (Fig. S1).

9

Fig. S1: Comparison of splicing efficiency values. SE (SPLICE-q, y-axis) and the log-

transformed splicing measure computed by Převorovský et al.’s workflow (x-axis) for

individual introns, computed from 4tU-seq data from S. cerevisiae (time point 1.5 minutes)

[2]. Pearson correlation coefficient: 0.699, Spearman rank correlation: 0.703 (p < 2.2e-16 for

both).

3.2 Comparison of run times / performance

We tested both SPLICE-q and Převorovský et al.’s workflow on a Dell Precision

Mobile Workstation (laptop with Linux, Intel Core i7-9850H, 32 GB physical memory).

We ran Převorovský et al.’s full workflow but measured time consumption for the

quality control plus read mapping and the following splicing efficiency analysis separately.

For SPLICE-q, which does not include a read mapping step, we used the BAM files produced

by Převorovský et al.’s workflow and performed only the splicing efficiency analysis. Since

only quality control and read mapping are run on multiple cores (four cores, hard-coded) in

Převorovský et al.'s workflow, while splicing efficiencies are computed on a single core, we

also used one core for SPLICE-q. For further comparison, we additionally ran SPLICE-q also

on 4 cores.

We first determined the run times for one single sample of 4tU-seq data from S.

cerevisiae (time point 1.5 minutes) [2]. Then, we tested a more demanding dataset: a total of

four samples of the prostate cancer patient analyzed in our paper (two replicates for the tumor

and two replicates for the normal control; patient 15 of ref. [3]). Since Převorovský et al.’s

workflow was developed for single-end RNA-seq data, we considered only the FASTQ files

10

for read 1 (R1) [2]. Then, we tested a more demanding dataset: a total of four samples of the

prostate cancer patient analyzed in our paper (two replicates for the tumor and two replicates

for the normal control; patient 15 of ref. [3]). Since Převorovský et al.’s workflow was

developed for single-end RNA-seq data, we considered only the FASTQ files for read 1 (R1).

As shown in Table S3, for a small dataset and a species with few introns (yeast),

Převorovský et al.’s workflow is slightly faster than SPLICE-q which, however, yields

comparable results. For a larger dataset and a species with a significantly higher number of

introns (human), SPLICE-q has a decisive advantage with significantly improved run times.

Especially for larger datasets, running SPLICE-q on multiple cores can further speed

up the computation of splicing efficiencies. For the smaller dataset, most of the time is spent

reading input data (which is done on a single core), such that the computation of splicing

efficiencies on 4 cores can shorten run times only slightly.

Table S3: Run-time measurements for SPLICE-q and Převorovský et al.’s workflow

Data

Total number
of mapped

reads analyzed

Number of
introns in the

GTF file
(genome

annotation)

Quality
control

(FastQC)
and read
mapping

(HISAT2)
[Workflow]

Splicing efficiency computation

Workflow
(1 core)

SPLICE-q
(1 core)

SPLICE-q
(up to

4 cores)

4tU-seq data (S.
cerevisiae; time

point 1.5 minutes
of [2])

36,386,555 427 65.5 min 1.97 min 2.66 min 2.09 min

Prostate cancer
(H. sapiens;

patient 15 of [3])
152,603,346 236,373 100.5 min 125.3 min 17.57 min 6.53 min

4. Comparison of SPLICE-q to IRFinder

IRFinder [4] was designed to detect intron retention from mRNA-seq data. The end-

to-end analysis (“FastQ” mode) includes the alignment of sequencing reads using STAR [1],

quality control and the quantification of intron retention levels. IRFinder can also be used to

compare intron retention levels between multiple samples. Each step of the workflow is

provided by a single module that can be used independently, and the user can easily set up the

workflow starting from pre-aligned reads (unsorted BAM files) as input (“BAM” mode). The

quality control filter issues warnings when the data is not suitable for intron retention

detection, i.e., data incorrectly labeled as RNA-seq experiments or data from non poly(A)-

enriched RNA-seq.

11

IRFinder computes a score called IRratio as the intron’s average base coverage

(number of reads divided by length) divided by said intron coverage plus the base coverage

of the spliced transcript (using as a proxy the higher value of the number of split reads

mapping to the 5’ splice junction and the number of split reads mapping to the 3’ splice

junction of the intron). [Note: while the IRFinder paper [4] states that the sum of the two read

counts are used, which makes much less sense from a biological point of view, the published

source code of version 1.3.1 actually uses the maximum of the two read counts, as described

here]. Intronic parts that overlap with other known genomic features (e.g., intronic snoRNAs)

are excluded from the calculation of per-base intron coverages. Since IRFinder is not

available as a stand-alone package, the dependencies need to be manually installed by the

user (Perl, STAR, Samtools and Bedtools). Furthermore, the module for intron retention

quantification of the tool (“BAM” mode) does not offer filtering options as parameters. The

output has to be filtered manually (e.g., regarding minimum read depth of overlap of intron-

exon boundaries with other genomic elements).

We analyzed two time points of the HEK293 nascent RNA-seq data (0 minutes and

60 minutes) to compare SPLICE-q and IRFinder (version 1.3.1). Although there are

differences between the results of both tools, overall, the splicing scores for individual introns

provided by them (SE and IER for SPLICE-q and the IRratio for IRFinder) show a high

negative correlation. See Fig. S2 for scatterplots and Fig. S3 for the distributions of

differences between the measures; for the latter, we use the inverse of the IRratio score (1-IRratio) as a direct comparison to SE and IER.

4.1 Comparison of run times / performance

We tested IRFinder (version 1.3.1) on a Dell Precision Mobile Workstation (laptop

with Linux, Intel Core i7-9850H, 32 GB physical memory) using the prostate tumor data

described in our paper. Since IRFinder cannot run on multiple cores (no parallelization), we

also ran SPLICE-q on a single core. Even running on a single core, SPLICE-q has improved

run times (17.6 minutes as opposed to 28.5 minutes of elapsed time for IRFinder) and

requires less memory (1.33 GB as opposed to 3.28 GB peak memory usage). As previously

mentioned, running SPLICE-q on multiple cores can further speed up the computation of

splicing efficiencies

12

Fig. S2: Comparison of SPLICE-q and IRFinder scores for nascent RNA-seq data. HEK293 nascent RNA-seq data (0 minutes and 60

minutes). Only introns satisfying SPLICE-q’s default filtering criteria in all samples were kept.

13

Fig. S3: Difference between SPLICE-q and IRFinder scores for nascent RNA-seq data.

HEK293 nascent RNA-seq data (0 minutes and 60 minutes). Only introns satisfying SPLICE-

q’s default filtering criteria in all samples were kept. For comparison, we use the inverse of

IRFinder’s IRratio score (1-IRratio). RMSE = Root-mean-square error.

5. Comparison of SPLICE-q to iREAD

iREAD (intron REtention Analysis and Detector) is another tool developed to detect

intron retention events from RNA-seq data [5]. The iREAD algorithm takes aligned reads

(BAM file sorted by coordinate and its index) together with a list of introns that do not

overlap with other genomic elements in BED format. iREAD provides these intron

coordinates for human, mice and D. Melanogaster for download on their website

(https://github.com/genemine/iread). However, users working with different species or

annotation versions are required to independently calculate the intron annotations, which

brings some inconveniences, specially for users not familiar with parsing genomic features.

14

https://github.com/genemine/iread

Furthermore, iREAD is not available as a stand-alone package and the dependencies need to

be manually installed (BEDOPS, Samtools and the PERL module Parallel::ForkManager).

iREAD uses intron expression levels and splice junction reads to detect retained

introns. The tool computes an entropy score that assesses the "flatness" of the distribution of

intronic reads quantified by dividing each intron into eight bins in which the number of reads

is counted and normalized. Then, the entropy is calculated as described in ref. [5].

The final, binary decision of whether a specific intron is to be considered as retained

or not depends on arbitrary thresholds for the total number of intronic reads (default: ≥20),

the number of split reads (default: ≥1), the intron expression level (FPKM; default: ≥3) and

the entropy score (default: ≥0.9).

To compare SPLICE-q and iREAD (version 0.8.9), we analyzed two timepoints of the

HEK293 nascent RNA-seq data (0 minutes and 60 minutes), using for both the gene

annotation (or derived intron annotation) from GENCODE v27. Since the binary output

(intron retained or not) of iREAD is not directly comparable to neither SE scores nor IER

scores, we binned SE scores or IER scores into bins of width 0.1 and verified what fraction of

corresponding introns is declared to be retained by iREAD with default settings (see Fig. S4).

While there are some notable exceptions, as expected introns with lower SE or IER scores

tend to be more frequently considered as retained by iREAD, especially for the nascent RNA-

seq data at 0 minutes. Yet, the fraction of introns identified by iREAD always remains rather

low.

5.1 Comparison of run times / performance

Although iREAD optionally allows to specify the maximum available memory as a

command line option, unfortunately not all of the various Python, Perl and Bash scripts which

compose the tool do actually accept this parameter. Especially for very large BAM files, the

memory requirement can easily exceed the 32 GB available on the Dell Precision Mobile

Workstation (laptop with Linux, Intel Core i7-9850H, 32 GB physical memory) on which we

tested the other tools. We therefore compared the performance of SPLICE-q and iREAD

(version 0.8.9) on a computing system with 2x Dual-Core AMD Opteron 8220 processors (16

available cores) and 264 GB of physical memory. For the largest of the BAM files from the

HEK293 nascent RNA-seq dataset (15.88 GB file size), iREAD with default settings ran for

3.31 hours and had a peak memory usage of 166.6 GB, although the command line parameter

15

was set for a maximum of 32 GB. For one of the prostate cancer replicates (BAM file size

9.97 GB), iREAD required 1.08 hours with a peak memory usage of 35.5 GB. For the same

BAM files, SPLICE-q with default settings (except for using 14 cores because iREAD by

default uses up to N cores, where N is the maximum number minus 2; here 16-2=14).

SPLICE-q completed processing the two BAM files in only 18.9 minutes (1.32 GB peak

memory usage) and 13.8 minutes (1.33 GB peak memory usage), respectively.

16

Fig. S4: Comparison of SPLICE-q and iREAD for nascent RNA-seq data. HEK293 nascent RNA-seq data (0 minutes and 60 minutes).

Only introns satisfying SPLICE-q’s default filtering criteria in all samples were kept. The plots show the fractions of intron retention events

detected by iREAD (y-axes) among the introns falling into specific bins of SE or IER scores as determined by SPLICE-q (x-axes).

17

6. PCA3, RORB and SPRX2 introns in IRFinder and iREAD

We checked the results we obtained for iREAD and IRFinder (default settings) for the four

introns shown Fig. 5 of our paper (and Fig. S8 in Additional file 1), using the same gene

annotation (GENCODE v27) we had used for SPLICE-q:

● PCA3, intron located at chr9:76,782,833-76,783,704:

○ IRFinder: despite having used the same gene annotation for building the

IRFinder index, we found no results for PCA3 in the IRFinder output.

○ iREAD detected no intronic fragments and junction reads for both the normal

and the tumor replicates, so it considered the intron as not retained. This is

somewhat surprising given that Fig. 5 clearly shows intronic reads, especially

in the normal control.

● RORB, intron located at chr9:74,630,368-74,634,630

○ IRFinder: normal tissue replicates: IRratio of 0.00837 and 0.00784 (average:

0.00811); tumor tissue replicates: IRratio of 0.02771 and 0.02545 (average:

0.02658). This would correspond roughly to an SE of 1-0.00811=0.99189 for

the normal tissue and an SE of about 1-0.02658=0.97342 for the tumor. The

differences seem marginal, so IRFinder would probably not have detected the

change in splicing efficiency we can actually see in Fig. 5.

○ iREAD detected no intronic fragments and junction reads for both the normal

and the tumor replicates, so it considered the intron as not retained. This is

somewhat surprising given that Fig. 5 clearly shows intronic reads, especially

in the tumor.

● RORB, intron located at chr9:74,634,773-74,642,413

○ IRFinder: as for the other intron of RORB, IRFinder would unlikely have

detected any difference: IRratios are 0.01062 and 0.00657 for the normal

replicates and 0.02419 and 0.01436 for the tumor replicates.

○ iREAD detected no intronic fragments and junction reads for both the normal

and the tumor replicates, so it considered the intron as not retained. This is

somewhat surprising given that Fig. 5 clearly shows intronic reads, especially

in the tumor.

● SRPX2, intron located at chrX:100,662,368-100,664,773

18

○ IRFinder: like for the RORB introns, IRFinder would not have detected any

meaningful difference (IRratios for normal: 0.02080 and 0.00805; for tumor:

0.01474 and 0.01308).

○ iREAD detected both intronic fragments and junction reads for the normal and

the tumor replicates, but still considered the introns as not retained, mostly due

to low entropy scores, it thus considers the intronic expression not to be

uniform enough to call an intron retention event.

Thus, none of the events shown in Fig. 5 of our paper (and Fig. S8 in Additional file 1) would

have been detected by IRFinder or iREAD.

7. Simulation of intron retention levels or reduced splicing efficiency

Since to our best knowledge, there is no gold standard RNA-seq data set containing a set of

experimentally verified intron retention events, in order to be able to directly compare the

capabilities of SPLICE-q, IRFinder and iREAD to detect such events, we simulated a set of

RNA-seq samples and applied the methods to verify whether they were able to identify

different intron retention levels (or the opposite, i.e., splicing efficiency levels).

In order to reduce the computational time required to simulate multiple data sets with

different characteristics, especially due to the need to also simulate intronic reads, we

determined a small set of 527 genes with a total of 1213 introns from the GENCODE v27

gene annotation applying the following filters:

1. We excluded all genes which overlap with other genes on the same strand or which do

not lie on one of the regular human chromosomes (1-22, X, Y, M), i.e., we excluded

all decoy sequences.

2. We excluded all genes which do not code for proteins or do not contain any introns.

3. For simplified handling and further reduction of the number of genes, we limited the

analysis to genes on the forward strand of the reference genome.

4. Genes were kept only if all their introns have lengths between 2*N and 20*N, where

N is the simulated read length.

19

We used RNASeqReadSimulator (https://github.com/davidliwei/RNASeqReadSimulator) to

produce paired-end reads with a read length of N=151 bases, an average template length of

175 bases and a standard deviation for the template length of 25 bases, corresponding to the

characteristics of the prostate cancer data we analyzed in our paper.

In order to produce different splicing efficiency levels (and hence intron retention levels) for

the selected genes, we simulated 1) “full gene reads” for the entire genes (including their

introns) and 2) “exon-only reads” for the exons alone (according to the GENCODE gene

annotation) and then produced merged Fastq files containing both sets of simulated reads.

We defined three average target splice-junction coverage levels of 10x, 30x and 70x

coverage. For each of these target coverage levels we performed 11 simulations with 0%,

10%, 20% … 100% “exon-only” reads, corresponding to average splicing efficiencies of 0,

0.1, 0.2 … 1.0, respectively. Please note, that given the high variability of RNA-seq coverage

profiles, which are correctly reflected by RNASeqReadSimulator, both the coverage at splice

junctions and the simulated splicing efficiencies can be considered only as average “target”

values because they can vary significantly between introns.

For each simulated RNA-seq sample (i.e., for each target splice-junction coverage and target

splicing efficiency), we counted what fraction of introns would be detected as (partly)

retained by iREAD, IRFinder (using the threshold of IRratio ≥ 0.1 proposed by the authors

[4]) and SPLICE-q’ SE or IER (using thresholds of SE ≤ 0.9 and IER ≤ in analogy to the

IRratio threshold because from a conceptual point of view SE and 1-IRratio can be

considered as strongly related).

Fig. S5 shows that iREAD misses most of the simulated events when applied with default

parameters. This is most likely due to its restrictive requirement for intron expression levels

(≥3 FPKM). IRFinder and both SPLICE-q measures show mostly equivalent results but

especially for lower target splice junction coverage (10x, 30x) SPLICE-q performs slightly

better when identifying simulated events close to the minimum threshold (target fraction of

split reads, i.e., target splicing efficiency, of 0.9).

20

https://github.com/davidliwei/RNASeqReadSimulator

Fig. S5: Intron retention/splicing efficiency detection results with simulated RNA-seq data. The target coverage of splice junctions was 10x (left),

30x (center) or 70x (right). For each target coverage, a fraction from 0% to 100% (i.e., 0.0 to 1.0, in steps of 0.1) of the coverage were “exon-only

reads”, equivalent to the same average fraction of split reads at the splice junctions.

21

References

1. Převorovský M, Hálová M, Abrhámová K, Libus J, Folk P. Workflow for Genome-Wide

Determination of Pre-mRNA Splicing Efficiency from Yeast RNA-seq Data. Biomed Res Int.

2016;2016:1–9. doi:10.1155/2016/4783841.

2. Barrass JD, Reid JEA, Huang Y, Hector RD, Sanguinetti G, Beggs JD, et al.

Transcriptome-wide RNA processing kinetics revealed using extremely short 4tU labeling.

Genome Biol. 2015;16:282. doi:10.1186/s13059-015-0848-1.

3. Kumar A, Badredine A, Azzag K, Kasikçi Y, Ranty MLQ, Zaidi F, et al. Patient-matched

analysis identifies deregulated networks in prostate cancer to guide personalized therapeutic

intervention. bioRxiv. 2019;:695999. doi:10.1101/695999.

4. Middleton R, Gao D, Thomas A, Singh B, Au A, Wong JJL, et al. IRFinder: Assessing the

impact of intron retention on mammalian gene expression. Genome Biol. 2017;18:51.

doi:10.1186/s13059-017-1184-4.

5. Li HD, Funk CC, Price ND. iREAD: a tool for intron retention detection from RNA-seq

data. BMC Genomics. 2020 Feb 6;21(1):128. doi: 10.1186/s12864-020-6541-0.

22

23

	Reverse Intron Expression Ratio (IER)
	2. Output

