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Supplementary Note 1: Characterization of α-MoO3 flakes transferred on air/SiO2 

structures by optical microscopy 

 

Supplementary Figure 1a-c shows optical images of the transferred α-MoO3 flakes on the air/SiO2 

structures with different geometries and sizes. The different thicknesses of the flakes can be 

identified by their different colors due to their thickness-dependent optical contrast. Remarkably, 

a precise positioning of the transferred flakes on top of the air structures (numbered as 1-4) acting 

as prisms or lenses can be done with our home-built transferring system1.The surface roughness, 

edges, and thickness of the α-MoO3 flakes were measured by atomic force microscopy (AFM) 

(Supplementary Figure 1d-f).  

 

Supplementary Figure 1 Optical microscope images and AFM topography measurements of 

planar prisms and lenses in α-MoO3 flakes.  a, Optical microscopy image of a α-MoO3 flake on 

top of triangular-shaped air structures acting as planar prisms. b, Optical microscopy image of a 

α-MoO3 flake on top of triangular-shaped air structures acting as planar hyper-lenses. c, Optical 

microscopy image of a α-MoO3 flake on top of rectangular air structures for observing double 

refraction of polaritons. d-f, AFM topography measurements of flakes in (a-c), respectively. 

 

  



Supplementary Note 2: Refraction of polaritons in anisotropic media as a function of the 

angle of incidence and the incident wavelength  

 

We denote the angle of refraction of the polaritonic wavevector (k) and energy flux (S) as θout−k 

and θout−S , respectively. As discussed in Fig. 2 of the main text, the angle of refraction of 

polaritons propagating in anisotropic media depends on their IFC. Since the hyperbolic IFCs 

depend on the incident wavelength (see Fig. 2 in the main text), different angles of refraction are 

obtained when a structure is imaged under different incident wavelengths. This dependence is 

demonstrated in the columns of Supplementary Figure 2, where we vary the illuminating 

wavelength for different 2D prisms geometries. 

Moreover, the angle of refraction is also dependent on the angle of incidence. By changing the 

angle at the boundary of the prisms (θ1 ∕ θ2 ∕ θ3  in Supplementary Figure 2), the angle of 

incidence can be controlled, resulting in different directions of the refracted waves. The images in 

Supplementary Figure 2 indicate that the angle between 𝐤𝑜𝑢𝑡 and 𝐒out becomes larger as the angle 

of incidence increases from ~25° to ~55°.  

 

Supplementary Figure 2 Hyperbolic refraction of polaritons as a function of the angle of 

incidence and incident wavelength. a-c, Experimental near-field images of polaritons 

propagating in a 160-nm-thick α-MoO3 flake. White dashed lines marks triangular prisms 

fabricated by etching an air cavity on the SiO2 substrate below the α-MoO3 flake. The boundary 



angles are 𝜽𝟏 ~ 25° (a), 𝜽𝟐 ~ 40° (b), and 𝜽𝟑 ~ 55° (c), respectively. The incident wavelength is 

11.1 μm, 11.2 μm, and 11.3 μm in the left, middle and right panel, respectively. White arrows in 

the near-field image (top left) represent the crystal directions of α-MoO3.  

 

 

Supplementary Note 3: Clarification of the refractive origin of the polaritonic waves in the 

near-field images  

 

Figure 2 of the main manuscript describes refraction of hyperbolic polaritons in α-MoO3 flakes as 

they pass through triangular prisms, which are defined by fabricating air cavities on the SiO2 

substrates below the α-MoO3 flakes. To rule out any possible contribution to the near-field images 

stemming from the excitation of polaritons by the boundaries of the air cavities, we carried out 

numerical simulations using large metallic prism-like structures on α-MoO3 flakes (with the same 

angles as the air-cavity prisms used in Fig. 2 of the main manuscript), which act as effective metal 

antennas to launch polaritons in the flakes. This design resembles a potential situation where 

polaritons are excited by the edges of the air prisms. 

However, as shown in Supplementary Figure 3, the simulated near-field images demonstrate that 

in the case of polaritons being launched by the metal antenna, the polaritonic waves always exhibit 

parallel wavefronts to the boundary of the antenna (black solid lines in Supplementary Figure 3), 

i.e. their wavevector (black arrows in Supplementary Figure 3) is perpendicular to the boundary. 

Such observation of highly confined polaritons with parallel wavefronts with respect an extended 

source can be explained by the Huygens’ principle, which states that every point on the boundary 

acts as a source of wavelets that interfere, thus forming the wavefront. As the momentum of 

polaritons in α-MoO3 is much larger than the size of the source, such interference gives rise to 

patterns that are always parallel to the contour of the source.  

The behavior of polaritons launched by the edge is therefore in stark contrast to what is shown in 

Fig. 2, where the outcoming waves always show tilted wavefronts with respect to the boundary. 

As such, their wavevector not completely perpendicular to it, but tilted, which is expected by the 

general laws of refraction due to momentum conservation (see Fig. 1 and Fig. 2 in the main text). 

Hence, this difference clearly confirms refraction as the origin of the propagating polaritonic 

waves upon passing through the air prisms (as shown in the near-field images in Fig. 2).  



 

Supplementary Figure 3 Propagation of polaritons excited by gold antennas in hyperbolic 

media. a-b, Simulated near-field images, Re(Ez), on gold antennas placed on top of a 160-nm-

thick α-MoO3 flake whose edge is oriented at an angle of 40° (a) and 55° (b) with respect to the 

[001] crystalline direction in α-MoO3. Polaritons excited by the gold antennas, with wavevector 𝒌 

(black arrow), exhibit wavefronts which are parallel to the boundary of the antennas in stark 

contrast to what is obtained in Fig. 2 of the main manuscript for refracted polaritons.  

 

Another potential concern against the refractive origin of the polaritonic waves coming out from 

the prisms could be that there are hardly any visible waves inside the air-cavity prisms. Indeed, as 

expected in a situation in which the incident polaritons refract at each of the boundaries as they 

pass through the prism, the intensity of the waves inside the prisms should be much higher than 

that of the refracted waves (outside the prisms), due to the refraction loss at the second boundary. 

In this regard, we note that no clear wave oscillations are observed inside the prisms in Fig. 2 due 

to the selected color saturation, which was chosen to highlight and improve the visibility of the 

weaker refracted waves. 

In Supplementary Figure 4, we show the same results as the ones depicted in Fig. 2 of the main 

text, but with lower saturation, where fringes ascribed to the incident waves can be clearly 

observed inside the prisms. Also, we would like to note that, regarding contrast in the experimental 

s-SNOM images, it is necessary to take into account the non-negligible near-field contribution of 

the tip-sample interaction (especially for metal tips, which are generally employed due to their 

large scattering cross-section). This contribution typically consists of a constant complex value 

added to the complex polaritonic signal. As in our measurements we have two effective media, α-

MoO3 /air and α-MoO3 /SiO2, it is expected that such contribution gives rise to small offset 

differences in the real part of the near-field plots in one region with respect to the other. In turn, 



these differences are not present in the numerical simulations. Nevertheless, this contribution is 

not expected to have any influence on the direction of the polaritonic wavevectors and Poynting 

vectors, neither on their relative contrast, allowing us to unambiguously visualize refraction 

phenomena.  

 

Supplementary Figure 4 Visualization of incident waves inside the prisms for refraction of 

polaritons in anisotropic media. a-b, The same experimental near-field images as in Fig. 2a-b of 

the main text, but with different color saturation. With less saturation, fringes ascribed to incident 

waves are clearly observed inside the prisms. The wavelength of incident waves are marked by 

black arrows.  

 

 

Supplementary Note 4: Lensing of polaritons in anisotropic media as a function of the angle 

of incidence and the incident wavelength  

 

The full-width at half maximum (FWHM) of the focus spot and the focal distance of the refractive 

hyperbolic lens (triangular shape), shown in Fig. 4 of the main manuscript, are determined by 𝐤𝑜𝑢𝑡 

and 𝐒𝑜𝑢𝑡, respectively, which eventually depend on the incident free-space photon wavelength (𝜆0) 

and the angle of incidence of the incoming polaritons. In Supplementary Figure 5, we show near-

field images of the same lens used for Fig. 4 in the main text, but taken at different incident 

wavelengths. When we increase the incident wavelength from 𝜆0~11.04 𝜇𝑚  (Supplementary 

Figure 5a) to 𝜆0~11.08 𝜇𝑚  (Supplementary Figure 5b) and 𝜆0~11.16 𝜇𝑚  (Supplementary 

Figure 5c), the hyperbolic IFCs become more open, yielding refracted polaritons with different 



𝐤𝑜𝑢𝑡 and 𝐒𝑜𝑢𝑡. Given that the focusing arises from the interference of refracted polaritons, the 

FWHM of the focus spot should be of the same order as the half the wavelength of the refraction 

polaritons (𝜆𝑜𝑢𝑡/2, with 𝜆𝑜𝑢𝑡 = 2𝜋 |𝐤𝑜𝑢𝑡|⁄ ). Meanwhile, the focal distance changes from a value 

of ~0.7 μm (Supplementary Figure 5a) to ~1.2 μm (Supplementary Figure 5b), and ~1.8 μm 

(Supplementary Figure 5c) due to the different directions of 𝐒𝑜𝑢𝑡  for different incident 

wavelengths.  

 

Supplementary Figure 5 HPhPs focusing in hyperbolic lenses with varying incident 

wavelength. a-c, (Left panel) Experimental near-field images of lensing of polaritons at excitation 

wavelengths 𝜆0 = 11.04 μm (a), 11.08 μm (b), 11.16 μm (c), respectively. By varying the incident 

wavelength, both the FWHM of the focus spot and the focal distance of hyperlens are controlled. 

(Right panel) The corresponding analytic IFCs and the wavelength obtained for the refracted 



polaritons (λout), being approximately the double of the FWHM value for the focus spot. Grey and 

black curves represent IFCs of polaritons in the α-MoO3/air and α-MoO3/SiO2 media, respectively. 

 

Besides on the incident wavelength, refraction of polaritons in anisotropic media also depends on 

the angle of incidence of the incoming polaritons, as shown in Supplementary Figure 6. When the 

angle of incidence varies from θ1~57° (Supplementary Figure 6a) to θ2~62° (Supplementary Figure 

6b), the modulus of refracted wavevector also increases (Supplementary Figure 6c), indicating that 

the wavelength of the refracted polaritons (𝜆𝑜𝑢𝑡) and the corresponding FWHM of the focus spot 

become smaller. In addition, the direction of 𝐒𝑜𝑢𝑡 varies (Supplementary Figure 6c), which makes 

the focal distance to change from a value of ~2.5 μm (Supplementary Figure 6a) to ~1.3 μm 

(Supplementary Figure 6b).  

 
Supplementary Figure 6 HPhPs focusing in hyperbolic lenses with varying geometries. a-b, 

Experimental near-field images of a polaritonic hyperlens with the boundaries forming an angle 



of 𝜃1 = 57° (a) and 𝜃2 = 62° (b), respectively. c, The corresponding analytic IFCs (grey for α-

MoO3/air and black for α-MoO3/SiO2) produce different wavevector and energy flux directions of 

the refracted polaritons for the two geometries of the lenses. These values are in good agreement 

with the experiments shown in (a-b).  

 

Supplementary Note 5: Optimization of a lens for polaritons in hyperbolic media  

 

Focusing of polaritons is obtained upon the interference of the outgoing refracted polaritons as 

they pass through the refractive lens (prism). The wavevectors (𝐤𝑜𝑢𝑡) and direction (𝐒𝑜𝑢𝑡) of the 

refracted polaritons depend on the angle of the boundaries defining the lens (θ), or equivalently, 

on the angle of incidence, as shown in Supplementary Figure 6. The size of the focus spot is 

intimately related to the wavelength of the refracted polaritons (𝜆𝑜𝑢𝑡, being 2𝜋 |𝐤𝑜𝑢𝑡|⁄ ): smaller 

sizes are obtained for smaller 𝜆𝑜𝑢𝑡. Moreover, |𝐤𝑜𝑢𝑡| increases as the angle that the wavevector 

forms with the x axis, 𝛼, increases up to the asymptote of the hyperbolic IFC. Therefore, the 

polaritonic wavelength (and, therefore, the size of the focus) is smaller as we approach the angle 

of the asymptote of the hyperbolic IFC.  

On the other hand, since polaritons decay exponentially as they propagate, the intensity at a distant 

focus can be rather weak. Propagation losses are more remarkable for polaritons with larger 

wavevectors (smaller wavelengths). 

There is thus a compromise between momentum (directly related to the focus size) and propagation 

loss (directly related to the intensity at the focus spot). The propagation loss of polaritons can be 

evaluated by the value of their figure of merit (FOM), which is defined by 𝐿𝑝/𝜆𝑝, 𝐿𝑝 and 𝜆𝑝 being 

the polaritonic propagation length and wavelength, respectively. It should be noted that for a given 

design of the lens where its boundaries are perpendicular to the asymptote of the hyperbolic IFC, 

the refracted polaritons possess infinitely large momentum, thus setting a lower limit to the size of 

the focus spot, however, with relatively high losses as mentioned above.  

 

 



Supplementary Figure 7 Optimization of a lens for polaritons in hyperbolic media. a, 

Calculated modulus of the wavevector (k) and the figure of merit (FOM) of polaritons in a 170-

nm-thick α-MoO3 flake as a function of the angle (α) between k and the direction of ky = 0 in the 

IFCs. b, Corresponding analytic IFC of polaritons in the same α-MoO3 flake as in (a) on top of 

SiO2 (black curve) and air (grey curve).When the angle of the boundary (orange line) is chosen θ

= 62°, we obtain an angle 𝛼𝑒𝑥𝑝 = 58° based on momentum conservation at the boundary.  

 

In the following, we optimize the design of the lens (angle of their boundaries, θ) for enhanced 

focusing of polaritons. To do that, we analytically calculate the modulus of the polaritonic 

wavevector and FOM as a function of the angle (α) between the wavevector (𝐤) of the refracted 

polaritons and the direction of the x axis, i.e. the axis 𝑘𝑦  = 0 (see Methods), as shown in 

Supplementary Figure 7a. The crossing point at α = 58° gives us an optimal value for the design 

of the lens, which minimizes both the focus size and the optical losses, as it is close to the 

asymptote of the hyperbolic IFC. The experimental results presented in Fig. 4 of the main 

manuscript correspond to a lens with a boundary tilted an angle θ = 62°, nearly perpendicular to 

the asymptote of the hyperbolic IFC, which yields an angle 𝛼𝑒𝑥𝑝 = 58° based on momentum 

conservation at the boundary (Supplementary Figure 7b). Remarkably, by using the optimized 

design, a focus with a FWHM of ~λ𝑝/6, λ𝑝being the polaritonic wavelength along [100] crystal 

direction of α-MoO3, is obtained.  
 

Supplementary Note 6: Comparison between refraction of polaritons in isotropic and 

anisotropic media.   

In order to compare the refractive characteristics of polaritons in anisotropic and isotropic media, 

we place α-MoO3 (in-plane anisotropic) and h-BN (in-plane isotropic) flakes on top of similar air-

cavity prisms built on SiO2 substrates.  

On the one hand, polaritons refract at the boundary of the α-MoO3/air prism into the α-MoO3/SiO2 

region along a given direction, which is given by the Poynting vector (𝐒out−exp, blue arrows in 

Supplementary Figure 8a), with respect to which their wavefronts are tilted (𝐤out−exp , green 

arrows). Thus, the Poynting vector (𝐒out−exp) and the wavevector (𝐤out−exp) of the refracted 

polaritons are not collinear, as already shown in Fig. 2 of the main text. The numerical simulation 

(middle row in Supplementary Figure 8a) perfectly reproduces this feature, mimicking the 

phenomenon of refraction in the experiment. Moreover, it agrees well with the theoretical 

prediction (bottom row in Supplementary Figure 8a), which is calculated based on both momentum 

conservation at the boundary and the analytical IFC (see Methods). On the other hand, the 

refractive characteristics are very different in isotropic media, where 𝐤 and 𝐒 are always collinear 

due to the circular IFC (Supplementary Figure 8b).  

Interestingly, these different properties of polaritons refracting in isotropic and anisotropic media 

have profound implications. For instance, a wave passing from a low refractive index isotropic 

medium to a high refractive index isotropic medium bends toward the normal (Supplementary 

Figure 8b), in accordance to our daily experience. In stark contrast, a wave passing from a low 



refractive index hyperbolic medium to a high refractive index hyperbolic medium 

counterintuitively bends away from the normal (Supplementary Figure 8a).  

 

 

Supplementary Figure 8 Refraction of polaritons in hyperbolic and isotropic media. a, 

Experimental (top row) and simulated (center row) near-field images of HPhPs propagating in a 

160-nm-thick α-MoO3 flake at λ0 = 11.3 μm. Upon refraction at the right boundary of a triangular 

prism (dashed triangle) with an angle θ1~40°, HPhPs bend away from the normal, 𝐒out−exp (blue 

arrow), with a tilted wavevector 𝐤out−exp (green arrow). b, Experimental (top row) and simulated 

(center row) near-field image of in-plane isotropic polaritons in a 93-nm-thick h-BN flake at 𝜆0 = 

6.5 μm. Upon refraction at the right boundary of a triangular prism (dashed triangle) tilted an angle 

θ1 ~ 40°, in-plane isotropic polaritons in h-BN bend towards the normal, with collinear 𝐤out−exp 

(green arrow) and 𝐒out−exp  (blue arrow). From the corresponding analytic IFCs (grey for the 

substrate as air while black for the substrate as SiO2) and considering momentum conservation at 

the boundary (orange lines), the extracted  𝐤out and 𝐒out are in good agreement with experiment 

and simulation for both α-MoO3 and h-BN cases.  

 



Supplementary Note 7: Study of the focal line of planar lenses in hyperbolic media. 

 

In isotropic media, a focal line for a 2D lens is defined as a line drawn perpendicular to the lens 

axis at the focal point. However, in hyperbolic media, the definition of the focal line for a lens is 

complex due to the non-collinearity in k and S for the incident polaritons. Here, we extract the 

focal line of our optimized lens based on a semi-analytical approach, in which we extract the 

direction of refracted polaritons (𝐒out) considering momentum conservation at the boundary of the 

lens, together with the analytic IFC. The position of the focus spot is obtained graphically by 

drawing the direction of the refracted polaritons with 𝐒out after passing through the lens. 

Let us consider the two possible cases for incident polaritons in α-MoO3 at the boundary of the 

lens in terms of collinearity of 𝐤in and 𝐒in. These two cases are: 𝐤in and 𝐒in collinear (shown in 

Fig. 2 of the main manuscript) and 𝐤in  and 𝐒in  non-collinear (shown in Fig. 3 of the main 

manuscript). 

For the case of incident polaritons with collinear 𝐤in and 𝐒in at the boundary of the lens (only 

possible along the x axis, i.e. along the direction 𝑘𝑦 = 0), we study the influence of the tilting 

angles of 𝐤in at the boundary on the formation of a focus spot (Supplementary Figure 9) by rotating 

the α-MoO3 crystal axes with respect to the boundary of the lens. In this case, the IFCs are also 

rotated. In such case, we find that even under a small tilting angle of 𝐤in with respect to the 

boundary (e.g. 5 º), refraction of polaritons is not allowed for one of the boundaries of lens 

(Supplementary Figure 9), and therefore no focusing is obtained. This can be better understood 

considering that the hyperbolic IFCs in both α-MoO3/SiO2 and α-MoO3/air media are very similar, 

and that the angle of the boundary for our optimized lens (Supplementary Figure 7) is quite close 

to the asymptote of IFCs. Therefore, the existence of a 𝐤out that crosses the second hyperbolic IFC 

in the α-MoO3/SiO2 medium while fulfilling momentum conservation is not possible. 

For the general case of non-collinear 𝐤in and 𝐒in, two scenarios are possible depending on the 

direction of 𝐤in with respect to the axis 𝑘𝑦 = 0: 

 

i) The tilt angle of 𝐤in takes values between ~ -35º and +35º (Supplementary Figure 10). 

In this case, we obtain a very interesting result: all refracted polaritons focus at the same 

focal point (defined by the crossing point of the 𝐒out  where the refracted polaritons 

interfere), regardless of the tilt angle of 𝐤in (Supplementary Figure 10b-d). This effect can 

be understood considering that momentum conservation at the boundary yields very large 

refracted wavevectors 𝐤out (ending within the grey shaded area in Supplementary Figure 

9a), while exhibiting the same direction as 𝐒out. This is because the Poynting vector is 

perpendicular to the IFC, and the hyperbolic IFC for such wavevectors is almost a straight 

line (Supplementary Figure 9a).  

ii) The tilt angle of 𝐤in is larger than +-35º, but not too large so that there is a focusing 

effect. In this case, momentum conservation at the boundary yields small refracted 

wavevectors 𝐤out that lay within the white areas in Supplementary Figure 9a, where the 

curvature of hyperbolic IFCs shows a non-monotonical variation. Consequently, a large 

variation of the angles for 𝐒out is obtained, resulting in a large variation of the spatial 

localization of the focus. This effect can be better observed by choosing a more open angle 



for the boundary of the lens (Supplementary Figure 11), which yields, upon momentum 

conservation, a broader range of refracted wavevectors 𝐤out laying within the white area in 

Supplementary Figure 11, that is, in the region where the hyperbolic IFCs exhibit a non-

monotonical curvature, resulting in a complex trajectory of the focus.  

 

Supplementary Figure 9 Hyperlens with tilted incident waves of collinear k and S. a-e, 

Focusing of HPhPs with collinear incident 𝐤in and 𝐒in for a representative tilt angle at 0º (a), 5º 

(b), -5º (c), -10º (d), and -10º (e) based on a semi-analytical approach. The grey and black curves 



in the right column represent the IFCs of polaritons in the α-MoO3/air and α-MoO3/SiO2 media, 

respectively. Note that to obtain polaritons in α-MoO3 with collinear 𝐤in and 𝐒in at the boundary 

of the lens in each case, it is necessary to rotate the α-MoO3 in-plane crystal axes with respect to 

the boundary of the lens. Rotated IFCs are shown in the right column.  

 

Supplementary Figure 10 In-plane hyperlens performance upon tilted incident polaritons 

with non-collinear k and S. a, Analytic IFCs of polaritons propagating in a 170-nm-thick α-MoO3 

on top of air (grey curve) and SiO2 (black curve), respectively. When the tilting angle of 𝐤in takes 

values between ~ -35º and 35º (within the section between the violet and green arrows as 𝐤in), the 

refracted wavevector enters the grey shaded region, in which the hyperbolic IFCs are almost 

straight lines yielding the same direction of 𝐒out. When the tilting angle of 𝐤in is larger than +35º 

or smaller than -35º, the refracted wavevector enters the white region, in which the hyperbolic 

IFCs show a non-monotonically variation, thus yielding a large variation of angles for 𝐒out (see 

also Supplementary Figure 11). The orange and violet solid lines represent the upper and lower 

boundary of the lens, respectively. b-d, Focusing of HPhPs with non-collinear incident 𝐤in and 

𝐒in for a representative tilting angle of 35º (b), 0º (c), and -35º (d) based on a semi-analytical 

approach. We extract the direction of the refracted polaritons (𝐒out) based on both momentum 

conservation on analytical IFCs, and we obtain the focus spot by drawing the geometries of the 

lenses and the crossing point of 𝐒out−up (orange arrows) and 𝐒out−down (violet arrows) graphically. 

All the refracted polaritons focus at the same focal point (defined by the crossing point of the 

different vectors 𝐒out), regardless of the tilting angle of 𝐤in. 



 

Supplementary Figure 11 Hyperlens with tilted incident polaritons with non-collinear k and 

S. a-e, Focusing of polaritons with non-collinear incident 𝐤in and 𝐒in at a representative tilting 

angle of 35º (a), 15º (b), 0º (c), -15º (d), and -35º (e) based on a semi-analytical approach. The 

boundary of the lens shown here is more open than the optimized lens in Fig. 4 of the main text. 

The refracted wavevectors 𝐤out thus lay within the white areas, where the curvature of the IFCs 

shows a non-monotonical variation. This yields a complex trajectory (right column) of the focus 

spot with different tilt angle of 𝐤in. Grey and black curves in the left column represent IFCs of 

polaritons in the α-MoO3/air and α-MoO3/SiO2 media, respectively  



 

Supplementary Note 8: Reflection of polaritons in hyperbolic media.  

 

Like refraction, reflection of polaritons in anisotropic media can be understood by considering the 

momentum conservation of the incident polaritons at a given boundary. In our work, there are two 

cases of reflection of polaritons considering the momenta of reflected polaritons are: very large 

(Supplementary Figure 12a) and relatively small (Supplementary Figure 12b). As shown in 

Supplementary Figure 12a (same image as Fig.2a), the wavevector of reflected polaritons (brown 

arrow) is much larger than that of incident (red arrow) and refracted (green arrow) polaritons, thus 

resulting in a pronounce damping, and therefore cannot be resolved in the experimental near-field 

image. We note that this effect is another peculiar aspect of reflection/refraction of polaritons in 

hyperbolic media, where they can possess much larger momenta than the incident waves.  

On the other hand, the reflection plays an important role in the optical phenomena of polaritons in 

hyperbolic media when the reflected wavevector is relatively small (brown arrow in 

Supplementary Figure 12b) considering momentum conservation at the boundary (orange line in 

Supplementary Figure 12b). When the boundary is horizontal (boundary-2 in Fig. 4b), the modulus 

of wavevector of incident and reflected polaritons is identical due to the symmetric IFCs. 

Meanwhile, there is no refraction upon the horizontal boundary because of the absence of a 

𝒌𝒐𝒖𝒕 that crosses the second hyperbolic IFC in the α-MoO3/SiO2 medium. 

 

Supplementary Figure 12 Reflection of polaritons in hyperbolic media. a, Same experimental 

near-field image (left column) and analytic IFC (right column) as in Fig. 2a adding the reflection 

effect. As shown in the analytic IFCs, the momentum of reflected polaritons is much larger than 

those corresponding to the incident and refracted polaritons, making the fringes ascribed to 

reflected waves not visible in the experiments.  b, the same experimental near-field image (left 

column) and analytic IFC (right column) as in Fig. 3c with a more detailed indication of reflection. 

As shown in the analytic IFCs, the momentum of reflected polaritons is identical to the one of 



incident polaritons. The grey and black curves in the right column represent IFCs of polaritons in 

the α-MoO3/air and α-MoO3/SiO2 media respectively   

 

Supplementary Note 9: Analytical derivation of the shape of planar lenses in hyperbolic 

media. 

 

In this section, organized in a tutorial style, we perform the analytical calculation of the optimal 

shape of a lens in hyperbolic media. In the first part, we consider a two-dimensional (2D) model, 

in which the lens is a curved boundary separating two different biaxial half-spaces. This case is 

introduced to illustrate our approach to engineering a hyperbolic lens. In the second part, we take 

a more realistic and rigorous approach, in which confined polaritons propagate in a thin film of a 

biaxial crystal, namely α-MoO3. 

1.  Two dimensional case 

In this part, we consider a system composed of two different biaxial half-spaces (without loss of 

generality, we will assume that they are infinite along the z direction) and separated by a surface 

whose shape is given by the equation f (x, y) = 0 (see Supplementary Figure 13a). We will assume 

that the dielectric permittivity tensors of both media have the following diagonal form: 

                                              𝜀𝑖̂ = (

𝜀𝑖𝑥 0 0
0 𝜀𝑖𝑦 0

0 0 𝜀𝑖𝑧

),                                                (1) 

where 𝑖 =  1,2 stands for the number of the medium. It means that we align the optics axes of the 

first crystal parallel to the corresponding optics axes of the second crystal and one of these axis 

parallel to the z direction. Also, x and y coordinate axes are chosen along the main crystal axes. A 

plane wave, polarized in the xy-plane and with wavevector k and Poynting vector S, is incident on 

the surface f (x, y) = 0. To mimic our experiment, we assume that this wave satisfies the conditions: 

𝐒 ∥ 𝐤 ∥ y − axis. Therefore, the dispersion of an electromagnetic wave propagating in the first 

medium is given by Fresnel’s equation2:  

                                                    𝐹 (𝑘1𝑥, 𝑘1𝑦) ≡
𝑘1𝑥

2

𝜀1𝑦
+

𝑘1𝑦
2

𝜀1𝑥
− 𝑘0

2 = 0,                              (2) 

where 𝑘0 = 𝜔 𝑐⁄ , 𝜔 and 𝑐 being the frequency of the wave and the speed of light, respectively. In 

lossless case, when dielectric permittivities are completely real, the Poynting vector is parallel to 

the group velocity. Therefore, S is given by 𝐒1~∇𝐹 (𝑘1𝑥, 𝑘1𝑦), or, more explicitly:  

                                                                 𝑆1𝑥~
𝑘1𝑥

𝜀1𝑦
;    𝑆1𝑦~

𝑘1𝑦

𝜀1𝑥
.                                (3) 

When taking into account the optical losses of the medium, the direction of the Poynting vector 

will be slightly tilted with respect to the one predicted by Eq. (3), but we will neglect this effect 

here for the sake for simplicity, i.e. we will restrict ourselves to the lossless case. Let us consider 

now two different optical paths to the point (0,0): one along the y-axis and the other starting from 

an arbitrary point of the lens surface (labeled as “2” in Supplementary Figure 13a). The phase of 

the waves propagating along these paths are the following:  



Φ10 = −𝑘2𝑦(0)(𝑦 − 𝐹) − 𝑘1𝑦(0)𝐹 = √𝜀2𝑥(𝑦 − 𝐹) + √𝜀1𝑥𝐹;            (4a) 

                                Φ20 = −𝑘1𝑦(𝜑)𝑦 − 𝑘1𝑥(𝜑)𝑥 = −𝑘1𝑦(𝜑) (𝑦 +
𝑥2

𝑦

𝜀1𝑦

𝜀1𝑥
),          (4b) 

where 𝜑 can be calculated geometrically as:  

                                                         tan 𝜑 =
𝑥

𝑦
=

𝑆𝑥

𝑆𝑦
=

𝜀1𝑥𝑘1𝑥

𝜀1𝑦𝑘1𝑦
.                   (5) 

Therefore, we can immediately calculate 𝑘1𝑦(𝜑) using Eq. (5) and Fresnel’s equation, given by 

Eq. (2), according to:    

                                                             𝑘1𝑦(𝜑) = −√
𝜀1𝑥

1+
𝜀1𝑦𝑥2

𝜀1𝑥𝑦2

.                    (6) 

For these waves to focus at the point (0, 0), and, consequently, for the curve f (x, y) = 0 to be a 

hyperbolic refractive lens with focal distance F, both phases must be equal, i.e. Φ10 = Φ20. Under 

this condition, the phases of all the waves coming through the lens to the point (0, 0) will be equal, 

as the point “2” is arbitrary. The shape of the lens is thus defined by: 

                       √𝜀1𝑥𝐹 + √𝜀2𝑥(𝑦 − 𝐹) =
𝜀1𝑥𝑦

√𝜀1𝑥𝑦
2 +𝜀1𝑦𝑥2

(𝑦 +
𝜀1𝑦𝑥2

𝜀1𝑥𝑦
) = √𝜀1𝑥𝑦2 + 𝜀1𝑦𝑥2.         (7) 

After some simplification, we obtain that the lens should be have a hyperbolic shape:  

                                     (𝑦 −
√𝜀2𝑥

√𝜀1𝑥+√𝜀2𝑥
𝐹)

2

+
𝜀1𝑦

𝜀1𝑥−𝜀2𝑥
𝑥2 =

𝜀1𝑥

(√𝜀1𝑥+√𝜀2𝑥)2 𝐹2.                     (8) 

To verify this result, we perform a full-wave numerical simulation of this system using the finite-

element method COMSOL Multiphysics (see Methods). We chose 𝐹 = 3𝜇𝑚, 𝜀1𝑥 = 20 + 0.3𝑖, 
𝜀1𝑦 = −20 + 0.3𝑖 , 𝜀2𝑥 = 10 + 0.3𝑖 , 𝜀2𝑦 = −10 + 0.3𝑖 . Supplementary Figure 13b-c show 

waves focusing at the (0, 0) point, in an excellent agreement with our theoretical prediction.  

 
Supplementary Figure 13 Analytic derivation of lens shape between two different biaxial 

half-spaces. a, Schematics of the lens between two different biaxial half-spaces: crystal 1 (white 



region) and crystal 2 (grey region). b-c, Distribution of the absolute value and the real part of the 

x-component of the electric field respectively, based on full-wave numerical simulations.  

2. Thin film case 

However, the goal of this work is not the lensing of free-space light, but the lensing of highly 

confined polaritons propagating in finite-thickness-slab of biaxial crystal. Therefore, let us 

consider now a homogeneous biaxial slab with thickness d embedded between two different semi-

infinite isotropic media. In other words, we consider a system which is similar to the one shown 

in Supplementary Figure 13a, but with the same biaxial film and superstrate in both regions, and 

with different substrates (Supplementary Figure 14a). In this setting, we approximate the slab by 

a thin-film with vanishing thickness 𝑑 → 0. The limit of vanishing slab thickness is of a great 

practical interest and has been already used for the analysis of hyperbolic polaritons in thin slabs 

of α-MoO3
3,4. Under this limit, we assume that all the components of the dielectric tensor 𝜀̂ are 

large, i.e.|𝜀𝑖| ≫ 1 (𝑖 = 𝑥, 𝑦, 𝑧) and approximate the slab of finite thickness by a 2D conductive 

sheet, with effective conductivity σ̂ given by 𝜎̂ = 𝜔𝑑𝜀̂ 4𝜋𝑖⁄ . Moreover, we consider waves with 

high momentum, 𝑘 ≫ 𝑘0, which is justified as we are studying highly confined polaritons. Under 

such approximations, the dispersion of polaritons propagating in the film is given by4: 

                                       𝐹 (𝑞𝑥, 𝑞𝑦) = 𝑖𝑞(𝛼𝑥 cos2 𝜑 + 𝛼𝑦 sin2 𝜑) + 𝜀 = 0,                  (9) 

where  𝐪 = 𝐤 𝑘0⁄  is the normalized wavevector, and 𝑞 = √𝑞𝑥
2 + 𝑞𝑦

2 . Furthermore, 𝛼 =
2𝜋

𝑐
𝜎 =

𝑘0𝑑𝜀

2𝑖
 is the normalized effective 2D conductivity of the film, and 𝜀1,2 is an arithmetical mean of the 

substrate and superstrate dielectric permittivities. Eq. (9) can also be written as:  

                                                       𝑘0𝑑(𝜀𝑥𝑞𝑥
2 + 𝜀𝑦𝑞𝑦

2) + 2𝜀𝑞 = 0.                       (10) 

In analogy to the previous section, we derive the direction of the Poynting vector as 

𝑺1~∇𝐹 (𝑘1𝑥, 𝑘1𝑦): 

                                             𝑆1𝑥~𝑞1𝑥 (𝜀𝑥 +
𝜀1

𝑞𝑘0𝑑
) ;   𝑆1𝑦~𝑞1𝑦 (𝜀𝑦 +

𝜀1

𝑞𝑘0𝑑
).               (11) 

Finally, we impose that the polaritonic phase along two different optical paths must be equal, i.e. 

Φ10 = Φ20, yielding: 

Φ10 = −𝑘2𝑦(0)(𝑦 − 𝐹) − 𝑘1𝑦(0)𝐹 = −
2𝜀2

𝑘0𝑑𝜀𝑦
(𝑦 − 𝐹) −

2𝜀1

𝑘0𝑑𝜀𝑦
𝐹;              (12a) 

                                                       Φ20 = −𝑘1𝑦(𝜑)𝑦 − 𝑘1𝑥(𝜑)𝑥.                              (12b) 

Combining Eqs. (10), (11) and (12) with the relation 
𝑥

𝑦
=

𝑆𝑥

𝑆𝑦
, we obtain a system of equations which 

defines the shape of the lens:  

                                          −
2𝜀1

𝜀𝑦
𝐹 −

2𝜀2

𝜀𝑦
 (y − 𝐹) =

𝜅(𝜀(𝑥2+𝑦2)+𝜅(𝜀𝑦𝑥2+𝜀𝑥𝑦2))

√(𝜀1+𝜀𝑦𝜅)
2

𝑥2+(𝜀+𝜀𝑥𝜅)2𝑦2

;               (13) 

                                                       𝜅 = 2𝜀1
(𝜀𝑥𝜅+𝜀)2𝑦2+(𝜀𝑦𝜅+𝜀)2𝑥2

𝜀𝑦(𝜀𝑥𝜅+𝜀)2𝑦2+𝜀𝑥(𝜀𝑦𝜅+𝜀)2𝑥2,                           (14) 

with 𝜅 = 𝑞𝑘0𝑑. To plot the shape of the lens, one should solve the system (13-14) numerically.  



To verify our analytical definition of the shape of the lens, we perform full-wave numerical 

simulations. As a representative example, we consider a 100-nm-thick α-MoO3 film
5 on top of 

SiO2 (white region in Supplementary Figure 14) and air (grey region in Supplementary Figure 14), 

both covered by air. The simulation was performed at 𝜆0 = 11.11 𝜇𝑚 and  𝐹 = 3 𝜇𝑚 . 

Supplementary Figure 14 b-c show a good agreement with the theoretically predicted focal point.  

 

 

Supplementary Figure 14 Analytic derivation of lens shape between two hyperbolic media. 

a, Schematics of the lens between two hyperbolic media: Air/MoO3/SiO2 (white region) and 

Air/MoO3/Air (grey region). b-c, Distribution of the absolute value and the real part of the y-

component of the electric field respectively, based on full-wave numerical simulations.   
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