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1. Defining transition rate matrices for epimutation data 

For DNA mutations, there are a set of substitution models that are widely used in maximum likelihood and 
Bayesian phylogenic inference. These models also allow one to estimate the genetic distance between two 
DNA sequences. These distances form the basis for distance based phylogenetics methods, such as neighbor 
joining method [1] or UPGMA [2]. It is possible to modify classical substitution models for DNA 
methylation data (Table S1) and use them to derive the epigenetic distance between two methylomes 
(Section 2). Knowing this distance along with calibrated epimutation rates is a starting point for estimating 
the actual time since two methylomes have diverged from a recent common ancestor. 

As discussed in the main text, an interesting application is the epigenetic analysis of clonal populations. 
Since segregation and recombination are absent in clones, new epimutations get immediately “fixed” in the 
form of new epigenotypes. To motivate this, consider the methylation data from a diploid species. We can 
use a continuous Markov model with a 3 by 3 rate matrix, 𝑄, to represent the transitions among three 
epigenotypes UU (homozygous unmethylated, first row in matrix), UM (epi-heterozygous, second row) 
and MM (homozygous methylated, third row). In Table S1, we show a number of possible Q matrices for 
methylation data. These Q matrices are based on classical DNA-based substitution models. For haploid 
methylation data, each site has only two possible states: methylated (M) and unmethylated (U). The 2 by 2 
transition rate matrices can be applied as well. 

By presenting transitions between epigenotypes in the framework of a substitution model, we use the term 
“substitution” in a wide sense. It should be understood that such substitutions are themselves function of 
stochastic methylation gain and loss rates [3]. However, mathematically this conceptualization is tenable, 
and sufficient for us to bridge the observed transition among epigenotypes and divergence. To avoid 
unnecessary arguments in terminologies, we may define the divergence inferred with epigenotype data as 
“epigenetic distance”. 

 

2. Estimating epigenetic distances between two methylomes: a working example 

As a working example, consider the following Q matrix (see also Table S1), which is based on similar 
assumptions as the K80 substitution model of Kimura [4]. 
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Based on the matrix 𝑄 , the stationary distribution of three epigenotypes UU, UM and MM are: 𝜋 =
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and the epigenetic distance between two sequences by time t is 

(2) 
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However, parameters c, d, and t are unknown. To be able to obtain a sample estimator of 𝑓, consider the 
following argument: When comparing two methylomes there are three kinds of possible transitions among 
epigenotypes (UU ↔ MM, UU ↔ UM, and MM ↔ UM). These can be readily detected from a differential 
methylation analysis. Let the observed proportions of these transitions be 𝑆ଵ, 𝑆ଶ and 𝑆ଷ . Based on rate 
matrix 𝑄, their expected proportions at evolutionary time t can be obtained from the transition probability 
matrix 𝑃(𝑡), which has the form: 
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It can be shown that these expected proportions are: 

𝐸(𝑆ଵ) =  𝐸(𝑆ଷ) =
2

9
−

2(𝑒ିଷ௖ )

9
, 𝐸(𝑆ଶ) =

2

9
+

(𝑒ିଷ௖ )

9
−

൫𝑒ି(௖ାଶௗ)௧൯

3
 

 

Now, let the ratio between d and c be k = d/c, and setting the above expectations equal to the observed 
proportions 𝑆ଵ, 𝑆ଶ and 𝑆ଷ , we obtain: 
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We can easily verify equation (5) by setting 𝑆ଵ = 𝑆ଶ. Then, the 𝑘෠ will be 1. 

Finally, substituting (4) and (5) these into equation (2), our sample estimator of the epigenetic distance is: 

 𝑓መ =
ସ௖௧෢

ଷ
+

ଶ௞෠ ௖௧෢

ଷ
.  



Closed form estimators of epigenetic genetic distance are not always available, particularly when the matrix 
Q is more complex. In such cases, estimates can be obtained via maximum likelihood methods [5-7]. The 
general form of the log-likelihood function is given: 

(6) 

𝑙(𝛩) = ෍ ෍ 𝑛௜௝𝑙𝑜𝑔 (𝜋௜𝑃௜௝(𝑡))
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Where 𝑛௜௝ , is the number of sites occupied by epigenotype 𝑖 and 𝑗 in two sequences. 𝑃௜௝(𝑡)is transition 
probability from 𝑖 to j, which is an element in transition probability 𝑃(𝑡). Maximization is with respect to 
parameter vector 𝛩, which contains of the unknown rate parameters as well as evolutionary time t. 
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