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Figure S1: YTHDC1 is highly expressed in AML cells, Related to Figure 1.

(A) CRISPR score of m°A readers across all 14 tested leukemia cell lines.

(B) YTHDCI mRNA expression in acute myeloid leukemia (AML) compared to
other cancers (The Cancer Genome Atlas database). Data are presented as mean
log2 expression with range. AML: red dots, **** p<0.00001 ANOVA with multiple
comparisons.

(C) Immunoblot analysis of YTHDCI protein expression in primary AML patient
cells compared to human CD34+ cells. ACTIN serves as loading control.

(D) YTHDCI mRNA expression across AML patients with different karyotype
from TCGA database.

(E) YTHDCI mRNA expression across different subtypes of AML patients by
WHO classification from BEAT AML database.

(F) YTHDCI mRNA expression in AML patients with or without indicated gene
mutants from BEAT AML database.

(G) YTHDCI mRNA expression across different phases of AML patients by FAB
classification (French-American-British) from TCGA database.

(H) YTHDCI mRNA expression in leukemia stem cells (LSC) versus non-LSCs
from GSE76009.

Error bars, s.e.m. * p<0.05, **p<0.01, ***p<0.001, two-tailed t test.
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Figure S2: YTHDC1 is required for AML cell survival and state maintenance,
Related to Figure 1.

(A) Representative flow plot to show CD11b, CD14 and CD13 expression

in control and YTHDCI1 knockdown MOLM13 cells 5 days after transduction
related to Figure 1G.

(B) Representative flow plot to show cell apoptosis of control and YTHDCI
depleted MOLM13 cells in Figure 1H.

(C) Representative flow plot to show CD13 and CD14 in control and YTHDC1
knockdown OCIAMLI13 cells 5 days after transduction in Figure 1K.

(D) Representative flow plot to show cell apoptosis of control YTHDCI1 depleted
OCIAML3 cells in Figure 1L.

(E-V) YTHDCI1 depletion by shRNAs in multiple AML cell lines.

(E-J) YTHDCI is depleted in NOMOI cells by shRNAs.

(E) Immunoblot of YTHDC1 expression post-transduction with shRNA lentiviruses
in NOMOL1 cells.

(F) Cell proliferation of NOMOI1 cells upon YTHDCI1 depletion was determined.
(G) Quantitative summary of myeloid differentiation in control and YTHDCI1
depleted NOMOI cells by flow cytometry in (H).

(H) Representative flow plot to show expression of myeloid differentiation
markers in control and YTHDCI1 knockdown cells in (G).

(I) Quantitative summary of cell apoptosis in NOMOI1 cells determined by flow
cytometry using 7-AAD and Annexin V staining.

(J) Representative flow plot to show cell apoptosis in control and YTHDC1
knockdown cells in (I).

(K-P) YTHDC1 is depleted in THP1 cells by shRNAs.

(K) Immunoblot of YTHDCI1 expression post-transduction with shRNA lentivirus
in THP1 cells.



(L) Cell proliferation of THP1 cells upon YTHDCI1 depletion was quantified.

(M) Quantitative summary of myeloid differentiation following YTHDC1 depletion
in THP1 cells.

(N) Representative flow plot to show expression of myeloid differentiation
markers in control and YTHDC1 knockdown cells in (M).

(O) Quantitative summary of cell apoptosis in THP1 cells determined by flow
cytometry using 7-AAD and Annexin V staining.

(P) Representative flow plot to show cell apoptosis in control and YTHDCI
knockdown THP1 cells in (O).

(Q-V) YTHDCI is depleted in HL60 cells by shRNAs.

(Q) Immunoblot of YTHDCI1 expression in HL60 cells post-transduction.

(R) Cell proliferation of HL60 cells upon YTHDCI1 depletion was determined.

(S) Quantitative summary of myeloid differentiation in (T).

(T) Representative flow plot to show expression of myeloid differentiation markers
in control and YTHDCI1 knockdown HL60 cells.

(U) Quantitative summary of cell apoptosis in HL60 cells determined by flow
cytometry using 7-AAD and Annexin V staining.

(V) Representative flow plot to show cell apoptosis in (U).

n=3 independent experiments; error bars, s.e.m. * p<0.05, **p<0.01, ***p<0.001,

two-tailed t test.
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Figure S3: YTHDC1 maintains AML cell survival in vitro and in vivo, Related
to Figure 1.

(A-F) CRISPR-Cas9 mediated-deletion of YTHDC1 in MOLM13 cells. MOLM13-
Cas9 cells were transduced with lentiviruses expressing either a control
sgRNA(sgCtrl) or two independent sgRNAs targeting YTHDC1 (sg4 and sg7). GFP
positive cells were sorted. n=3 independent replicants.

(A) Immunoblot showing YTHDCI1 expression in MOLM13 cells upon CRISPR-
Cas9 mediated deletion. ACTIN serves as loading control.

(B) Cell proliferation of MOLMI13 control cells versus CRISPR mediated
YTHDCI1 depleted cells.

(C) Quantitative summary of myeloid differentiation of MOLMI13 cells post
transduction was measured by flow cytometry using CD11b, CD33, CD13 and
CD14 markers.

(D) Cells were assayed for Annexin V positivity measuring cell apoptosis.

(E) Representative flow plot to show expression of myeloid differentiation markers
in MOLM13-Cas9 cells in (C).

(F) Representative flow plot to show cell apoptosis in (D).

(G) Immunoblot of YTHDCI1 expression in MOLM13 cells before transplant into
NSG mice.

(H) Representative flow plot to show engraftment of MOLM13 cells that injected
into NSG mice in Figure 1M.

(I) Immunoblot analysis of MOLM13 YTHDC1 knockdown cells that outgrow in
moribund leukemic mice. Leukemia cells were sorted for human CD45 positive (a
marker for hematopoietic cells) from leukemic mice in Figure 1M. ACTIN servers

as loading control.



(J) Immunoblot of YTHDCI1 expression in human AMLI11 cells before transplant
into NSG mice.

(K) Left: Representative flow plot to show engraftment of AML11 cells that injected
into NSG mice. Right: Quantitative summary of AML cell engraftment in NSG mice.
n=10, n=7, n=10.

Error bars, s.e.m. * p<0.05, **p<0.01, ***p<0.001, two-tailed t test.
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Figure S4: YTHDC1 forms nYACs that are involved in RNA processing,
Related to Figure 2.

(A) Schematic representation of domains and disordered regions of human YTHDFs
and YTHDCI protein. Pink boxes indicate the YTH domain and the green shade
indicate IDR.

(B) Sequence alignment of human YTHDF1, YTHDF2, YTHDF3, and YTHDC1
proteins. The YTHDF1 (UniProt Q9BYJ9), YTHDF2 (UniProt Q9Y5A9), and
YTHDEF3 (UniProt Q72739) share 50%-60% identity in their IDR domains while
YTHDCI1 (Q96MU7) does not show apparent sequence homology with the YTHDF
proteins. In contrast, YTHDC1 owns four compositional bias regions (172 — 260:
Glu-rich, 508 — 581: Arg-rich, 601 — 643: Pro-rich, 647 — 727:Arg-rich region) that
are indicated by magenta lines. The blue line indicates the YTH domains. Conserved
residues are highlighted in red and similar residues are highlighted in yellow. The
residue numbers accounting for the YTHDF1 are denoted above the sequences. The
alignment was performed by multAlin (http://multalin.toulouse.inra.fr/multalin/)
and visualized with the ENDscript3.0 server
(https://academic.oup.com/nar/article/42/W1/W320/2435247).

(C) Representative 3D Immunofluorescence (IF) images of YTHDCI1 in CD34+,
MOLM13, OCIAML3, Hela, 293T and MCF7 cells showed nuclear YTHDCI1
puncta. Fluorescence signal is shown as green for YTHDC1 and merged with DAPI
stain (blue). Scale bars, Sum.

(D) 106 YTHDCI interacted proteins are from BIOGRID database and performed
enrichment analysis by ENRICHR.

(E) Representative 3D Immunofluorescence (IF) images of YTHDCI(green)
costained with SRSF2, Coilin, PML, Brd4 and NPM1(magenta). DAPI is blue.

Scale bars, Sum
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Figure S5: m°A dependent liquid-liquid phase separation of YTHDC1 in vitro
and in vivo, Related to Figure 2 and 3.

(A) EGFP-YTHDCI recombination protein was purified and confirmed by running
a gel. Black arrow indicated the fusion protein bind.

(B) A 65-nucleotide RNA containing 10 m®A nucleotides (40 nM) induces YTHDC1
(2uM) to rapidly form liquid droplets compared to YTHDC1 (2uM) protein without
any RNA addition or with non- m®A RNA (40 nM) addition. Images were taken 10
minutes after RNA added.

(C) Phase diagram of YTHDC1 in the presence of different concentrations of mSA-
RNA, showing that m®A-RNA dampens the phase-separation potential of the protein.
Green dots indicate that protein droplets were present; blue dots indicate that no
protein droplets were observed in the buffer.

(D) Confirmation of CRISPR—Cas9 knock in of EGFP-YTHDC1in OCIAMLS3 cells.
Immunoblot of YTHDC1 and GFP show endogenous expression of EGFP—
YTHDCI in different OCIAML3 clones compared to control cells.

(E) Confirmation of CRISPR—Cas9 knock in of EGFP-YTHDCl1in 293T cells.
Immunoblot of YTHDC1 and GFP show endogenous expression of EGFP—
YTHDCI in different 293T clones compared to control cells.

(F) Live imaging of endogenously tagged EGFP-YTHDCI in 293T cells showing
YTHDCI1 puncta. The white line highlights the nuclear periphery. Left: 2D image.
Right:3D image. Scale bars, Sum.

(G) Live imaging of OCIAML3 cells expressing EGFP fused WT YTHDCI1 and
different Y THDC1 mutants as indicated. EGFP was used as control. Scale bars, Sum.
(H) Immunoblot of METTL3 expression shows 4-OH induced METTL3 knockout
in Puro-CreER transduced Mett/3 flox/flox MEF cells.

(I) Representative flow plot to show CD13 and CD14 expression in Figure 3J.
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Figure S6: YTHDCI1 depleted AML cells demonstrate a dysregulated gene
expression program, Related to Figure S.

(A) Transcription factors that enriched with downregulated genes upon YTHDC1
depletion were indicated.

(B-E) Unbiased gene set enrichment analysis using 4,733 curated gene sets against
the rank list of differential expressed genes between control and YTHDCI loss cells.
(B and C) Cell cycle and DNA replication signatures were negatively enriched in
cells with YTHDCI1 depletion.

(D and E) The gene sets promoting myeloid differentiation were enriched in
YTHDCI1 depleted cells.

(F) Overlap between downregulated genes in YTHDC1 depleted cells with genes
containing at least 1 m®A site mapped by miCLIP.

(G-J) Hyper-TRIBE identifies YTHDCI1 direct binding targets.

(G) Immunoblot of YTHDCI1 expression to show overexpression of ADAR-
YTHDCI1 fusion protein in MOLM13 cells.

(H) Plot to show the edited frequency in ADAR-YTHDCI expressed cells (Y axis)
compared to control cells (X axis).

(I) The distance between ADAR-YTHDCI edited sites to the closest m°A sites
identified by miCLIP was plotted.

(J) Top: the most enriched motif found surrounding A-to-T editing sites in cells
expressing ADAR-YTHDCI. Bottom: the distance between edited sites to nearest
motif.

(K) Kaplan-Meier analysis of survival outcome in AML patients with low versus
high expression of gene signature that is upregulated or downregulated upon
YTHDCI1 depletion. Data are from TCGA database.

(L) Kaplan-Meier analysis of survival outcome in AML patients with low versus



high expression of 12-genes signature of YTHDCI1 direct regulated genes using
LASSO-Cox regression model. Data are from TCGA database.

(M) Kaplan-Meier analysis of survival outcome in AML patients with low versus
high expression of 12-genes signature of YTHDCI1 direct regulated genes using
LASSO-Cox regression model. Data are from BEATAML database.

(N) Kaplan-Meier analysis of survival outcome in AML patients with low versus
high expression of 12-genes signature of YTHDCI1 direct regulated genes using
LASSO-Cox regression model. Data are from GSE37642 dataset.

(O) Pie diagram to show the percentage of different type of alternative splicing
events. A3SS: alternative 3° splice site; ASSS: alternative 5° splice site; MXE:
mutually exclusive exons; RI: retained intron; SE: splice exon.

(P) Pie diagram to show the percentage of inclusion and skipping of spliced exons
upon YTHDCI1 depletion.

(Q) Venn diagram shows overlapped genes 1: genes containing YTHDC]1 binding
sits identified by 1CLIP; 2: downregulated genes upon YTHDCI depletion. 3: genes
containing at least 1 m°A site identified by miCLIP; 4: genes with splicing alteration
in YTHDCI depleted cells.

(R) The distance between both donor(left) and acceptor(right) of spliced exon to the

closest m°A sites identified by miCLIP was determined.
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Figure S7: YTHDCI1 regulates abundance of target transcripts by controlling
mRNA stability, Related to Figure 6 and 7.

(A) MYC mRNA expression in AML patients with high versus low YTHDC1
expression from TCGA database.

(B) Immunoblot analysis of MY C protein abundance upon YTHDC1 knockdown by
shRNAs in 5 AML cell lines as indicated. ACTIN serves as loading control.

(C) Up: Diagram of vector used in MYC 5’UTR luciferase reporter assay. Down:
Luciferase reporter assay using the original MYC 5’UTR or the m°A sites mutated
MYC 5°’UTR in 293T cells. 293T cells were transfected with control or YTHDC1
shRNA constructs. Normalized luciferase activity was calculated as a ratio of Firefly
/Rentilla luciferase. n=4 independent experiments.

(D) Up: Diagram of vector used in MYC 3’UTR luciferase reporter assay. Down:
Luciferase reporter assay using the original MYC 3’UTR or the m°A sites mutated
MYC 3’UTR in 293T cells. 293T cells were transfected with control or YTHDC1
shRNA constructs. Normalized luciferase activity was calculated as a ratio of
Renilla/ Firefly luciferase. n=4 independent experiments.

(E) Luciferase constructs are the same as (C). 293T cells were transfected with
control vector (EGFP), YTHDCI, or indicated YTHDC1 mutants. Normalized
luciferase activity was calculated as a ratio of Firefly/Renilla luciferase. n=4
independent experiments.

(F) Analysis of nascent RNA synthesis of specific genes in control or YTHDCI1
depleted MOLM13 cells by sgRNAs. MYC, GINSI and FOXM1 are binding targets
of YTHDCI1 and downregulated in YTHDCI1 depleted cells. AHNAK is one of top
increased genes upon YTHDCI depletion. Nascent RNA synthesis of specific genes
was detected by using Nascent RNA Capture Kit following with qPCR.

(G) Immunoblot showing METTL3, METTL14, MTR4 and PABPN1 protein levels
in control and YTHDC1 depleted MOLM13 cells. ACTIN serves as loading control.



(H) The nuclear to cytoplasm ratio of MYC mRNA was determined in control and
YTHDCI1 depleted MOLM13 cells by RNA-FISH. Nuclei that were defined using
DAPI signal. Cytoplasmic signal was defined by subtracting nuclear region.

(I) Relative reduction of nuclear MYC mRNA in YTHDCI1 depleted MOLM13 cells
compared to control cells was determined by RNA-FISH.

(J) Relative reduction of cytoplasm MYC mRNA in YTHDCI1 depleted MOLM13
cells compared to control cells was determined by RNA-FISH.

(K) OCIAML3 cells overexpressed with control, WT YTHDCI1 or different
YTHDCI1 mutants as indicated were followed endogenous YTHDC1 knockdown by
viral transduction. Representative 3D images of MYC mRNA by FISH (magenta)
and fluorescence immunostaining of PABPNI protein (green) and DAPI (blue)
related to Fig. 7A and B to show co-localization between MYC mRNA and PABPN1
protein (white dots). Scale bars, Sum.

Error bars, s.e.m. * p<0.05, **p<0.01, ***p<0.001, two-tailed 7 test.





