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Supplementary Table 1: Neural network architecture 

 

Supplementary Table 1. Neural network architecture  

Layer Type Parent
s 

#Kernel
s 

Stride Kernel 
size 

Output shape 

1 Conv3d+GN+PReLU Input 32 1 5 64x64x64x32 

2 Conv3d+GN+PReLU 1 32 1 5 64x64x64x32 

3 Conv3d+GN+PReLU 2 32 2 5 32x32x32x32 

4 Conv3d+GN+PReLU 3 64 1 5 32x32x32x64 

5 Conv3d+GN+PReLU 4 64 1 5 32x32x32x64 

6 Conv3d+GN+PReLU 5 64 2 5 16x16x16x64 

7 Conv3d+GN+PReLU 6 128 1 5 16x16x16x128 

8 Conv3d+GN+PReLU 7 128 1 5 16x16x16x128 

9 Conv3d+GN+PReLU 8 128 2 5 8x8x8x128 

10 Conv3d+GN+PReLU 9 128 1 5 8x8x8x128 

11 Concat 
+Conv3d_trans 

10 128 2 5 16x16x16x128 

12 Conv3d+GN+PReLU 10 & 7 128 1 5 16x16x16x128 

13 Conv3d+GN+PReLU 12 128 1 5 16x16x16x128 

14 Conv3d+GN+PReLU 13 128 1 5 16x16x16x128 

15 Concat 
+Conv3d_trans 

14 & 4 64 2 5 32x32x32x64 

16 Conv3d+GN+PReLU 15 64 1 5 32x32x32x64 

17 Conv3d+GN+PReLU 16 64 1 5 32x32x32x64 

18 Conv3d+GN+PReLU 17 64 1 5 32x32x32x64 

19 Concat 
+Conv3d_trans 

18 & 1 32 2 5 64x64x64x32 

20 Conv3d+GN+PReLU 19 32 1 5 64x64x64x32 

21 Conv3d+GN+PReLU 20 32 1 5 64x64x64x32 

22 Conv3d+GN+PReLU 21 32 1 5 64x64x64x32 



23 Conv3d_trans 22 16 2 5 128x128x128x16 

24 Conv3d+GN+PReLU 23 8 2 5 64x64x64x8 

25 Conv3d 24 1 1 5 64x64x64x1 

Total number of parameters: 51,119,889 
  



Supplementary Figure 1 

Supplementary Figure 1. Correlation coefficient for the input maps of the testing set 
before (blue) and after (orange) the treatment with DeepEMhancer compared against 
LocScale processed maps. 

  



Supplementary Note 1: Visual inspection of testing maps 

EMD-7055  
The EMD-70551 is a medium resolution volume of the NAIP5-NLRC4-flagellin 
inflammasome. For the purposes of this article, the main interesting aspect of this 
volume is the apparent poor performance of DeepEMhancer according to Main Text 
Figure 1. One of the reasons behind this behaviour is the fact that a mask was applied 
to only three subunits at the last stages of the refinement process. As a result, the 
volume contains signal for both masked and unmasked subunits although their 
intensity levels vary severely. Consequently, our neural network has tried to restore 
both the originally masked and unmasked regions, and thus, the results are not as 
good as in the other cases. However, when the volume is carefully pre-processed in 
order to remove those unmasked subunits while preserving the normalization 
constraints, non-negligible improvements were observed. Secondly, another important 
reason for the poor measured metrics is the fact that the atomic model (PDB 6b5b) was 
obtained by means of rigid body fitting of an homology model instead of being traced, 
thus, the agreement between the atomic model and the density map is far from being 
perfect. As a result, the resolution estimates computed using the atomic model as 
reference are not too accurate. 
Supplementary Figure 2 shows the overall aspect of the post-processed volume 
compared to the raw and the B-factor-sharpened ones. As can be appreciated in 
Supplementary Figure 2 panel A, the map produced by DeepEMhancer is much 
cleaner than the B-factor processed map. More importantly, although the level of detail 
in the core of the protein is similar, in the outer part of the protein, the B-factor 
sharpened map presents broken densities that look continuous in the map obtained 
with DeepEMhancer, thus facilitating the map interpretation.  

Supplementary Figure 2 

 

 
Supplementary Figure 2. DeepEMhancer post-processed volume for EMD-7055.  A, 
overview of the raw data map, the post-processed map and the B-factor corrected 
map. B, zoom-in of a region containing the loop Q514-S533, which looks cleaner and 
better resolved in the DeepEMhancer post-processed map compared to the raw data 
and sharpened maps.  



Supplementary Note 2: Map local quality impact on 
performance 

In order to study how the local quality of the maps impacts the performance of 

DeepEMhancer, we have studied the local quality of the post-processed maps as a 

function of the local quality of the raw maps. Among all possible quality metrics that we 

could have computed, we used the local correlation between the post-processed map 

and the atomic model and between the raw map and the atomic model using a sliding 

window approach. Local resolution was discarded as a quality metric due to the wide 

variety of values found within the testing set. Local correlation was computed using a 

sliding window approach of 7x7x7 (or 5x5x5). 

Supplementary Figure 3 displays the distribution of such correlation values for all maps 

included in the testing set. The maps were post-processed with LocScale (blue), 

DeepEMhancer (yellow) and with global B-factor correction as done in their 

publications (labelled as Published, red). As it is shown in Supplementary Figure 3, the 

three approaches tend to produce results of similar quality for high-quality input regions 

(correlation greater than 0.6). As expected, the quality of the post-processed regions 

decreases as the quality of the input data does, although such reduction is more 

pronounced for the global B-factor correction than for the other approaches, that seem 

comparable for the mid-quality range (correlation between 0.3 and 0.6). Finally, the 

quality of the post-processed maps is quite low for the correlation range between 0.1 

and 0.3, being LocScale post-processed regions substantially better. In light of these 

results, we can state that the results produced by DeepEMhancer are more similar to 

the results produced by LocScale than the ones produced by global B-factor correction, 

and thus, they are better suited for maps of heterogeneous quality. 

  



Supplementary Figure 3 

 

 
Supplementary Figure 3. Sliding window correlation between the post-processed 
maps and the reference (y-axis) and between the raw map and the reference (x-axis) 
using a window size of 5 (top) and 7 (bottom) voxels. Published maps were post-
processed using global B-factor correction. Boxes enclose values between the first and 
third quartile (Q1 and Q3, lower and upper limit respectively). Median values are 
depicted as the horizontal lines within the boxes. Whiskers enclose values between Q1 
- 1.5(Q3-Q1) and Q3 + 1.5(Q3-Q1).  



Supplementary Note 3: FSC curves of the studied maps 

 

This section includes the FSC curves of the post-processed maps computed against 

the reference map derived from the atomic model for the three maps that were 

presented in detail in the main text: EMD-7099, EMD-4997, and EMD-30178 

(Supplementary Figures 4-6). Post-processed algorithms used were LocalDeblur, 

LocScale, AutoSharpen and DeepEMhancer. Please notice that LocalDeblur results 

are making use of the atomic model information for the masks calculation and that 

LocalScale makes use of such information in a direct manner. Consequently, their 

results are expected to be among the best. Nevertheless, DeepEMhancer tends to 

produce results that are similar to the training targets (LocScale-Masked), being of 

especial quality for the EMD-7099 and EMD-30178 cases.  

One particular caveat that can seem confusing in our plots is the bounce that the 

curves of LocScale-Masked, DeepEMhancer and to a lesser degree, LocalDeblur 

experiment. Such bounces are caused by the tight mask employed being derived from 

the atomic model used as reference (see Supplementary Figure 7 and 8). Concisely, 

the fact that the maps obtained from the atomic models introduce high frequency 

components due to the nature of the atomic basis functions. Masking the maps equally 

introduces high frequency components due to the convolution of the Fourier transform 

of the map with the Fourier transform of the binary mask (see Supplementary Figure 9). 

As a consequence, the two maps present the same kind of behaviour at high frequency 

thus the correlation causing the bounces in the FSC. However, we want to highlight 

that those bounces, that occur at FSC values <0.3, are not relevant for the comparison 

against the atomic model, which should be done at threshold 0.54. Nevertheless, if the 

bounces are desired to be removed, phase randomization could be applied to the post-

processed map5.  



Supplementary Figures 4-9 

 

Supplementary Figure 4. FSC curves for the maps post-processed with AutoSharpen 
(blue), DeepEMhancer (green), masked LocScale (purple) and LocalDeblur (magenta) 
for the EMD-4997. FSC curves were computed using as reference the map derived 
from the atomic model. 

 
Supplementary Figure 5. FSC curves for the maps post-processed with AutoSharpen 
(blue), DeepEMhancer (green), masked LocScale (purple) and LocalDeblur (magenta) 
for the EMD-7099. FSC curves were computed using as reference the map derived 
from the atomic model. 



 
Supplementary Figure 6. FSC curves for the maps post-processed with AutoSharpen 
(blue), DeepEMhancer (green), masked LocScale (purple) and LocalDeblur (magenta) 
for the EMD-30178. FSC curves were computed using as reference the map derived 
from the atomic model. 
 

  

Supplementary Figure 7. FSC curves for the maps post-processed with LocScale for 
the EMD-4997 not using (golden) the training tight mask and using masks with different 
degrees of tightness (blue, green, purple and magenta sorted by increasing tightness). 
FSC curves were computed using as reference the map derived from the atomic 
model. The degree of tightness is measured as the relative threshold used for mask 
binarization (e.g., LocScale-Masked 0.01 is computed using the binary mask obtained 
using as threshold the percentile 1%) for the maps post-processed with LocScale for 
the EMD-4997 using (blue) and not using (green) the training tight mask. FSC curves 
were computed using as reference the map derived from the atomic model. 



 

 

Supplementary Figure 8. FSC curves for the maps post-processed with LocScale for 
the EMD-4997 (top) and EMD-7099 (bottom) not using (magenta) the training tight mask 
and using the training mask (blue) and the train mask filtered (purple) or dilated (green). 
FSC curves were computed using as reference the map derived from the atomic model. 



 

Supplementary Figure 9. Maps difference for EMD-4997 between DeepEMhancer and 
low-pass filtered DeepEMhancer (A), atomic model and filtered atomic model (B), 
LocScale-Masked and filtered LocScale Masked (C) and experimental map and filtered 
experimental map (D). Border induced artifacts can be observed in panels A-C. 

  



Supplementary Note 4: Target selection impact in model 
performance 

 
DeepEMhancer has been originally trained using as targets tightly masked volumes 
that were sharpened with LocScale. We also tried to train another version using as 
targets simulated maps derived directly from the atomic models. Although the latter 
option seemed to provide more accurate targets, what we found was that our 
implementation was not able to learn in detail how to reproduce such targets. As a 
consequence, the overall performance of DeepEMhancer trained using atomic models 
was inferior to the one trained on post-processed maps. Serve as examples the slices 
shown in Supplementary Figures 10-12 that illustrate how the results obtained with 
simulated targets look blurrier than the ones trained on post-processed maps both in 
training (C) and validation sets (A, B), which indicates severe underfitting. 
Learning curves (Supplementary Figure 13) also indicate that DeepEMhancer was not 
able to accurately reproduce the atomic models targets since the loss function quickly 
plateaus after a small reduction. In light of these evidences, as we are using the same 
inputs and models and the only difference between the experiments is the selected 
targets, we have shown that, at least for our approach, learning to reproduce atomic 
model targets is more difficult than post-processed maps, leading to poorer results 
under our available computational resources and dataset. 

Figure 10 

 LocScale 

 PDB 
Supplementary Figure 10. Central slice of a 64x64x64 cube from the validation set 
entry EMD-6847 processed by DeepEMhancer when trained on masked LocScale 
targets (upper row) and simulated maps derived from PDB (lower row). vol: input 
volume; target: reference volume to be reproduced; pred: volume produced by 
DeepEMhancer. 
 
 
 



Figures 11-13 

 

LocScale 

PDB 
Supplementary Figure 11. Central slice of a 64x64x64 cube from the validation set 
entry EMD-9112 processed by DeepEMhancer when trained on masked LocScale 
targets (upper row) and simulated maps derived from PDB (lower row). vol: input 
volume; target: reference volume to be reproduced; pred: volume produced by 
DeepEMhancer. 

LocScale 

PDB 
Supplementary Figure 12. Central slice of a 64x64x64 cube from the training set entry 
EMD-20986 processed by DeepEMhancer when trained on masked LocScale targets 



(upper row) and simulated maps derived from PDB (lower row). vol: input volume; 
target: reference volume to be reproduced; pred: volume produced by DeepEMhancer. 
 

 
Supplementary Figure 13. Learning curves for DeepEMhancer using as targets 
masked LocScale post-processed volumes (blue and orange) and simulated from 
atomic models volumes (red and green). Both subplots differ only on the scale of the y-
axis.  



Supplementary Note 5: Dealing with post-translational 
modifications 

 

Cryo-EM maps tend to exhibit heterogeneous local quality, leading to poorly defined 

regions in many macromolecules and consequently, unsolved regions in atomic 

models. This is especially true for the post-translational modifications that many 

residues may exhibit. Consequently, most atomic models do not include them (or only 

partially). Since we are making use of atomic models in the learning process, it is 

expected that our method will not deal well with such modifications. Indeed, we have 

realized that apart from a few glycans, little other examples were present in the training 

set. As a consequence, we have recorded a few successful examples in which glycans 

become more interpretable after DeepEMhancer. For instance, Supplementary Figure 

14 shows one of such examples belonging to EMD-0282. Another successful instance 

can be found in Melero et al6. 

On the contrary when applied to other types of modifications, worse results are 

expected. However, since the training set contained also ligands, which are more 

diverse than residues, we expect that the network will not mask out the densities 

corresponding to the modifications providing their intensity is strong enough. Thus, 

serve as an example the EMD-9374 that contains the modified residue CRO ({2-

[(1R,2R)-1-amino-2-hydroxypropyl]-4-(4-hydroxybenzylidene)-5-oxo-4,5-dihydro-1H-

imidazol-1-yl}acetic acid). As displayed in the Supplementary Figure 15, the density 

corresponding to this modified residue looks shorter in the DeepEMhancer map, and 

although it was not totally masked out, it is better represented in the original map. 

Despite this map following the trend we expected, we cannot ensure that it will be the 

case for any possible map and as a consequence, we recommend the users to 

proceed with caution in the regions they expect to find post-translational modification. 

Hopefully, this limitation will be reduced version after version of the program as the 

number of atomic models including post-translational modifications will increase in the 

future, when we will be able to retrain our model in a more representative dataset.  



Supplementary Figures 14 and 15 

 

 

 
Supplementary Figure 14. Published map (bottom) and DeepEMhancer map (top) for 
the EMD-0282 centred at one NAG glycan. 
 



 

Supplementary Figure 15. Published map (bottom) and DeepEMhancer map (top) for 
the EMD-9374 centered at the CRO modified residue.  



Supplementary Note 6: Training targets generation 
workflow 

Atomic models associated with each EMD entry were downloaded from the PDB 
database. Then, as required by LocScale2, we ruled out all entries which contained 
non-refined atomic B-factors. For each atomic model that survived atomic B-factor 
filtering, we computed continuous masks normalizing the simulated volumes that were 
produced with the e2pdb2mrc program from the EMAN-2 suite3 using default 
parameters and the reported resolution. Percentile 95 was selected as threshold in 
order to obtain binary masks. Such tight masks were required during training in order to 
improve convergence since unmasked targets (that would require the network to learn 
how to predict random noise in order to get 0 loss) were producing worse results. 
Atomic models were also supplied as input, together with the average map computed 
from the half-maps, to the prepare_locscale_input.py program (provided in LocScale 
repository), that generated the corrected and reference volume required for LocScale 
execution. LocScale was run using as window size the recommended value of 7 * 
average_map_resolution / pixel_size. Finally, the computed output was masked using 
the aforementioned mask. As a result, we obtained as training targets LocScale post-
processed and masked versions of the input volumes. 

Supplementary Figure 16 

 

 

Supplementary Figure 16. Workflow employed to generate training data for 
DeepEMhancer neural network. 
 

  



Supplementary Note 7: List of EMDB entries used in this 
work 

Train 
 
EMD-0026 
EMD-0038 
EMD-0071 
EMD-0093 
EMD-0094 
EMD-0132 
EMD-0234 
EMD-0244 
EMD-0408 
EMD-0415 
EMD-4288 
EMD-0452 
EMD-0490 
EMD-0500 
EMD-0501 
EMD-0552 
EMD-0567 
EMD-0589 
EMD-0592 
EMD-0665 
EMD-0776 
EMD-10049 
EMD-10069 
EMD-10100 
EMD-10105 
EMD-10106 
EMD-10134 
EMD-10273 
EMD-10279 
EMD-10324 
EMD-10333 
EMD-10418 
EMD-10534 
EMD-10585 
EMD-10595 
EMD-10617 
EMD-20145 
EMD-20146 
EMD-20189 
EMD-20234 
EMD-20249 
EMD-20254 
EMD-20259 
EMD-20270 
EMD-20271 
EMD-20352 
EMD-20521 
EMD-20986 
EMD-21012 



EMD-21107 
EMD-21144 
EMD-21391 
EMD-3661 
EMD-3662 
EMD-3802 
EMD-3885 
EMD-3908 
EMD-4032 
EMD-4073 
EMD-4148 
EMD-4162 
EMD-4192 
EMD-4214 
EMD-4241 
EMD-4272 
EMD-4401 
EMD-4404 
EMD-4429 
EMD-4588 
EMD-4589 
EMD-4593 
EMD-4728 
EMD-4746 
EMD-4748 
EMD-4759 
EMD-4888 
EMD-4889 
EMD-4890 
EMD-4907 
EMD-4917 
EMD-4918 
EMD-4941 
EMD-4983 
EMD-6479 
EMD-7009 
EMD-7041 
EMD-7065 
EMD-7090 
EMD-7334 
EMD-7335 
EMD-7770 
EMD-7869 
EMD-8437 
EMD-8438 
EMD-8911 
EMD-8958 
EMD-8960 
EMD-9111 
EMD-9258 
EMD-9259 
EMD-9891 
EMD-9931 
EMD-9934 
EMD-9935 



EMD-9939 
EMD-9941 
EMD-9695 
 

Validation 
 

EMD-0193 
EMD-0257 
EMD-0264 
EMD-0499 
EMD-10401 
EMD-20133 
EMD-20449 
EMD-20508 
EMD-20849 
EMD-4611 
EMD-4646 
EMD-4733 
EMD-4789 
EMD-6847 
EMD-7133 
EMD-7882 
EMD-8069 
EMD-9112 
EMD-9298 
EMD-9374 
EMD-9664 
 

Test 
 

EMD-0282 
EMD-0311 
EMD-0520 
EMD-0560 
EMD-10365 
EMD-20220 
EMD-20226 
EMD-3545 
EMD-4141 
EMD-4531 
EMD-4571 
EMD-4997 
EMD-5623 
EMD-6952 
EMD-7055 
EMD-7099 
EMD-7127 
EMD-7573 
EMD-8702 
EMD-9610  
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