SUPPLEMENTARY INFORMATION FOR

Large-scale phenotyping of 1,000 fungal strains for the degradation of non-natural, industrial compounds

David Navarro^{1,2*}, Delphine Chaduli^{1,2}, Sabine Taussac^{1,2}, Laurence Lesage-Messeen^{1,2}, Sacha Grisel¹, Mireille Haon¹, Philippe Callac³, Régis Courtecuisse⁴, Cony Decock⁵, Joëlle Dupont⁶, Florence Forget³, Jacques Fournier⁷, Jacques Guinberteau³, Christian Lechat⁸, Pierre-Arthur Moreau⁴, Laetitia Pinson³, Bernard Rivoire⁹, Lucile Sage¹⁰, Stéphane Welti⁴, Marie-Noëlle Rosso¹, Jean-Guy Berrin¹, Bastien Bissaro^{1*} and Anne Favel^{1,2}.

¹INRAE, Aix Marseille Univ., BBF, UMR1163, 13009 Marseille, France
²INRAE, Aix Marseille Univ., CIRM-CF, 13009 Marseille, France
³INRAE, MYCSA, UR1264, 33882 Villenave d'Ornon, France
⁴Faculté de Pharmacie Lille, Université de Lille, LGCgE, ER4, F-59006, Lille, France.
⁵Mycothèque de l'Université Catholique de Louvain (MUCL), Earth and Life Institute, Microbiology, B-1348 Louvain-la-Neuve, Belgium.
⁶Institut de Systématique, Evolution et Biodiversité, ISYEB – UMR 7205 – CNRS, MNHN, UPMC, EPHE, Muséum national d'histoire naturelle, Sorbonne Universités, 57 rue Cuvier, CP39, 75005 Paris, France
⁷Las Muros, Rimont, 09420, France
⁸Ascofrance, F-79360 Villiers-en-Bois, France.
⁹Société Linnéenne, 69006 Lyon, France
¹⁰Université Grenoble Alpes, LECA, UMR UGA-USMB-CNRS 5553, CS 40700 38058 Grenoble, France.

* corresponding authors: David Navarro (<u>david.navarro@inrae.fr</u>) and Bastien Bissaro (<u>bastien.bissaro@inrae.fr</u>)

This file includes:

- 1. Supplementary Figures
- 2. Supplementary Tables
- 3. Supplementary References

1. Supplementary Figures

Supplementary Fig. 1. Chemical structures of the 5 targeted non-natural, industrial compounds. Enzymatic activities suggested to be involved in degradation of the different compounds are indicated in the figure.

Supplementary Fig. 2. Correlation analysis between (a) growth and functional phenotypes and (b) between the functional phenotypes. In panel a, the box plots show the distribution of growth scores (y-axis) for each phenotype levels: strong (scores 4-3; red color), slight (scores 2-1; blue color) and inactive (score 0; green color). Boxes show the interquartile range (i.e. data comprised between the first and last quartile, 25 < x < 75%), black bars show the median and crossed-circles show the mean. The figure shows clearly that there is no correlation between growth and functional phenotypes. In panel b, the color scale on the right-hand side indicates the correlation coefficient, from 1 (perfect positive correlation) to -1 (perfect negative correlation). The diameter of circles represents the absolute value of correlation for each pair of functional phenotypes. The figure shows the absence of correlation in between most functional phenotypes. Raw data are available in the **Supplementary Data 2**.

2. Supplementary Tables

Order	Family	Number of families	Number of genera	Number of species	Number of strains
	Agaricales	15	33	58	181
	Boletales	5	5	6	6
	Atheliales	1	1	1	1
	Polyporales	9	68	126	392
Desidiarry cata	Russulales	6	10	13	27
Basidiomycota	Gloeophyllales	1	4	8	20
	Corticiales	1	1	1	2
	Hymenochaetales	2	8	15	49
	Cantharellales	2	4	4	9
	Microstromatales	1	1	1	1
	Eurotiales	2	4	22	66
	Chaetothyriales	1	1	1	1
	Pleosporales	4	9	9	18
	Capnodiales	1	3	3	4
	Dothideales	1	1	1	1
	Helotiales	1	3	2	4
Accomunate	Chaetomellales	1	1	1	1
ASCOMYCOLA	Hypocreales	8	46	73	147
	Coniochaetales	1	1	1	1
	Sordariales	3	3	3	3
	Pezizales	1	1	3	3
	Xylariales	5	16	41	83
	Rhinotrichum spp.				1
	Saccharomycetales	2	2	1	2
	Mucorales	2	3	4	6
Mucoromycota	Umbelopsidales	1	1	1	1
	Mortierellales	1	1	1	1
		78	231	400	1031

Supplementary Table 1. Overview of the taxonomic diversity of phenotyped strains.

Supplementary Table 2. Occurrence of the PF01083 domain (cutinase domain) in the sequenced fungal genomes available in the JGI Mycocosm portal (Grigoriev *et al.*, 2011; Grigoriev *et al.*, 2014)^{1,2}

Fungal families	Number of PF01083 domain "cutinase"	Number of sequenced genome	
Ascomycota	6966	1070	
Eurotiales	1448	279	
Pleosporales	987	93	
Hypocreales	897	98	
Xylariales	793	113	
Basidiomycota	1117	551	
Agaricales	301	164	
Gloeophyllales	0	4	
Hymenochaetales	0	14	
Polyporales	2	77	
Russulales	12	40	
Mucoromycota	0	97	

References	gene fragment	species	Forward		Reverse		
Stielow <i>et al.</i> , 2015 ³	TEF-1α	Ascomycetes	TEF1α- 983-F	GCYCCYGGHCAYCGTGAYTTYAT	EF1-1567R	ACHGTRCCRATACCACCRATCTT	
Rehner <i>et al.</i> , 2005 ⁴	TEF-1α	Basidiomycetes	TEF1α- 983-F- CF2	GCYCCYGGHCAYCGTGAYTTYAT	TEF1α- 2218-R- CR2	ATGACACCRACRGCRACRGTYTG	
White <i>et al</i> ., 1990 ⁵	ITS1- 5,8S- ITS2	Ascomycetes	ITS5	GGAAGTAAAAGTCGTAACAAGG	ITS4	TCCTCCGCTTATTGATATGC	
	ITS1- 5,8S- ITS2	Basidiomycetes and Mucoromycetes	ITS1	TCCGTAGGTGAACCTGCGG	ITS4	TCCTCCGCTTATTGATATGC	
Parry and Nicholson, 1996 ⁶	RAPD marker	Fusarium poae	Fp82F	CAAGCAAACAGGCTCTTCACC	Fp82R	TGTTCCACCTCAGTGACAGGTT	
Nicholson <i>et al</i> ., 1998 ⁷	RAPD marker	Fusarium culmorum	Fc01F	ATGGTGAACTCGTCGTGGC	Fc01R	CCCTTCTTACGCCAATCTCG	
	RAPD marker	Fusarium graminearum	Fg16NF	ACAGATGACAAGATTCAGGCACA	Fg16NR	TTCTTTGACATCTGTTCAACCCA	
Yoder et Christianson, 1998 ⁸	RAPD marker	Fusarium crookwellense	FcroF	CTCAGTGTCCACCGCGTTGCGTAG	FcroR	CTCAGTGTCCCATCAAATAGTCC	
Wilson <i>et al</i> ., 2004 ⁹	RAPD marker	Fusarium sporotrichioides	FsporF1	CGCACAACGCAAACTCATC	LansporR1	TACAAGAAGACGTGGCGATAT	
Turner <i>et al</i> ., 1998 ¹⁰	RAPD marker	Fusarium avenaceum	JIAf	GCTAATTCTTAACTTACTAGGGGCC	JIAr	CGTTAATAGGTTATTTACATGGGCG	
Moller <i>et al.</i> , 1999	RAPD marker	Fusarium subglutinans	61-2 F	GGCCACTCAAGAGGCGAAAG	61-2 R	GTCAGACCAGAGCAATGGGC	
Picot <i>et al.</i> , 2012	FUM 1	Fusarium proliferatum	FproF	TGCTCGTCATCCCTGATAG	FproR	GAAGATGGCATTGATTGCCTC	
Aguado <i>et al</i> ., 2018 ¹³	FUM 1	Fusarium verticillioides	Fum1- 654	CGGTTGTTCATCATCTCTGA	Fum1-1158	GCTCCCGATGTAGAGCTTGTT	
Scauflaire <i>et al</i> ., 2012 ¹⁴	EF1- α	Fusarium temperatum	FtemF	AAGACCTGGCGGGC	FtemR	TCAGAAGGTTGTGGCAATGG	
This study	ITS2	Agaricus bisporus var. bisporus	5,8 S 3'F	AYGCCTGTYYGAGYGTC	Abisp ITS2	TGTCCTTAGACGATTAGAAGC	

Supplementary Table 3. List of primers used for the molecular authentication of candidate strains.

3. Supplementary References

- 1. Grigoriev, I. V. et al. Fueling the future with fungal genomics. Mycology 2, 192–209 (2011).
- Grigoriev, I. V. *et al.* MycoCosm portal: gearing up for 1000 fungal genomes. *Nucleic Acids Res.* 42, D699–D704 (2014).
- 3. Stielow, J. B. *et al.* One fungus, which genes? Development and assessment of universal primers for potential secondary fungal DNA barcodes. *Persoonia Mol. Phylogeny Evol. Fungi* **35**, 242–263 (2015).
- 4. Rehner, S. A. & Buckley, E. A Beauveria phylogeny inferred from nuclear ITS and EF1-alpha sequences: evidence for cryptic diversification and links to Cordyceps teleomorphs. *Mycologia* **97**, 84–98 (2005).
- 5. White, T. J., Bruns, T., Lee, S. & Taylor, J. AMPLIFICATION AND DIRECT SEQUENCING OF FUNGAL RIBOSOMAL RNA GENES FOR PHYLOGENETICS. in *PCR Protocols* 315–322 (Elsevier, 1990).
- 6. Parry, D. W. & Nicholson, P. Development of a PCR assay to detect Fusarium poae in wheat. *Plant Pathol.* **45**, 383–391 (1996).
- 7. Nicholson, P. *et al.* Detection and quantification of *Fusarium culmorum* and *Fusarium graminearum* in cereals using PCR assays. *Physiol. Mol. Plant Pathol.* **53**, 17–37 (1998).
- Yoder, W. T. & Christianson, L. M. Species-specific primers resolve members of *Fusarium* section *Fusarium*. Taxonomic status of the edible 'Quorn' fungus reevaluated. *Fungal Genet. Biol. FG B* 23, 68–80 (1998).
- 9. Wilson, A., Simpson, D., Chandler, E., Jennings, P. & Nicholson, P. Development of PCR assays for the detection and differentiation of *Fusarium sporotrichioides* and *Fusarium langsethiae*. *FEMS Microbiol. Lett.* **233**, 69–76 (2004).
- Turner, A. S., Lees, A. K., Rezanoor, H. N. & Nicholson, P. Refinement of PCR-detection of Fusarium avenaceum and evidence from DNA marker studies for phenetic relatedness to Fusarium tricinctum. Plant Pathol. 47, 278–288 (1998).
- 11. Möller, E. M., Chełkowski, J. & Geiger, H. H. Species-specific PCR Assays for the Fungal Pathogens *Fusarium moniliforme* and *Fusarium subglutinans* and their Application to Diagnose Maize Ear Rot Disease. *J. Phytopathol.* **147**, 497–508 (1999).
- 12. Picot, A. *et al.* Interactions between *Fusarium verticillioides* and *Fusarium graminearum* in maize ears and consequences for fungal development and mycotoxin accumulation. *Plant Pathol.* **61**, 140–151 (2012).
- 13. Aguado, A. *et al.* Priming to protect maize from *Fusarium verticillioides* and its fumonisin accumulation. *J. Sci. Food Agric.* **99**, 64–72 (2019).
- 14. Scauflaire, J., Godet, M., Gourgue, M., Liénard, C. & Munaut, F. A multiplex real-time PCR method using hybridization probes for the detection and the quantification of *Fusarium proliferatum*, *F. subglutinans*, *F. temperatum*, and *F. verticillioides*. *Fungal Biol.* **116**, 1073–1080 (2012).