Supplementary Appendix

This appendix has been provided by authors to give readers additional information about their work.

Supplement to: Vitamin D status in Mainland of China: a systematic review and meta-analysis.

Contents

Supplementary file 1: Search strategy3
Supplementary file 2: Hierarchical Bayesian model and the code from R software6
1. The Hierarchical Bayesian model6
2. The Hierarchical Bayesian meta-regression model7
3. Parameter Estimation
4. Code of "R2jags" package from R software12
Supplementary tables
Table S1. Characteristics of the included studies 17
Table S2. Risk of bias assessment of the included studies ^a
Table S3. Parameters from HB meta-regression models for Vitamin D inadequacy (< 50
nmol/L)
Table S4. Parameters from HB meta-regression models for Vitamin D concentration (nmol/L)
Supplementary figures
Figure S1. Forest plot for overall mean 25(OH)D concentrations of adults in Mainland of China
Figure S1. Forest plot for overall mean 25(OH)D concentrations of adults in Mainland of China
Figure S1. Forest plot for overall mean 25(OH)D concentrations of adults in Mainland of China
Figure S1. Forest plot for overall mean 25(OH)D concentrations of adults in Mainland of China
Figure S1. Forest plot for overall mean 25(OH)D concentrations of adults in Mainland of China
 Figure S1. Forest plot for overall mean 25(OH)D concentrations of adults in Mainland of China
 Figure S1. Forest plot for overall mean 25(OH)D concentrations of adults in Mainland of China 35 Figure S2. Forest plot for overall mean 25(OH)D concentrations of children and adolescents in Mainland of China 36 Figure S3. Pooled prevalence of Vitamin D inadequacy (A) and overall mean 25(OH)D concentrations (B) of adults in Mainland of China based on sex 37 Figure S4. Forest plot for mean 25(OH)D concentrations of adults in Mainland of China based
 Figure S1. Forest plot for overall mean 25(OH)D concentrations of adults in Mainland of China
Figure S1. Forest plot for overall mean 25(OH)D concentrations of adults in Mainland of China 35 Figure S2. Forest plot for overall mean 25(OH)D concentrations of children and adolescents in Mainland of China 36 Figure S3. Pooled prevalence of Vitamin D inadequacy (A) and overall mean 25(OH)D concentrations (B) of adults in Mainland of China based on sex 37 Figure S4. Forest plot for mean 25(OH)D concentrations of adults in Mainland of China based on sex 38 Figure S5. Forest plot for Vitamin D inadequacy of adults in Mainland of China based on sex
 Figure S1. Forest plot for overall mean 25(OH)D concentrations of adults in Mainland of China
Figure S1. Forest plot for overall mean 25(OH)D concentrations of adults in Mainland of China
Figure S1. Forest plot for overall mean 25(OH)D concentrations of adults in Mainland of China

Supplementary file 1: Search strategy

1. PubMed

Access Date: 4 Jun 2021

Search strategy:

("vitamin d"[MeSH Terms] OR "ergocalciferols"[MeSH Terms] OR "ergocalciferols"[MeSH Terms] OR "calcifediol"[MeSH Terms] OR "cholecalciferol"[MeSH Terms] OR "vitamin d deficiency"[MeSH Terms] OR "vitamin d"[Title/Abstract] OR "25 hydroxyvitamin d"[Title/Abstract] OR "calcifediol"[Title/Abstract] OR "ergocalciferols"[Title/Abstract] OR "cholecalciferol"[Title/Abstract] OR "vitamin d deficiency"[Title/Abstract]) AND ("china"[MeSH Terms] OR "china"[All Fields] OR "china s"[All Fields] OR "chinas"[All Fields] OR "china"[MeSH Terms] OR "asian continental ancestry group"[MeSH Terms] OR ("asian continental ancestry group"[MeSH Terms] OR ("asian"[All Fields] AND "continental"[All Fields] AND "ancestry"[All Fields] AND "group"[All Fields]) OR "asian continental ancestry group"[All Fields] OR "chinese"[All Fields]] OR "chineses"[All Fields]])) Search Results: 5197

2. Web of Science

Access Date: 4 Jun 2021

Search	strategy:
--------	-----------

3	1 AND 2	2943
	Databases= WOS, Time span=All years, Search language=Auto	
2	TS= (China OR Chinese)	1094501
	Databases= WOS, Time span=All years, Search language=Auto	
1	TS=(vitamin D OR vitamin D deficiency OR 25-hydroxyvitamin D OR	116123
	calcifediol OR ergocalciferols OR cholecalciferol)	
	Databases= WOS, Time span=All years, Search language=Auto	

3. EMBASE

Access Date: 4 Jun 2021

Search strategy:

18	(1 or 2 or 3 or 4 or 5 or 6 or 10 or 11 or 12 or 13 or 14 or 15) and (8 or 9	2308
	or 16 or 17)	
17	Chinese.ab,kw,ti,tw.	300585
16	China.ab,kw,ti,tw.	253237
15	cholecalciferol.ab,kw,ti.	4651
14	ergocalciferols.ab,kw,ti.	14
13	calcifediol.ab,kw,ti.	341
12	25-hydroxyvitamin d.ab,kw,ti.	17418
11	vitamin d deficiency.ab,kw,ti.	23315
10	vitamin d.ab,tw,ti.	100329
9	China/	235790
8	Chinese/	66293
7	China/ep[Epidemiology]	8276
6	colecalciferol/	22009
5	ergocalciferol/	8796
4	calcifediol/	9360
3	25 hydroxyvitamin D/	23525
2	vitamin D deficiency/	32391
1	vitamin D/	81078

4. China National Knowledge Infrastructure (CNKI)

Access Date: 4 Jun 2021 Subject category: Medicine & Public Health Sub-database: Journal articles, Dissertations Search strategy: (SU="维生素 D") AND (SU="缺乏" + "水平" + "调查" + "流行" + "现状" + "现况") Search Results: 3783

5. WanFang

Access Date: 4 Jun 2021 Subject category: Medicine & Public Health Sub-database: Journal articles, Dissertations Search strategy: 题名或关键词:(("维生素D") and ("缺乏" or "水平" or "调查" or "流行" or "现状" or "现况")) Search Results:3594

6. VIP

Access Date: 4 Jun 2021 Subject category: Medicine & Public Health

Search strategy:

M=(("维生素 D") AND ("缺乏" or "水平" or "调查" or "流行" or "现状" or "现况"))
Search Results:2002

Supplementary file 2: Hierarchical Bayesian model and the code from R software

1. The Hierarchical Bayesian model

Meta-analysis usually combines aggregated or individual results from several studies to create a pooled, more precise estimate of an effect. Due to the hierarchical structure (intra-study and between-study) of meta-analysis data, the hierarchical Bayesian approach is often used in meta-analysis. Meanwhile, the Bayesian approach allows us to account for uncertainty from the varying quality of data and borrow strength from non-missing data, and MCMC sampling allows for inference in a high-dimensional, constrained parameter space, while providing posterior estimation that allow straightforward inference on the wide variety of functionals of interest.

In our meta-analysis, the outcomes of interest were the prevalence of vitamin D (VitD) deficiency (<30 nmol/L, or < 12 ng/mL), VitD inadequacy (<50 nmol/L, or < 20 ng/mL), and mean serum 25(OH)D concentration (nmol/L).We use the Hierarchical Bayesian models to estimate the pooled prevalence of VitD deficiency, inadequacy and mean serum 25(OH)D concentration.

For the *i*th study which reported the dichotomous outcomes, the number of populations with VitD deficiency/ inadequacy in the *i*th study followed the binomial distribution:

$$r_i \sim \text{binomial}(n_i, p_i)$$
 (1)

Where n_i was the total number of investigated population and p_i was the true prevalence of VitD deficiency/ inadequacy for the *i*th study.

The logit transformation of p_i followed a normal distribution among studies:

$$\theta_i = logit(p_i) \sim normal(\mu, \sigma^2)$$
 (2)

Where μ was the mean of logit(p_i) and σ^2 was the between-study variance. r_i and n_i were extracted from each study, θ_i , μ and σ^2 were parameters estimated from the model.

And we could estimate the pooled prevalence of VitD deficiency/ inadequacy and the

corresponding 95% credible interval (CrI) through retransform the :

$$prevalence = exp(\mu)/(1 + exp(\mu))$$
(3)

For the *i*th study which reported the mean of VitD concentration (*mean_i*), *mean_i* followed a normal distribution:

$$mean_i \sim normal(\theta_i, S_i^2)$$
 (4)

Where θ_i was the true value of the VitD concentration in the *i*th study and S_i was standard error of the estimated *mean*_i.

 θ_i followed a normal distribution among studies:

$$\theta_i \sim \operatorname{normal}(\mu, \sigma^2)$$
 (5)

Where μ was the pooled mean of the vitamin D concentration and σ^2 was the between-study variance.

The *mean*_i and *se*_i were extracted or calculated from each study, θ_i , μ and σ^2 were parameters estimated from the model.

The hierarchical model also called the random-effect model or mixed-effect model. In the above models, (1) and (4) were the within-study component of hierarchical model, (2) and (5) were between-study component, the study-specific and the pooled parameters can estimate from the hierarchical model.

2. The Hierarchical Bayesian meta-regression model

2.1 Study-level covariates

To assess the effects of sampling frame, latitude, urbanization, season, assays for serum 25(OH)D on the outcomes (prevalence of VitD inadequacy and mean concentration of VitD), we constructed the Hierarchical Bayesian meta-regression model for each study-level covariate separately.

In the within-study level, the models were the same as formula (1) or (4).

In the between-study level, let X_i stand for the vector of covariates of the *i*th study and α stand for the constant term. θ_i was the true value of logit transformation of prevalence of VitD inadequacy, or true value of the vitamin D concentration from the *i*th study, and $\alpha + X_i\beta$ predict the θ_i with residual variance, which followed a normal

distribution:

$$\theta_{i} = \alpha_{i} + \sum \beta_{p} X_{pi}$$
(6)
$$\alpha_{i} \sim \operatorname{normal}(\mu, \sigma^{2})$$
(7)

The model included the random intercept and fix effect of the slope. From the model, we obtained the pooled prevalence of VitD inadequacy or mean concentration in each level of the specific covariate and the ratio or difference between two levels of the specific covariate.

For "sampling frame", we specified x1=1 as the study sampled with province or city level, x2=1 as the study sampled with county level, and the study sampled national wide as the reference (constant).

Study(<i>i</i>)	Sampling frame	$x l_i$	$x2_i$	n_i	r _i	
1	National	0	0	•••	•••	
2	Province or	1	0			
	City	1	0			
3	County	0	1	•••	•••	
4	•••		0	•••	•••	
•••			•••	•••	•••	

Table A. Data structure of VitD inadequacy with the study-level covariate

When estimated the prevalence of VitD inadequacy, according to formulas (1), (6), (7), we obtained the pooled prevalence of VitD inadequacy when studies sampled from National, Province or City, County respectively:

Prevalence (National) =
$$exp(\mu)/(1 + exp(\mu))$$
 (8)

Prevalence (Province or City) =
$$exp(\mu + \beta_1)/(1 + exp(\mu + \beta_1))$$
 (9)

Prevalence (County) =
$$exp(\mu + \beta_2)/(1 + exp(\mu + \beta_2))$$
 (10)

And the Odds Ratio:

Odds Ratio	(Province or	City vs. N	(ational) = <i>exp</i>	(β_l)	(11)

Odds Ratio (County vs. National) $=exp(\beta_2)$ (12)

Odds Ratio (Province or City vs. County) =
$$exp(\beta_1,\beta_2)$$
 (13)

When estimate the mean concentration, according to the formulas (4), (6), (7), we can obtain the pooled mean concentration of VitD inadequacy when studies sampled from National, Province or City, County respectively:

Mean concentration (National)= μ	(14)
--------------------------------------	------

Mean concentration (Province or City)= $\mu + \beta_1$ (15)

Mean concentration (County)= $\mu + \beta_2$ (16)

And the difference of concentration (nmol/L):

Difference	e (Province or	City vs.	National) = β_1	(17)
------------	----------------	----------	-----------------------	-----	---

Difference (County vs. National) = β_2 (18)

Difference (Province or City vs. County) = $\beta_1 \beta_2$ (19)

If the 95%CrI of the effect size (odds Ratio or difference) estimated from the HB meta-regression models included the null effect size of 1 or 0, then this covariate was not considered as the factor causing the heterogeneity of studies.

The same calculation process was applied for other covariates. And the specifications for other study-level covariates were as follow:

For "latitude", x1=1 indicated the study sampled from north areas only, x2=1 indicated the study sampled from both the south and north areas, and the study sampled from south areas only as the reference (constant). For "urbanization", x1=1 indicated the study sampled from rural areas only, x2=1 indicated the study sampled from both urban and rural areas, and the study sampled from urban areas only as the reference (constant). For "season", x1=1 indicated the VitD measured during summerautumn, x2=1 indicated the VitD measured covering at least a whole year, and the VitD measured during winter-spring as the reference (constant). For "assays", x1=1 indicated the VitD measured using the ELISA (Enzyme-linked immunosorbent assays), x2=1 indicated the VitD measured using the ECLIA

(Electrochemiluminescence immunoassay), x3=1 indicated the VitD measured using CLIA (Chemiluminescent assay) ,x4=1 indicated the VitD measured using the RIA (Radioimmunoassay) ,and the chemical assays including HPLC (High-performance liquid chromatography) and LC-MS/MS (Liquid chromatography coupled with mass

spectrometry) as the reference (constant).

2.2 Sex difference and Age trend

We could extract the sex-specific or age-specific outcomes from most of the included studies, but few studies provided the sex- and age-specific outcomes. As a result, we constructed the Hierarchical Bayesian meta-regression model for sex-specific and agespecific outcomes separately.

Table B listed the data structure of the sex-specific VitD inadequacy. Each row indicated a study-sex group, and sex=0 indicated male and sex=1 indicated the female.

Study-sex(ij)	Study(<i>j</i>)	Sex _{ij}	n _{ij}	r _{ij}
1	1	1	•••	•••
2	1	0	•••	•••
3	2	1	•••	•••
4	2	0	•••	•••
•••	•••	•••	•••	•••

Table B. Data structure of the sex-specific VitD inadequacy

In the *ij* study-sex group, r_{ij} followed the binomial distribution:

$$r_{ij}$$
~binomial (n_{ij}, p_{ij}) (1)

The logit transformation of p_{ij} , which was the θ_{ij} followed a normal distribution among studies. We constructed a linear relationship with sex:

$$\theta_{ij} = \alpha_j + \beta_j Sex_{ij} \tag{20}$$

$$\alpha_j \sim \operatorname{normal}(\mu_{\alpha}, \sigma_{\alpha}^2)$$
 (21)

$$\beta_j \sim \operatorname{normal}(\mu_\beta, \sigma_\beta^2)$$
 (22)

If we added the study-level covariate into the model above, the formula (21) was modified as:

$$\alpha_j \sim \operatorname{normal}(\mu_{\alpha} + \sum \beta_p X_{pj}, \sigma_{\alpha}^2)$$
(23)

We obtained the pooled prevalence of VitD inadequacy for male and female respectively:

Prevalence (Male) =
$$exp(\mu_{\alpha})/(1 + exp(\mu_{\alpha}))$$
 (24)

Prevalence (Female) =
$$exp(\mu_{\alpha} + \mu_{\beta})/(1 + exp(\mu_{\alpha} + \mu_{\beta}))$$
 (25)

And the Odds Ratio:

Odds Ratio (Female vs. Male)=
$$exp(\mu_{\beta})$$
 (26)

The age trend analysis was conducted only for children and adolescents (age \leq 18years), and older people(age \geq 60 yeas) .Table C display the data structure of the age-specific VitD inadequacy. Each row indicated a study-age group, and the mid-point values of each age group were used as continuous variables to construct a linear trend HB model.

Table C. Data structure of the age-specific VitD inadequacy(children)

Study-age(ij)	Study(<i>j</i>)	Age _{ij}	n _{ij}	r _{ij}
1	1	3	•••	•••
2	1	4	•••	•••
3	1	5	•••	•••
4	2	4	•••	•••
•••	•••	•••	•••	•••

The regression model for age was similar as for sex.

In the ij study-age group, r_{ij} followed the binomial distribution:

$$r_{ij}$$
~binomial (n_{ij}, p_{ij}) (1)

The logit transformation of p_{ij} , which was the θ_{ij} followed a normal distribution among studies, and we constructed a linear relationship with age:

$$\theta_{ij} = \alpha_j + \beta_j Ag e_{ij} \tag{27}$$

$$\alpha_i \sim \operatorname{normal}(\mu_{\alpha}, \sigma_{\alpha}^2)$$
 (21)

$$\beta_j \sim \operatorname{normal}(\mu_\beta, \sigma_\beta^2)$$
 (22)

Then we used the estimated prevalence of VitD inadequacy of ages from 1 to 18, or 60 to 90 to draw the age trend plot.

Prevalence
$$(Age_k) = exp(\mu_{\alpha} + \mu_{\beta}Age_k)/(1 + exp(\mu_{\alpha} + \mu_{\beta}Age_k))$$
 (28)

Where k=1 to 18 for children and adolescents, and k=60 to 90 for older people. If we added the study-level covariate into the above model, the formula (21) was modified as:

$$\alpha_j \sim \operatorname{normal}(\mu_{\alpha} + \sum \beta_p X_{pj}, \sigma_{\alpha}^2)$$
(23)

And then we could draw the age trend of VitD inadequacy for each level of the covariate respectively.

For the mean concentration of VitD, the sex or age HB regression models were similar with the regression of prevalence of VitD inadequacy, except for the within study-sex or study-age group distribution:

$$mean_{ij} \sim normal(\theta_{ij}, \sigma_{ij}^2)$$
 (4)

3. Parameter Estimation

All HB models were fitted with the Markov chain Monte Carlo (MCMC) algorithm and Gibbs sampling to estimate the posterior distribution of the outcomes. Non-informative prior was specified for all the parameters. The uncertainty intervals (or CrI) represent the 2.5-97.5 percentiles of the posterior distribution of the estimation. Inferences were based on 5000 iterations, and the first 2500 of which were used as burn-in. All the hierarchical Bayesian analyses were performed using the "R2jags" package of R software (version 4.0.3). In the BUGS model, normal distribution was written as mean and precision $\tau^2 = \frac{1}{\sigma^2}$ which was not the variance σ^2 .

4. Code of "R2jags" package from R software

The codes from R in our study were displayed below for the analysis of prevalence of vitamin D deficiency, inadequacy, and sufficiency, the codes for the analysis of VitD concentration were omit.

4.1 Prevalence of VitD deficiency/inadequacy/sufficiency without covariates

```
# write bugs model in R as a function
bayesmodel.1<-function(){</pre>
  for (i \text{ in } 1:N)
                                           # N, the number of studies
     r[i] \sim dbinom (p[i], n[i])
                                           # data model
    logit(p[i]) < -y[i]
                                           # the logit transformation for p
  }
   for (i in 1:N){
                                            # hierarchical model for y
     y[i] \sim dnorm (mu, tau)
   }
   tau <- pow(sigma, -2)
                                           \# tau = 1/sigma^2
   mu ~ dnorm (0.0, 1.0E-6)
                                            # noninformative prior on mu
   sigma ~ dunif (0, 1000)
                                            # noninformative prior on sigma
   prevalence <-exp(mu)/(1+exp(mu))
                                            # the pooled prevalence
  sigma2<-sigma*sigma
}
jags.params.1 <-c("mu","sigma2","p","prevalence")
set.seed(123)
jags.1 <- jags(data=list(N=length(data$Studyid),r=data$count,n=data$n),
inits=NULL, jags.params.1, n.iter=5000, model.file=bayesmodel.1)
```

#Where *data* was the dataframe of each outcome for children or adults, *studyid* was the study identification for each study, *count* was the number of populations with vitamin D deficiency/ inadequacy, *n* was the corresponding total number of investigated populations.

#The forest plot was draw from the observational prevalence of each study and the pooled prevalence of deficiency/inadequacy from the above model.

4.2 Prevalence of VitD inadequacy with study-level covariates

```
tau <- pow(sigma, -2)
sigma ~ dunif (0, 1000)
```

mu~ dnorm (0.0, 1.0E-6)

beta1~ dnorm (0.0, 1.0E-6)

beta2~ dnorm (0.0, 1.0E-6)

}

tau = 1/sigma^2
noninformative prior on sigma
noninformative prior on mu
noninformative prior on beta1
noninformative prior on beta2

```
P.0 <-exp(beta0)/(1+exp(beta0))</th># the prevalence if x1==0\&x2==0P.1 <-exp(beta0+beta1)/(1+exp(beta0+beta1))</td># the prevalence if x1==1P.2 <-exp(beta0+beta2)/(1+exp(beta0+beta2))</td># the prevalence if x2==1OR.1 <-exp(beta1)</td># the OR in x1=1 vs. x1==0\&x2==0OR.2 <-exp(beta2)</td># the OR in x2=1 vs. x1==0\&x2==0OR.2_1 <-exp(beta2-beta1)</td># the OR in x2=1 vs. x1==0\&x2==0or x2=1 <-exp(beta2-beta1)</td># the OR in x2=1 vs. x1==1sigma2<-sigma*sigma</td># the OR in x2=1 vs. x1==1
```

```
}
```

```
jags.params.2 <-c("mu","beta1","beta2","sigma2","p","P.0","P.1","P.2","OR.1",
"OR.2", "OR.2_1")
set.seed(123)
jags.2<- jags(data=list(N=length(data$Studyid),r=data$count,n=data$n,
x1=data$x1, x2=data$x2), inits=NULL, jags.params.2, n.iter=5000,
model.file=bayesmodel.2)
```

#The meta-regression with study-level covariates were applied in vitamin D inadequacy only because of the limited number of studies for vitamin D deficiency. #Where *data* was the dataframe of vitamin D inadequacy for children or adults, *studyid* was the study identification for each study , *count* was the number of population with vitamin D inadequacy, *n* was the total number of investigated population, and x1,x2 were the indicator variables of the study-level covariate.

4.3 Sex-specific prevalence of VitD inadequacy

```
bayesmodel.3 <- function(){
  for (i in 1:N)
                                           # N, the number of study-sex groups
     r[i] \sim dbinom (p[i], n[i])
                                           # data model
                                                      # the logit transformation for p
     logit(p[i]) < -y[i]
    y[i] <- alpha[Study[i]]+beta[Study[i]]*sex[i]
                                                      # hierarchical model for y
  }
  for (j \text{ in } 1:J)
                                            # J, the number of study
     alpha[j] \sim dnorm(mu.a,tau.a)
      beta[j] ~ dnorm(mu.b,tau.b)
  }
  tau.a <- pow(sigma.a,-2)
                                                 # tau.a = 1/sigma.a^2
  tau.b <- pow(sigma.b,-2)</pre>
                                                 # tau.b = 1/sigma.b^2
  sigma.a ~ dunif (0, 1000)
                                                 # noninformative prior on sigma.a
  sigma.b ~ dunif (0, 1000)
                                                 # noninformative prior on sigma.b
  mu.a ~ dnorm (0.0, 1.0E-6)
                                                 # noninformative prior on mu.a
  mu.b ~ dnorm (0.0, 1.0E-6)
                                                 # noninformative prior on mu.b
  P.male <-\exp(mu.a)/(1+\exp(mu.a))
                                                          # the prevalence for male
  P.female \langle -exp(mu.a+mu.b)/(1+exp(mu.a+mu.b)) \rangle
                                                         # the prevalence for female
  OR
                                                         # the OR for female vs. male
           <-exp(mu.b)
 sigma.a2<-sigma.a*sigma.a
```

}

```
jags.params.3<-c("mu.a", "mu.b", "sigma.a2", "sigma.b", "p", "P.male", "P.female", "OR")
set.seed(123)
jags.sex <-jags(data=list(N=length(data$Studyid),J=length(unique(data$Studyid)),
r=data$count,n=data$n,Study=data$Studyid,sex=data$sex), inits=NULL,
jags.params.3, n.iter=5000,model.file=bayesmodel.3)
```

#Where *data* was the dataframe of sex-specific vitamin D inadequacy for children or adults, *studyid* was the study identification for each study , *count* was the sex-specific number of population with vitamin D inadequacy in each study, *n* was the corresponding number of investigated population, and sex=1 indicate female and sex=0 indicate male.

4.4 Age-specific prevalence of VitD inadequacy

```
bayesmodel.4<-function(){</pre>
  for (i \text{ in } 1:N)
                                                  # N, the number of study-age groups
     r[i] \sim dbinom (p[i], n[i])
                                                  # data model
                                                      # the logit transformation for p
     logit(p[i]) < -y[i]
    y[i] <- alpha[Study[i]]+beta[Study[i]]*age[i]
                                                       # hierarchical model for y
  }
  for (j \text{ in } 1:J)
                                                       # J, the number of study
     alpha[j] ~ dnorm(mu.a,tau.a)
      beta[j] ~ dnorm(mu.b,tau.b)
  }
  tau.a <- pow(sigma.a,-2)
                                                  \# tau.a = 1/sigma.a^2
  tau.b <- pow(sigma.b,-2)</pre>
                                                  \# tau.b = 1/sigma.b^2
  sigma.a ~ dunif (0, 1000)
                                                 # noninformative prior on sigma.a
  sigma.b ~ dunif (0, 1000)
                                                 # noninformative prior on sigma.b
  mu.a ~ dnorm (0.0, 1.0E-6)
                                                  # noninformative prior on mu.a
  mu.b ~ dnorm (0.0, 1.0E-6)
                                                  # noninformative prior on mu.b
  OR <-exp(mu.b)
                                             # the OR every one year increased in age
 sigma.a2<-sigma.a*sigma.a
```

}

```
jags.params.4 <-c("mu.a", "mu.b", "sigma.a2", "sigma.b", "p", "OR")
set.seed(123)
jags.age<-jags(data=list(N=length(data$Studyid),J=length(unique(data$Studyid)),
r=data$count,n=data$n,Study=data$Studyid,age= data $age), inits=NULL,
jags.params.4, n.iter=5000, model.file=bayesmodel.4)
```

#Where *data* was the dataframe of age-specific vitamin D inadequacy for children or adults, *studyid* was the study identification for each study , *count* was the number of population with vitamin D inadequacy in each age group, *n* was the corresponding total number of investigated population, and age was the midpoint of age group from each study.

Supplementary tables

Table S1. Characteristics of the included studies

Study	First	Year of	Season of	Drovinco	South or	Urban or	Accove	Population	Sompling mothod	Dopulation	Sample	Age
ID	Author	publication	conduction	riovince	North	Rural	Assays	Setting Sampling method	ropulation	size	(Years)	
(1)	Yuyan	2012	Unknown	Guanavi	South	Durol		Sahaal	cluster random	Children and	M: 265;	6 12
(1)	Jiang	2013	UIKIIOWII	Gualigxi	South	Kulai	ELISA	School	sampling	Adolescents	F: 247	0-13
(2)	Runxiao	2016	Summer/Autump	Habai	North	Dural		School	stratified random	Children and	M: 364;	6 16
(2)	Miao	2010	Summer/Autumn	Hebel	North	Kurai	LC-1015/1015	School	sampling	Adolescents	F: 356	0-10
(2)	Pengmei	2017	Roth	Guanadona	South	Urban		Community	simple random	Children	M: 687;	0.6
(3)	Wu	2017	Both	Oualiguolig	South	Ofball	LC-1015/1015	Community	sampling	Children	F: 599	0-0
(4)	Dong Shi	2016	Summer/Autump	Baijing	North	Urban	ECLIA	School	stratified cluster random	Children and	M: 286;	6 13
(4)	I eng Shi	2010	Summer/Autumn	Deijing	North	Orban	LULIA	School	sampling	Adolescents	F: 278	0-15
(5)	ling Theo	2010	Winter/Spring	Baijing	North	Dural	EL IS A	School	two-stage cluster	Children and	M: 213;	7 11
(\mathbf{J})	Jing Zhao	2010	winter/Spring	Deijing	North	Kurai	LLISA	School	random sampling	Adolescents	F: 168	/-11
(6)	lie Li	2016	Summer/Autumn	Beijing	North	Rural	ECLIA	School	two-stage cluster	Children and	M: 293;	6-13
(0)	JIC LI	2010	Summer/Autumn	Deijing	North	Kurai	LULIA	School	random sampling	Adolescents	F: 283	0-15
(7)	Waili	2014	Winter/Spring	Sichuan	South	Urban	ECLIA	Kindergarten	stratified cluster random	Children	M: 404;	3.6
()	WEILI	2014	winter/Spring	Sicilian	South	Ofball	LULIA	Kindergatten	sampling	Children	F: 349	5-0
(8)	Xianghui	2016	Unknown	Ojanghaj	North	Roth	EL IS A	community	stratified random	Children	Total: 860	0.6
(8)	Liu	2010	UIKIIOWII	Qialiglia	North	Dom	LLISA	community	sampling	Children	10tal. 809	0-0
(0)	Viva Liu	2018	Summer/Autumn	Guizhou	South	Rural	I.C-MS/MS	School	stratified random	Children and	M: 851;	6-17
())	i iya Liu	2010	Summer/Autuilli	Guizilou	South	Kulai	LC-1015/1015	School	sampling	Adolescents	F: 891	0-17

(10)	ling Zhou	2015	Winter/Spring	Hainan	South	Rural	I C-MS/MS	School	stratified cluster random	Children and	M: 275;	6-15
(10)	Jing Zhou	2015	winter/spring	Haman	South	Kurai	LC-1015/1015	School	sampling	Adolescents	F: 286	0-15
(11)	Chunxia	2016	Summon/Autumn	Inner	North	Dural	DIA	Sahaal	stratified cluster random	Children and	M: 180;	6 15
(11)	Cui	2010	Summer/Autumn	Mongolia	North	Kurai	KIA	School	sampling	Adolescents	F: 179	0-13
(12)	V. I'	2017	S	C	G (1	D1		0.11	stratified cluster random	Children and	M: 859;	C 14
(12)	r an Li	2017	Summer/Autumn	Guangxi	South	Kurai	HPLC	School	sampling	Adolescents	F: 814	0-14
(12)	Jinhong	2015	Dat	TT.L.	Numl	T.I.		0.11	cluster random	Children and	M: 149;	10.12
(15)	Sun	2015	Both	Hebei	North	Urban	ELISA	School	sampling	Adolescents	F: 118	10-12
(1.4)	Jingjun	2016	S	<u>01</u>	NL	D1		0.1.1	stratified cluster random	Children and	M: 564;	6 17
(14)	Zhao	2016	Summer/Autumn	Shaanxi	North	Rural	HPLC	School	sampling	Adolescents	F: 505	6-1/
(17)	Liping	2011		a 1 ·	N T1	D 1	DIA		Probability proportional		M: 206;	0.0
(15)	Meng	2011	Unknown	Shaanxi	North	Rural	RIA	community	sampling	Children	F: 216	0-3
(1.6)	Xianghui		a ()	<u>.</u>			TT 10 1		stratified random	<i></i>	M: 113;	
(16)	Liu	2016	Summer/Autumn	Qinghai	North	Both	ELISA	community	sampling	Children	F: 117	0-7
(17)	Yuqi	2012	W	TT 1 '				17' 1	cluster random		M: 146;	2.6
(17)	Wang	2012	Winter/Spring	Hebei	North	Urban	ELISA	Kindergarten	sampling	Children	F: 155	3-6
(10)	Qian	2016	G (1)	NT .1 1	D (1	D 1		a 1 1	stratified cluster random	Children and	M: 5448;	5 10
(18)	Zhang	2016	Summer/Autumn	National	Both	Rural	LC-MS/MS	School	sampling	Adolescents	F: 5312	5-19
(10)	Qiqin		a ()		a 1				stratified cluster random	Children and	M: 309;	
(19)	Feng	2018	Summer/Autumn	Hainan	South	Rural	LC-MS/MS	School	sampling	Adolescents	F: 325	6-15
(20)	Xiaolian		a ()				TT 10 1		statified cluster random	Children and	M: 768;	6.40
(20)	Xie	2020	Summer/Autumn	Ningxia	North	Urban	ELISA	School	sampling	Adolescents	F: 847	6-18
(21)		2015	a ()		a 1				stratified cluster random	<i>c</i> r. 11 1	M: 1494;	
(21)	Yifu He	2017	Summer/Autumn	Hunan	South	Urban	ECLIA	Kindergarten	sampling	Children	F: 1378	3-5
(22)	Yanheng		<i>a (</i>)	a 1			TT 10 1		stratified cluster random	Children and	M: 235;	
(22)	Luo	2020	Summer/Autumn	Guangdong	South	Urban	ELISA	School	sampling	Adolescents	F: 174	7-14
									~ -			

(23)	Xuchen Meng	2020	Unknown	Chongqing	South	Urban	ECLIA	School	multi-stage stratified random sampling	Children and Adolescents	M: 97; F: 97	6-17
(24)	Xinyi Wang	2017	Winter/Spring	Liaoning	North	Urban	ECLIA	School	stratified cluster random sampling	Children and Adolescents	M: 82; F: 92	12-16
(25)	Jing Li	2018	Summer/Autumn	Ningxia	North	Urban	ELISA	School	multi-stage stratified random sampling	Children and Adolescents	M: 756; F: 826	6-18
(26)	Haibo Li	2020	Both	National	Both	Both	CLIA	School	multi-stage stratified random sampling	Children and Adolescents	M: 5517; F:5179	6-18
(27)	Yan Liu	2018	Both	National	Both	Both	LC-MS/MS	School	multi-stage stratified cluster random sampling	Children and Adolescents	M: 291; F: 272	7-12
(28)	Xueqin Du	2001	Both	Beijing	North	Both	СРВА	School	stratified cluster random sampling	Girls	F: 229	12-14
(29)	Huaqi Zhang	2014	Winter/Spring	Heilongjian g	North	Urban	HPLC	School	stratified cluster random sampling	Children and Adolescents	M: 832; F: 656	7-11
(30)	Pei Xiao	2020	Both	National	Both	Both	CLIA	School	stratified cluster random sampling	Children and Adolescents	M: 3057; F: 3034	6-18
(31)	Zhaoxie Tang	2020	Summer/Autumn	Guangdong	South	Urban	EIA	School	multi-stage cluster random sampling	Children and Adolescents	M: 1340; F: 1340	7-18
(32)	L. H. Foo	2009	Unknown	Beijing	North	Urban	RIA	School	cluster random sampling	Girls	F: 323	15
(33)	Mark A. Strand	2009	Summer/Autumn	Shanxi	North	Rural	RIA	Community	multi-stage cluster random sampling	Children	M: 95; F: 84	1-2
(34)	Jie Wang	2015	Summer/Autumn	Guizhou, Yunnan, Shanxi	Both	Rural	RIA	Community	probability proportional sampling	Children	M: 711; F: 659	0-3

(35)	Yanhong Li	2018	Summer/Autumn	Yunnan	South	Rural	CLIA	Community	stratified cluster sampling	Children	M: 245; F: 693	0.5-2
(36)	Yichun Hu	2017	Both	National	Both	Both	RIA	Community	multi-stage stratified proportional random cluster sampling	Children and Adolescents	M: 7288; F: 7185	6-17
(37)	Xirui Wang	2020	Winter/Spring	Shanghai	South	Urban	LC-MS/MS	Kindergarten	cluster random sampling	Children	M: 185; F: 166	3-6
(38)	Xiaoyun Shan	2021	Winter/Spring	Hebei, Zhejiang, Guangxi	Both	Both	LC-MS/MS	School	multi-stage cluster random sampling	Children and Adolescents	M:1929; F:1879	6-17
(39)	Xianfeng Zhao	2010	Winter/Spring	Sichuan, Gansu, Shaan xi	Both	Rural	RIA	Community	multi-stage cluster random sampling	Children	M: 110; F: 89	2-5
(40)	Yanhong Li	2019	Summer/Autumn	Yunnan	South	Rural	CLIA	Community	multi-stage stratified cluster random sampling	Children	M: 604; F 575	0.5-2
(41)	Jingjun Zhao	2020	Summer/Autumn	Shaanxi	North	Rural	LC-MS/MS	School	multi-stage stratified cluster random sampling	Children and Adolescents	M: 1507; F: 1456	6-17
(42)	Hong Cheng	2021	Winter/Spring	Beijing	North	Both	CLIA	School	stratified cluster random sampling	Children and Adolescents	M: 5949; F: 6011	6-16
(43)	Xirui Wang	2020	Winter/Spring	Shanghai	South	Urban	LC-MS/MS	Kindergarten	stratified cluster random sampling	Children	M: 185; F: 166	3-6
(44)	Yanjuan Wang	2019	Summer/Autumn	Jiangsu	North ⁺	Urban	LC-MS/MS	Kindergarten and Community	cluster random sampling	Children	M: 61; F: 47	2-6

(45)	Mi Tian	2017	Winter/Spring	Chongqing	South	Rural	LC-MS/MS	Kindergarten	cluster random sampling	Children	M: 155; F: 130	3-6
(46)	Xinmei Lin	2021	Unknown	Sichuan	South	Rural	LC-MS/MS	Community	stratified cluster random sampling	Children	M: 1056; F: 1066	0-6
(47)	Yetao Luo	2020	Unknown	Chongqing	South	Both	HPLC	School	stratified cluster random sampling	Children and Adolescents	M: 93; F: 75	6-12
(48)	Jingrong Chen	2021	Winter/Spring	Chongqing	South	Both	LC-MS/MS	School	stratified cluster random sampling	Children and Adolescents	M: 766; F: 747	6-17
(49)	Bingxiao Liu	2017	Both	National	Both	Rural	RIA	Community	multi-stage stratified random sampling	Women	F: 1520	18-44
(50)	Ying Liu	2010	Winter/Spring	Beijing	North	Urban	RIA	Community	cluster random sampling	Women	F: 400	60-85
(51)	Pianpian Fan	2021	Winter/Spring	Sichuan	South	Both	ELISA	Community	cluster random sampling	Women	F: 1394	29-95
(52)	Xiaomin Fu	2015	Unknown	Beijing	North	Urban	ECLIA	Community	stratified cluster random sampling	Men	M: 2292	40-79
(53)	Qiao Zhang	2011	Winter/Spring	Guizhou	South	Urban	RIA	Community	cluster random sampling	Adults	M: 627; F: 867	20~79
(54)	Shian Yin	2010	Winter/Spring	Sichuan, Gansu, Shaanxi	Both	Rural	RIA	Community	multi-stage stratified random sampling	Women	F: 344	15-44
(55)	Haipeng Hui	2018	Both	Beijing	North	Urban	ECLIA	Community	cluster random sampling	Adults	M: 222; F: 174	20-44
(56)	Yong Wan	2014	Winter/Spring	Sichuan	South	Both	ELISA	Community	cluster random sampling	Women	F: 291	64

(57)	Yi Tang	2016	Winter/Spring	Sichuan	South	Both	ELISA	Community	cluster random sampling	Women	F: 376	30-90
(58)	Lichun Huang	2014	Summer/Autumn	Zhejiang	South	Urban	RIA	Community	multi-stage cluster random sampling	Children and Adolescents, Adults	M: 223; F: 218	≥6
(59)	Shanrong Lai	2017	Winter/Spring	Fujian	South	Both	ELISA	Community	stratified cluster random sampling	Children and Adolescents, Adults	M: 647; F: 538	8-68
(60)	Wenjuan Ma	2017	Both	Gansu	North	Both	CLIA	Community	multi-stage stratified probability population sampling	Adults	M: 4740; F: 6417	18-79
(61)	Jing Liu	2018	Both	Gansu	North	Both	CLIA	Community	multi-stage stratified probability population sampling	Adults	M: 4740; F: 6417	18-79
(62)	Xiaopeng Li	2016	Winter/Spring	Guangxi	South	Both	ELISA	Community	multi-stage stratified random sampling	Adults	M: 308; F: 327	≥18
(63)	Meina Tian	2016	Summer/Autumn	Hebei	North	Both	RIA	Community	multi-stage stratified random sampling	Children and Adolescents, Adults	M: 825; F: 850	≥6
(64)	Zhen Cang	2017	Both	Shanghai, Zhejiang, Jiangsu, Anhui and Jiangxi	South	Both	CLIA	Community	multi-stage stratified random sampling	random sampling Adolescents, Adults multi-stage stratified random sampling Adults		55
(65)	Yanling Zhang	2014	Summer/Autumn	Shandong	North	Urban	ELISA	Community	cluster random sampling	Adults	M: 397; F: 847	20-82
(66)	Guozhong Miao	2017	Unknown	Jiangsu	South	Both	ELISA	Community	multi-stage stratified random sampling	Adults	M: 171; F: 197	≥18

(67)	Yanling Zhang	2014	Summer/Autumn	Shandong	North	Both	ELISA	Community	stratified random sampling	Adults	M: 562; F: 1220	40-75
(68)	Yanying Guo	2015	Summer/Autumn	Xinjiang	North	Urban	ECLIA	Community	cluster random sampling	Adults	M: 563; F: 1295	18-84
(69)	Yun Chen	2018	Unknown	Jiangsu	South	Both	ELISA	Community	multi-stage cluster random sampling	Adults	M: 171; F: 197	19-95
(70)	Mingchen Zhang	2015	Summer/Autumn	Xinjiang	North	Both	ECLIA	Community	multi-stage stratified cluster random sampling	Adults	M: 581; F: 364	30-75
(71)	Mingchen Zhang	2014	Summer/Autumn	Xinjiang	North	Both	ECLIA	Community	multi-stage stratified cluster random sampling	Adults	M: 380; F: 548	30-75
(72)	Xiaohui Zhou	2012	Summer/Autumn	Xinjiang	North	Both	ELISA	Community	multi-stage stratified cluster random sampling	Adults	M: 813; F: 916	≥55
(73)	Fangfang Zhu	2014	Winter/Spring	Jiangsu	South	Both	ELISA	Community	multi-stage cluster random sampling	Women	F: 1726	≥30
(74)	Haiyang Zhao	2014	Unknown	Shanghai	South	Urban	LC-MS/MS	Community	simple random sampling	Adults	M: 120; F:128	40-90
(75)	Ling Lu	2009	Winter/Spring	Beijing, Shanghai	Both	Both	RIA	Community	mulit-stage stratified random sampling	Adults	M: 1443; F: 1819	50-75
(76)	Jing Zhao	2011	Unknown	Beijing	North	Urban	ECLIA	Community	mulit-stage stratified random sampling	Women	F: 1724	47-108
(77)	Hankui Lu	2012	Winter/Spring	Shanghai	South	Urban	ECLIA	Community	cluster random sampling	Adults	M: 649; F: 1939	20-89

(78)	Minfang Tao	2013	Winter/Spring	Shanghai	South	Urban	ECLIA	Community	cluster random sampling	Women	F: 1382	20-85
(79)	Hao Peng	2013	Winter/Spring	Jiangsu	South	Both	ELISA	Community	multi-stage cluster random sampling	Women	F: 1726	≥30
(80)	Conghui Guan	2014	Summer/Autumn	Gansu	North	Urban	EIA	Community	multi-stage stratified probability population sampling	Adults	M: 2902; F: 7136	40-75
(81)	Donghu Zhen	2015	Summer/Autumn	Gansu	North	Urban	EIA	Community	multi-stage stratified probability population sampling	Adults	M: 2902; F: 7136	40-75
(82)	Xiaoyu Feng	2016	Unknown	Shandong	North	Urban	ELISA	Community	stratified random sampling	Adults	M: 310; F: 376	60-89
(83)	M. Li	2016	Both	National	Both	Both	CLIA	Community	stratified random sampling	Adults	M: 500; F: 936	≥15
(84)	C. Gao	2017	Both	Shanghai	South	Urban	ECLIA	Community	cluster random sampling	Women	F: 2551	55-69
(85)	Jing Chen	2017	Both	National	Both	Both	RIA	Community	multi-stage stratified probability population sampling	Adults	M: 2948; F: 3066	≥60
(86)	Wei Zhu	2018	Unknown	Shanghai	South	Urban	ELISA	Community	cluster random sampling	Adults	M: 164; F: 344	18-74
(87)	Danting Li	2018	Both	Sichuan	South	Both	HPLC	Community	stratified cluster random sampling	Adults	M: 566; F: 948	25-65
(88)	Fang Fang	2018	Summer/Autumn	Tianjin	North	Both	CLIA	Community	stratified cluster random sampling	Adults	M: 762; F: 1052	≥18

(89)	Zhiwei Xia	2019	Unknown	Beijing	North	Urban	RIA	Community	cluster random sampling	Adults	M: 275; F: 510	≥60
(90)	Zhongjian Xie	2018	Both	National	Both	Both	LC-MS/MS	Community	multi-stage stratified random sampling	Women	F: 1684	65.4
(91)	Y. Yao	2019	Both	Hainan	South	Both	RIA	Community	cluster random sampling	Adults	M: 175; F: 768	≥100
(92)	Tao Huang	2019	Both	National	Both	Both	CLIA	Community	multi-stage stratified random sampling	Adults	M: 6891; F: 6674	30-79
(93)	Xiaoning Yan	2019	Winter/Spring	Shanxi	North	Urban	LC-MS/MS	Community	stratified random sampling	Adults	M: 176; F: 126	46
(94)	Dongdong Zhang	2021	Summer/Autumn	Henan	North	Rural	ELISA	Community	stratified cluster random sampling	Adults	M: 789; F: 925	≥18
(95)	Jia Wei	2019	Summer/Autumn	National	Both	Both	ELISA	Community	multi-stage stratified cluster random sampling	Adults	M: 991; F: 1189	≥65
(96)	Ling Liu	2020	Both	National	Both	Both	ELISA	Community	multi-stage stratified cluster random sampling	Adults	M: 1197; F: 1296	≥65
(97)	Jianhua Jin	2015	Winter/Spring	Zhejiang	South	Both	ECLIA	Community	stratified cluster random sampling	Adults	M: 186; F: 326	40-75
(98)	Xing Li	2019	Summer/Autumn	Henan	North	Rural	ECLIA	Community	cluster random sampling	Adults	M: 743; F: 785	18-79
(99)	Qiushi Wei	2015	Summer/Autumn	Guangzhou	South	Urban	ECLIA	Community	simple random sampling	Adults	M: 122; F: 188	17-88
(100)	Feng Chen	2019	Both	Liaoning	North	Urban	LC-MS/MS	Community	random cluster sampling	Adults	M: 1239; F: 2226	≥60

(101)	Qianxuan zi Chen	2009	Unknown	Beijing	North	Urban	ELISA	Community	random sampling	Women	F: 614	45-81
(102)	Zhongxia Ren	2020	Winter/Spring	National	Both	Urban	LC-MS/MS	Community	multi-stage cluster random sampling	Adults	M: 566; F: 1100	≥18
(103)	Na Mi	2019	Both	Qinghai	North	Both	CLIA	Community	stratified cluster random sampling	Adults	M: 935; F: 938	≥18
(104)	Xiaowei Chen	2017	Winter/Spring	Zhejiang	South	Rural	CLIA	Community	random sampling	Women	F: 486	≥40
(105)	Yichun Hu	2020	Both	National	Both	Both	ELISA	Community	multi-stage stratified probability population sampling	Women	F: 3251	18-49

F: Female, M: Male. North and south were divided based on the Qinling Mountains-Huaihe River line boundary.

ELISA: Enzyme-linked immunosorbent assays; ECLIA: Electrochemiluminescence immunoassay; CLIA: Chemiluminescent assay; RIA: Radioimmunoassay;

HPLC: High-performance liquid chromatography; LC-MS/MS: Liquid chromatography coupled with mass spectrometry

+: The investigation site in this study was above Qinling Mountains-Huaihe River line boundary in Jiangsu province.

]	External Va	alidity				Interr	nal Validity			
Study ID	Representation ^b	Sampling	Random selection	Non response bias ^c	Data collection	Case definition	Reliability and validity of study tool	Data collection	Prevalence period	Numerators and denominators	Summary assessment (score)
(1)	No	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Low risk(8)
(2)	No	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Low risk(8)
(3)	No	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Low risk(8)
(4)	No	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Low risk(8)
(5)	No	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Low risk(8)
(6)	No	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Low risk(8)
(7)	No	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Low risk(8)
(8)	No	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Low risk(8)
(9)	No	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Low risk(8)
(10)	No	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Low risk(8)
(11)	No	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Low risk(8)
(12)	No	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Low risk(8)
(13)	No	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Low risk(8)

Table S2. Risk of bias assessment of the included studies^a

(14)	No	Yes	Low risk(9)								
(15)	No	Yes	Low risk(9)								
(16)	No	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Low risk(8)
(17)	No	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Low risk(8)
(18)	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Low risk(9)
(19)	No	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Low risk(8)
(20)	No	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Low risk(8)
(21)	No	Yes	Low risk(9)								
(22)	No	Yes	Low risk(9)								
(23)	No	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Low risk(8)
(24)	No	Yes	Low risk(9)								
(25)	No	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Low risk(8)
(26)	Yes	Low risk(10)									
(27)	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Low risk(9)
(28)	No	Yes	Low risk(9)								
(29)	No	Yes	Low risk(9)								
(30)	Yes	Low risk(10)									
(31)	No	Yes	Low risk(9)								
(32)	No	Yes	Low risk(9)								
(33)	No	Yes	Low risk(9)								
(34)	No	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Low risk(8)

(35)	No	Yes	Low risk(9)								
(36)	Yes	Low risk(10)									
(37)	No	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Low risk(8)
(38)	No	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Low risk(8)
(39)	No	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Low risk(8)
(40)	No	Yes	Low risk(9)								
(41)	No	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Low risk(8)
(42)	No	Yes	Low risk(9)								
(43)	No	Yes	Low risk(9)								
(44)	No	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Low risk(8)
(45)	No	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Low risk(8)
(46)	No	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Low risk(8)
(47)	No	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Low risk(8)
(48)	No	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Low risk(8)
(49)	Yes	Low risk(10)									
(50)	No	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Low risk(8)
(51)	No	Yes	Low risk(9)								
(52)	No	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Low risk(8)
(53)	No	Yes	Low risk(9)								
(54)	No	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Low risk(8)
(55)	No	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Low risk(8)

(56)	No	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Low risk(8)
(57)	No	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Low risk(8)
(58)	No	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Low risk(8)
(59)	No	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Low risk(8)
(60)	No	Yes	Low risk(9)								
(61)	No	Yes	Low risk(9)								
(62)	No	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Low risk(8)
(63)	No	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Low risk(8)
(64)	No	Yes	Low risk(9)								
(65)	No	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Low risk(8)
(66)	No	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Low risk(8)
(67)	No	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Low risk(8)
(68)	No	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Low risk(8)
(69)	No	Yes	Low risk(9)								
(70)	No	Yes	Low risk(9)								
(71)	No	Yes	Low risk(9)								
(72)	No	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Low risk(8)
(73)	No	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Low risk(8)
(74)	No	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Low risk(8)
(75)	No	Yes	Low risk(9)								
(76)	No	Yes	Low risk(9)								

(77)	No	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Low risk(8)
(78)	No	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Low risk(8)
(79)	No	Yes	Low risk(9)								
(80)	No	Yes	Low risk(9)								
(81)	No	Yes	Low risk(9)								
(82)	No	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Low risk(8)
(83)	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Low risk(9)
(84)	No	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Low risk(8)
(85)	No	Yes	Low risk(9)								
(86)	No	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Low risk(8)
(87)	No	Yes	Low risk(9)								
(88)	No	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Low risk(8)
(89)	No	Yes	Low risk(9)								
(90)	No	Yes	Low risk(9)								
(91)	No	Yes	Low risk(9)								
(92)	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Low risk(9)
(93)	No	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Low risk(8)
(94)	No	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Low risk(8)
(95)	No	Yes	Low risk(9)								
(96)	No	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Low risk(8)
(97)	No	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Low risk(8)

(98)	No	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Low risk(8)
(99)	No	Yes	Low risk(9)								
(100)	No	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Low risk(8)
(101)	No	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Low risk(8)
(102)	Yes	Low risk(10)									
(103)	No	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Low risk(8)
(104)	No	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Low risk(8)
(105)	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Low risk(9)

^a: The risk of bias of the included studies were evaluated by a tool by Hoy.

^b: Yes: The study was a national survey. No: The study was province or county level.

^c: Yes: The response rate for the study was \geq 75%, or an analysis was performed that showed no significant difference in relevant demographic characteristics between responders and non-responders;

No: The response rate was <75%, or if any analysis comparing responders and non-responders was done, it showed a significant difference in relevant demographic characteristics between responders and non-responders, or haven't reported the response rate.

	Child	ren and Adolescents	Adults		
Covariates	N	Between-study variance (σ^2)	Ν	Between-study variance (σ^2)	
Sampling frame					
National	5		7		
Province or City	20	1.5(0.9, 2.4)	29	1.9(1.2, 2.9)	
County	14		7		
Latitude					
South	16		18		
North	16	1.2(0.7, 1.9)	17	1.7(1.1, 2.7)	
Both	7		8		
Urbanization					
Urban	14		16		
Rural	17	1.6(1.0, 2.5)	4	1.8(1.1, 2.8)	
Both	8		23		
Season					
Summer	18		11		
Winter	11	15(0.0.2.6)	13	14(0,8,2,3)	
Both	5	1.5(0.9, 2.0)	12	1.4(0.0, 2.3)	
Unknown [*]	5		7		
Assays					
LC-MS/MS or HPLC	16		4		
ELISA	7		14		
ECLIA	4		10		
CLIA	4	1.5(0.9, 2.4)	5	2.0(1.3, 3.3)	
RIA	7		9		
EIA^*	1		1		
$CPBA^*$	0		0		
Sex					
Study-sex group	53	1.9(1.0 to 3.4)	59	1.5(0.9, 2.5)	
Age (years)					
Study-age group ⁺	89	0.9(0.4, 1.8)	18	2.2(0.7, 7.1)	

Table S3. Parameters from HB meta-regression models for Vitamin D inadequacy (< 50 nmol/L)

N: Number of studies for each levels of the covariates. For sex or age, N is the number of study-sex or study-age groups.

*: Categories with less than 3 studies and the "Unknown" category of season were not included in the HB meta-regression model.

⁺: For adults, populations with age > 60 years old groups were included in the age trend model.

	Chil	dren and Adolescents	Adults			
Covariates	N	Between-study variance (σ^2)	Ν	Between-study variance (σ^2)		
Sampling frame						
National	4		4			
Province or City	17	275.4(169.9, 451.7)	24	185.2(108.4, 305.3)		
County	15		6			
Latitude						
South	16		13			
North	14	280.4(170.8, 454.7)	16	181.1(108.1, 304.9)		
Both	6		5			
Urbanization						
Urban	10		15			
Rural	18	242.9(147.1, 398.8)	1^*	180.8(106.7, 301.8)		
Both	8		18			
Season						
Summer	15		9			
Winter	11	230 1(130 7 394 3)	9	153 1(80 6 280 5)		
Both	5	230.1(130.7, 3)4.3)	8	135.1(00.0, 200.5)		
Unknown [*]	5		8			
Assays						
LC-MS/MS or HPLC	19		3			
ELISA	4		13			
ECLIA	5		5			
CLIA	3	225.3(131.0, 386.6)	6	196.0(112.5, 336.3)		
RIA	4		6			
${ m EIA}^{*}$	0		1			
$CPBA^*$	1		0			
Sex						
Study-sex group	57	325.1(181.7, 571.1)	47	178.0(102.3, 309.4)		
Age (years)						
Study-age group ⁺	81	236.2(117.8, 444.5)	19	351.3(117.7, 940.9)		

 Table S4. Parameters from HB meta-regression models for Vitamin D

 concentration (nmol/L)

N: Number of studies for each levels of the covariates. For sex or age, N is the number of study-sex or study-age groups.

*: Categories with less than 3 studies and the "Unknown" category of season were not included in the HB meta-regression analysis.

⁺: For adults, populations with age ≥ 60 years old groups were included in the age trend model.

Supplementary figures

Figure S1. Forest plot for overall mean 25(OH)D concentrations of adults in

Mainland of China

The forest plot was drawn from the observational mean concentration with 95%CI of each study and the pooled mean concentration with 95%CrI estimated from Hierarchical Bayesian model. N is the total number of participants in the study. Thirty-five individual studies were included in this model. The between-study variance (σ^2) estimated from the model was 175.3(104.6, 288.9).

Figure S2. Forest plot for overall mean 25(OH)D concentrations of children and

adolescents in Mainland of China

N is the total number of participants in the study. The forest plot was drawn from the observational mean concentration with 95%CI of each study and the pooled mean concentration with 95%CrI estimated from Hierarchical Bayesian models. Thirty-five individual studies were included in this model. The between-study variance (σ^2) estimated from the model was 273.2(167.9, 449.3).

Figure S3. Pooled prevalence of Vitamin D inadequacy (A) and overall mean 25(OH)D concentrations (B) of adults in Mainland of China based on sex

37

Figure S4. Forest plot for mean 25(OH)D concentrations of adults in Mainland of

China based on sex

Study	N	Mean(95%Crl)	
Male			
Zhang (2011)	627	52.0(50.1, 53.9)	-
Zhou (2012)	813	21.1(20.4, 21.9)	•
Feng (2016)	310	58.6(56.7, 60.5)	-
Tian (2016)	825	56.0(54.3, 57.8)	-
Zhao (2014)	120	35.6(33.2, 38.1)	-
Zhen (2015)	2902	45.3(44.7, 45.9)	-
Wei (2019)	991	50.4(50.3, 50.5)	-
Fu (2015)	2292	44.2(43.4, 45.0)	-
Lai (2017)	647	62.4(61.0, 63.8)	-
Wei (2015)	122	27.2(25.8, 28.7)	•
Guo (2015)	563	45.5(44.2, 46.8)	-
Chen (2017)	2948	63.3(62.4, 64.2)	-
Zhu (2018)	164	74.5(72.3, 76.7)	-
Li (2016)	308	66.9(64.3, 69.4)	-
Miao (2017)	171	29.0(26.8, 31.2)	-
Ma (2017)	4740	41.5(40.9, 42.1)	•
Cang (2017)	5120	43.2(42.8, 43.6)	
Fang (2018)	762	53.4(52.5, 54.4)	-
Yao (2019)	175	69.5(65.5, 73.6)	_ _
Mi (2019)	935	42 2(41 0 43 5)	-
Yan (2019)	176	43 5(41 3 45 7)	-
Summary	25711	47.7(42.8, 52.8)	
Female			
Chen (2009)	614	31 2(30 2 32 3)	-
Liu (2010)	400	36 0(34 6 37 4)	-
Zhao (2011)	1724	33 0(32 4, 33 6)	-
Zhang (2011)	867	50 2(48 8 51 7)	- -
Yin (2010)	344	42 5(40 0 45 0)	-
Zhou (2012)	916	22 0(21 2 22 8)	
Tao (2013)	1382	51 8(50 9 52 6)	_
Feng (2016)	376	54 2(52 7 55 7)	
Tang (2016)	376	43 0(42 8 43 2)	
Tian (2016)	850	49 3(47 8 50 9)	-
Zhao (2014)	128	33 1(29 7 36 5)	
Zhen (2015)	7136	39 2(38 8, 39 6)	_
Wei (2019)	1189	40 1(40 1 40 1)	
Fan (2021)	1394	43 5(42 6 44 4)	
Lai (2017)	538	58 2(56 8 59 5)	
Wei (2015)	188	25 4(24 4 26 3)	• -
Guo (2015)	1295	39 4(38 5 40 3)	
Chen (2017)	3066	56.1(55.3, 56.9)	-
Zhu (2018)	344	74.0(72.5, 75.5)	-
Li(2016)	327	60.6(58.3,63.0)	+
Ma (2017)	6417	39 4(38 8 40 0)	•
Cang (2017)	7542	38 6(38 3, 38 9)	
Eang (2018)	1052	46 5(45 6 47 5)	
Yao (2019)	768	54 0(52 4 55 5)	
Mi (2019)	938	39 0(37 8 40 2)	• ⁻
Yan (2019)	126	38 4(36 2 40 6)	
Summary	40297	42 9(37 9 48 1)	_
Summary	40237	-=.5(57.5, 40.1)	
		1	0 20 30 40 50 60 70 80 90 serum Vitamin D(nmol/L)

The forest plot was drawn from the observational mean concentration with 95%CI of each study. The pooled mean concentration with 95%CrI was estimated from Hierarchical Bayesian models.

Figure S5. Forest plot for Vitamin D inadequacy of adults in Mainland of China

based on sex

Study	Ν	Case		Prevalence(95%Crl)
Male				
Zhang (2011)	627	315		50.2(46.3, 54.2)
Lu (2012)	649	200		30.8(27.3, 34.4)
Feng (2016)	310	134		43.2(37.7, 48.7)
Huang (2014)	119	24	_ _	20.2(13.0, 27.4)
Tian(2016)	825	412		49.9(46.5, 53.4)
Zhen (2015)	2902	1859	+	64.1(62.3, 65.8)
Lai(2017)	647	132	-	20.4(17.3, 23.5)
Wei (2015)	122	25		20.5(13.3, 27.7)
Guo(2015)	563	374		66.4(62.5, 70.3)
Zhang (2015)	581	515	-	88.6(86.1, 91.2)
Zhang (2014)	380	250		65.8(61.0, 70.6)
Chen (2017)	2948	1005	•	34.1(32.4, 35.8)
Zhu (2018)	164	9		5.5(2.0, 9.0)
Zhang (2021)	789	371		47.0(43.5, 50.5)
Li (2016)	308	63		20.5(15.9, 25.0)
Miao (2017)	171	156		91.2(87.0, 95.5)
Liu (2018)	4740	3844	-	81.1(80.0, 82.2)
Cang (2017)	5120	3776	-	73.8(72.5, 75.0)
Fang (2018)	762	304		39.9(36.4, 43.4)
Yao (2019)	175	38		21.7(15.6, 27.8)
Xia (2019)	275	209		76.0(71.0, 81.0)
Ren (2020)	566	413		73.0(69.3, 76.6)
Yan (2019)	176	121		68.8(61.9, 75.6)
Liu (2020)	1197	326	+	27.2(24.7, 29.8)
Summarv	25116	14875		52.1(41.5, 62.7)
Female				
Chen (2009)	614	567	-	92.3(90.2, 94.4)
Liu (2010)	400	340		85.0(81.5, 88.5)
Zhao (2011)	1724	1547	-	897(883 912)
Zhang (2011)	867	467		53.9(50.5, 57.2)
$L_{\rm III}(2012)$	1939	943	+	48 6(46 4 50 9)
Feng (2016)	376	225		59 8(54 9, 64 8)
Huang (2014)	119	28	_ _	23 5(15 9 31 2)
Liu(2017)	1520	588	+	38 7(36 2, 41, 1)
Tang (2016)	376	289		76 9(72 6 81 1)
Tian (2016)	850	483	-	56 8(53 5 60 2)
Zhen (2015)	7136	5690	-	79 7(78 8 80 7)
Ean (2021)	1304	1028		73 7(71 4 76 1)
Wan (2014)	291	199		68 4(63 0 73 7)
Lai (2017)	538	174	- - -	32 3(28 4 36 3)
Moi (2017)	198	13		22.3(20.4, 30.3)
Guo (2015)	1205	1020	-	78 8(76 5 81 0)
Zhang (2015)	364	3/7		- 05 3(03 2 07 5)
Zhang (2013)	549	422		77 0(73 5 80 5)
Chen (2017)	3066	1250		11.0(13.3, 60.3)
Zhu (2017)	244	10		5 2(2 0 7 6)
$Z_{10}(2018)$	1694	1022	- <u> </u>	61 2(50 0 62 7)
Ale (2010) Zhang (2021)	025	1033	_ 1	61.3(59.0, 63.7)
Zhang (2021)	925	400		32.0(49.5, 50.0)
LI(2010)	327	97		29.7(24.7, 34.0)
$V_{100}(2017)$	197	102		92.4(00.7, 90.1)
Gao (2017)	2251	200	•	30.3(34.3, 38.2)
Chen (2017)	400	330		67.9(63.8, 72.1)
Liu (2018)	6417	5293		82.5(81.6, 83.4)
Cang (2017)	/ 542	6394	-	84.8(84.0, 85.6)
Fang (2018)	1052	645		61.3(58.4, 64.3)
rao (2019)	768	338		44.0(40.5, 47.5)
Hu (2020)	3251	2234	•	68.7(67.1, 70.3)
xia (2019)	510	402		/8.8(/5.3, 82.4)
Ken (2020)	1100	930	-	84.5(82.4, 86.7)
Yan (2019)	126	95		/5.4(6/.9, 82.9)
Liu (2020)	1296	703	-	54.2(51.5, 57.0)
Summary	51881	35748		64.9(54.8, 74.2)
		Dnorral	10 20 30 40 50 60 70 80 90	(\mathcal{A})
		rreval	ence of vitamin D Inadequ	acy(%)

The forest plot was drawn based on the observational prevalence with 95%CI of each study. The pooled prevalence with 95%CrI was estimated using Hierarchical Bayesian models.

Figure S6. Estimated mean 25(OH)D concentrations of children and adolescents in Mainland of China based on sex

References

1. Jiang YY, Tan ZZ, Su B. Relation between vitamin D status and growth in school children. Applied Prev Med. 2013(3):135-7,41.

2. Miao RX, Zhu XB, Song LJ, Liu CQ, Tian MN, Chen L. Analysis of serum vitamin D levels of primary and middle school students in poverty-stricken areas of Hebei in 2014.Practical Preventive Medicine. 2016(11).

3. Wu PM, Ying J, Zhang RZ, Sui FX. Status of vitamin D nutrition and its relationship with height development in children aged 0-6 years in Longhua New District of Shenzhen City,2016. Practical Preventive Medicine. 2017;24(12):1446-9.

4. Shi P, Wang Z, Ba L. Nutritional status of vitamin D among primary and middle school students in Chaoyang District of Beijing. Occupation and Health. 2016(19).

5. Zhao J. Body vitamin D content and its relationship with body composition of children in Huairou district of Beijing. Chinese Journal of Epidemiology. 2010(1).

6. Zhang J, Gao YJ, Zhao Y, Yu YJ, Zheng DS, Teng KQ. Analysis on vitamin D nutrition status among 576 middle and primary school students in Miyun District of Beijing. Occupation and Health. 2016(14).

7. Li W, Cao L,Zhang YG,Luo HQ,Wu KM. Analysis of 25-hydroxy vitamin D levels of 3-6 years old children in Chengdu. Chinese Journal of Child Health Care. 2014(05).

8. Liu XH, Wang SL, Tian X, et al. Investigation and analysis on the level of 25-hydroxyvitamin D in children aged $(0 \sim 6)$ in high altitude area. Journal of High Altitude Medicine. 2016(04).

9. Liu YY, He LJ, Zhang XQ, et al. Analysisi of vitamin D nutritional status of students in Guizhou Province after implementing "Nutrition Improvoment Program for Compulsory Students in Rural Areas". Chin J Sch Health, 2018, 39(8):1150-1155

10. Zhou J, Yin CF, Feng QQ, Zhang F, Yi C. Serum vitamin D levels among primary and middle school students in Qiongzhong County, Hainan Province. Chin J Sch Health. 2015(09).

11. Cui CX, Xu JH, Song ZZ, Wang HL. Evaluation on the effect of improving nutrition for poor rural students in Zhalaite Banner, Inner Mongolia. Chin J Sch Health. 2016(01).

12. Li Y, Tang ZZ, Yuan ZX, et al. Comparison of nutritional status between boarders and nonboarders of primary school in impoverished areas. Guangxi Medical Journal. 2017(09).

13. Sun JH, Bai T, Dong Y. Monitoring of Vitamin D Nutritional Status of Prepubertal Children and Supplements Countermeasures. International Journal of Laboratory Medicine. 2015(04).

14. Zhao JJ, Chang F, Wang LJ, Xu ZK, Wang X. The current status of vitamin A and vitamin D levels of rural students in Shaanxi. Chin J Sch Health. 2016(12).

15. Meng LP, Fu P, Zhang J, Chang F, Wang LJ, et al. Survey on nutrition and health status in infants under 36 months in Zhen'an, Shaanxi. Chinese Journal of Child Health Care. 2011;19(11).

16. Liu XH, Yan X, Tian X, et al. Analysis of serum 25-dihydroxy vitamin D levels of children in high altitude area in summer. Chinese Journal of Child Health Care. 2016(10).

17. Wang YQ, Wang YS, Jin YR, Wang F, Huang CM, Chen L. Relationship between body mass index and vitamin D level in preschool children. Chinese Journal of Women and Child Health Research. 2012;23(6):709-10,843.

18. Chen Q, Gan Q, Chen J, Pan H, et al. Vitamin D deficiency among students from the National

Nutrition Improvement Program for Rural Compulsory Students in 2013. Chin J Sch Health. 2016(05).

19. Feng QQ, Zhang YH, Zhou J,et al. Analysis on vitamin D nutritional status of rural compulsory students in Hainan,2015.

20. Xie XL, Xie LX, Li J, Ma L, et al. Vitamin D nutritional status and related factors in primary and secondary school students in Yinchuan. Chin J Sch Health. 2020;41(8):1134-7,42.

21. He YF, Cai M, Huang X. Prevalence of vitamin D insufficiency/dediciency among overweight and obese preschool children in Yuelu Distric of Changsha. Journal of Central South University (Medical Sciences). 2017(05).

22. Luo YH, Guo CK, Liang MN. Vitamin D Nutritional Status of Primary and Middle School Students in Duanzhou District, Zhaoqing City. South China J Prev Med. 2020;46(4).

23. Meng XC, Lin XJ, Li HB, et al. A survey on anemia and related indicators of primary and middle school students in a district of Chongqing.Health Med Res&Prac. 2020, 17(2)

24. Wang X, Liu L, Li P, Ma J, Jiang R, Wang R, et al. Reference and Influential Factors of Serum Bone Markers in Chinese Adolescents. Scientific reports. 2017;7(1):17340.

25. Li J, Ding W, Cao J, Sun L, Liu S, Zhang J, et al. Serum 25-hydroxyvitamin D and bone mineral density among children and adolescents in a Northwest Chinese city. Bone. 2018;116:28-34.

26. Li H, Huang T, Xiao P, Zhao X, Liu J, Cheng H, et al. Widespread vitamin D deficiency and its sex-specific association with adiposity in Chinese children and adolescents. Nutrition (Burbank, Los Angeles County, Calif). 2020;71:110646.

27. Liu Y, Li X, Zhao A, Zheng W, Guo M, Xue Y, et al. High Prevalence of Insufficient Vitamin D Intake and Serum 25-Hydroxyvitamin D in Chinese School-Age Children: A Cross-Sectional Study. Nutrients. 2018;10(7).

Du X, Greenfield H, Fraser DR, Ge K, Trube A, Wang Y. Vitamin D deficiency and associated factors in adolescent girls in Beijing. The American journal of clinical nutrition. 2001;74(4):494-500.
 Zhang HQ, Teng JH, Li Y, Li XX, He YH, He X, et al. Vitamin D status and its association with adiposity and oxidative stress in schoolchildren. Nutrition (Burbank, Los Angeles County, Calif). 2014;30(9):1040-4.

30. Xiao P, Dong H, Li H, Yan Y, Cheng H, Liu J, et al. Adequate 25-hydroxyvitamin D levels are inversely associated with various cardiometabolic risk factors in Chinese children, especially obese children. BMJ open diabetes research & care. 2020;8(1).

31. Tang Z, Huang S, Ma R, Zheng H, Zhu Y. Low vitamin D status is associated with obesity but no other cardiovascular risk factors in Chinese children and adolescents. Nutrition, metabolism, and cardiovascular diseases : NMCD. 2020;30(9):1573-81.

32. Foo LH, Zhang Q, Zhu K, Ma G, Trube A, Greenfield H, et al. Relationship between vitamin D status, body composition and physical exercise of adolescent girls in Beijing. Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA. 2009;20(3):417-25.

33. Strand MA, Perry J, Zhao J, Fischer PR, Yang J, Li S. Severe vitamin D-deficiency and the health of North China children. Maternal and child health journal. 2009;13(1):144-50.

34. Wang J, Wang H, Chang S, Zhao L, Fu P, Yu W, et al. The Influence of Malnutrition and Micronutrient Status on Anemic Risk in Children under 3 Years Old in Poor Areas in China. PloS one. 2015;10(10):e0140840.

35. Li Y, Li Y, Zhang X, Zhao L, Chen L, Sun H. Vitamin D Status among Young Children Aged 6 to 23 Months from 4 Different Ethnic Groups in Yunnan, China. Food and nutrition bulletin.

2018;39(2):260-5.

36. Hu Y, Chen J, Wang R, Li M, Yun C, Li W, et al. Vitamin D Nutritional Status and its Related Factors for Chinese Children and Adolescents in 2010-2012. Nutrients. 2017;9(9).

37. Wang X, Jiao X, Xu M, Wang B, Li J, Yang F, et al. Effects of circulating vitamin D concentrations on emotion, behavior and attention: A cross-sectional study in preschool children with follow-up behavior experiments in juvenile mice. Journal of affective disorders. 2020;275:290-8.

38. Shan X, Liu C, Luo X, Zou Y, Huang L, Zhou W, et al. Iodine Nutritional Status and Related Factors among Chinese School-Age Children in Three Different Areas: A Cross-Sectional Study. Nutrients. 2021;13(5).

39. Zhao XF, Yin SA, Zhao LY, Fu P, Zhang J, Ma GS. The nutritional status among children under 60 months year-old after one year of the Earthquake in Wenchuan. Chinese journal of preventive medicine. 2010;44(8):691-5.

40. Li YH, Zhang X, Li Y, Zhao MR, Zhao L, Li LX. Vitamin D levels and influencing factors of infants and young children aged 6-23 months in 4 poverty-stricken areas of Yunnan Province. Chin J Dis Control Prev. 2019;23(10).

41. Zhao JJ, Zhao L, Gao Y, Xue B, Chen P, et al. Nutritional status of vitamin D in primary and middle school students in rural areas of Shaanxi province,2015-2017. Practical Preventive Medicine. 2020;27(9).

42. Cheng H, Xiao P, Hou DQ, Yu ZC, Zhu ZX, Wang HJ, et al. Study on the association between vitamin D and body fat distribution in children and adolescents. Chin J Epidemiol. 2021;42(03):469-74.
43. Wang XR, Yu XD, Zhang LS, Xu L, Yuan YC. Serum 25-hydroxy vitamin D status and the influencing factors in 351 health preschool children. Chinese Journal of Child Health Care. 2020;28(10).

44. Wang YJ, Yu SS, Wang WR, Lu Y, Xiao GY, et al. Study on the levels of vitamin A,D and its influential factors in children between 2 to 6 years old. Chinese Journal of Women and Children Health. 2019;10(3).

45. Tian M. Investigation and analysis of 25-hydroxyvitamin D levels in 285 left-behind children aged 3 to 6 in Yongchuan District, Chongqing. Chongqing Medical University[Master Thesis]; 2017.
46. Lin XM, Huang P, Wang QS, Wang Q, Yuan YX, et al. Survey of vitamin D levels and hemoglobin among children in plateau area, Sichuan. China Tropical Medicine. 2021;21(02):121-3+47.

47. Luo YT, Qu P, Chen M, et al. Relationship between serum 25 (OH) D3 and cardiovascular risk

factors in children. Chinese Journal of Practical Pediatrics. 2020;35(11).

48. Chen JR, Zhao YN, Zhang J, Tian Y, et al. Vitamin D status of children and adolescents aged 6-17 and its influence factors in some districts and counties, Chongqing. Modern Preventive Medicine. 2021;48(01):50-4.

49. Liu XB, Zhang Y, Mao DQ, Lu JX, Chen J, Yang LC, et al. Serum vitamin D levels of Chinese rural women of childbearing age in 2010-2012. Journal of Health Research. 2017(03).

50. Liu Y, Hu XQ, Fu P, Wang CX, Duan YF, Li J, et al. The association between vitamin D and bone mineral density of urban postmenopausal women in Beijing. Chinese journal of preventive medicine. 2010;44(1):44-7.

51. Fan P, Wang Q, Li J, Lu C, Xu Y, Cao H, et al. Poor Status of Vitamin D: A Survey of Area With Lowest Sunlight Radiation in Sichuan, China. Frontiers in endocrinology. 2021; 12:626983.

52. Fu XM, Li N, Lin M, Zhang W, et al. Correlation analysis of serum calcium levels and risks of

diabetes mellitus in middle-aged and elderly men. Journal of Southern Medical University. 2015(10).

53. Zhang Q, Peng NC, Xu SJ, Zhang S, et al. Vitamin D status in healthy adults in Guiyang of China. Chin J Endocrinol Metab. 2011;27(8).

54. Yin SA, Zhao XF, Zhao LY, Fu P, Zhang J, Ma GS. The nutritional status of reproductive women at one year after the disaster of Earthquake in Wenchuan. Chinese journal of preventive medicine. 2010;44(8):686-90.

55. Hui HP, Han XM, Wang HJ, Yin DW, Liu Y, Cai LL. Serum vitamin D deficiency status and effects of vitamin D3 supplementation on blood glucose and lipids in young and middle-aged residents in Beijing. Chin J Health Care Med. 2018;20(2):121-4.

56. Wan Y, Lang HM, Ai ZH, et al. Bone mineral density and serum-25-hydroxyvitamin D level of 291 postmenopausal women in Chengdu. Chin J Osteoporos Bone Miner Res. 2014(01).

57. Tang Y, Yang J, Cao HY, Chen DC, Yang F. Investigation and analysis of vitamin D, bone metabolic markers, and bone mineral density in females of different age in Chengdu. Chin J Osteoporos. 2016(06).

58. Huang LC, Zhang RH, Zhou B, Jiang FX, et al. An investigation on vitamin D status of residents in Zhejiang province. Zhejiang Pre Med. 2014(09).

59. Lai SR, Huang Z, Su L, Yang LJ, Wu HD. Analysis on vitamin D status and its influencing factors in populations under different sun exposures in Fujian province. Acta Nutrimenta Sinica. 2017(01).

60. Ma WJ, Liu J, Wei LH, Yang Y, Yang RW, et al. Vitamin D status and its associated risk factors among healthy adults in Gansu province. Chinese Journal of Cinical Nutrition. 2017;25(4).

61. Liu J, Ma W, Wei L, Yang Y, Yang R, Shao F, et al. Adult serum 25(OH)D3 in Gansu province, northwest China: a cross-sectional study. Asia Pacific journal of clinical nutrition. 2018;27(4):832-9.

62. Li XP, Tang ZZ, Zhou WW, et al. Analysis on vitamin D level of adults in five cities /counties of Guangxi. Guangxi Medical Journal. 2016(10).

63. Tian MN, Chen L, Song LJ, et al. Analysis of Vitamin D Nutritional Status of Urban and Rural Residents in Hebei Province. Hebei Medical Journal. 2016(04).

64. Cang Z, Wang NJ, Li Q, Xia FZ, et al. Serum vitamin D levels of the natural population in eastern China. Chinese Journal of Hypertension. 2018;26(5).

65. Zhang YL, Zhang X, Zhang WW, et al. Relationship between serum level of 25-hydroxyvitamin D and fasting blood glucose in healthy adults of Jinan. Journal of Shandong University(Health Sciences). 2014(03).

66. Miao GZ, Zhou M, Liu P, Zhang J. Survey of serum 25-hydroxyvitamin D level in adults in Jiangyin City. Jiangsu J Prev Med. 2017(03).

67. Zhang YL, Ma SH, Zhang X, Yu CX, Zhao JJ. Vitamin D status in middle-aged population and the relationship with hypertension. Shandong Medical Journal. 2014(14).

68. Guo YY, Nurongguli M, Ma FH, Wang XL, Jin XP, et al. Investigation and analysis of vitamin D nutritional status in healthy adults in Urumqi. Labeled Immunoassays&Clin Med. 2015(10).

69. Cheng Y, Liu P, Zhou WJ. Study on the level of vitamin D in adults in Wuxi city and its correlation with blood pressure. South China J Prev Med. 2018;44(4).

70. Zhang MC, Xu XJ, Liu HM, Lei H, Li HX, Mao JF. Vitamin D status and its relationship with blood pressure in Xinjiang Uyghur adults. Chinese Journal of Hypertension. 2015(07).

71. Zhang MC, Li HX, Liu HM, Lei H, Han L, Gao M, et al. Serum vitamin D is low and inversely associated with LDL cholesterol in the Kazak ethnic population: a cross-sectional study. Medical

science monitor : international medical journal of experimental and clinical research. 2014;20:1274-83.

72. Zhou XH, Wang QJ, Zhu MS, Zou T, et at. Epidemiological study of vitamin D level in elderly Uyhur and Han in Xinjiang. Chin J Osteoporos. 2012(05).

73. Zhu FF, Peng H, Zhang Q, et al. Association of vitamin D deficiency with serum uric acid among middle-aged and elderly women of Han nationality. Chinese Preventive Medicine. 2014(04).

74. Zhao HY, Zhu JM, Zhang YW. Investigation of the correlation between vitamin D and bone mineral density in middle-aged and elder people in Shanghai. Chin J Osteoporos. 2014(03).

75. Lu L, Yu Z, Pan A, Hu FB, Franco OH, Li H, et al. Plasma 25-hydroxyvitamin D concentration and metabolic syndrome among middle-aged and elderly Chinese individuals. Diabetes care. 2009;32(7):1278-83.

76. Zhao J, Xia W, Nie M, Zheng X, Wang Q, Wang X, et al. The levels of bone turnover markers in Chinese postmenopausal women: Peking Vertebral Fracture study. Menopause (New York, NY). 2011;18(11):1237-43.

77. Lu HK, Zhang Z, Ke YH, He JW, Fu WZ, Zhang CQ, et al. High prevalence of vitamin D insufficiency in China: relationship with the levels of parathyroid hormone and markers of bone turnover. PloS one. 2012;7(11):e47264.

78. Tao MF, Zhang Z, Ke YH, He JW, Fu WZ, Zhang CQ, et al. Association of serum 25hydroxyvitamin D with insulin resistance and β -cell function in a healthy Chinese female population. Acta pharmacologica Sinica. 2013;34(8):1070-4.

79. Peng H, Li H, Li C, Chao X, Zhang Q, Zhang Y. Association between vitamin D insufficiency and elevated serum uric acid among middle-aged and elderly Chinese Han women. PloS one. 2013;8(4):e61159.

80. Guan C, Zhen D, Tang X, Yang X, Zhu T, Fu S, et al. The status of 25-hydroxyvitamin D across the spectrum of glucose tolerance among middle-aged and elderly Chinese individuals. Clinical endocrinology. 2014;81(6):834-40.

81. Zhen D, Liu L, Guan C, Zhao N, Tang X. High prevalence of vitamin D deficiency among middle-aged and elderly individuals in northwestern China: its relationship to osteoporosis and lifestyle factors. Bone. 2015;71:1-6.

 Feng X, Guo T, Wang Y, Kang D, Che X, Zhang H, et al. The vitamin D status and its effects on life quality among the elderly in Jinan, China. Archives of gerontology and geriatrics. 2016;62:26-9.
 Li M, Lv F, Zhang Z, Deng W, Li Y, Deng Z, et al. Establishment of a normal reference value of

parathyroid hormone in a large healthy Chinese population and evaluation of its relation to bone turnover and bone mineral density. Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA. 2016;27(5):1907-16.

84. Gao C, Qiao J, Li SS, Yu WJ, He JW, Fu WZ, et al. The levels of bone turnover markers 25(OH)D and PTH and their relationship with bone mineral density in postmenopausal women in a suburban district in China. Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA. 2017;28(1):211-8.

85. Chen J, Yun C, He Y, Piao J, Yang L, Yang X. Vitamin D status among the elderly Chinese population: a cross-sectional analysis of the 2010-2013 China national nutrition and health survey (CNNHS). Nutrition journal. 2017;16(1):3.

86. Zhu W, Heil DP. Associations of vitamin D status with markers of metabolic health: A

community-based study in Shanghai, China. Diabetes & metabolic syndrome. 2018;12(5):727-32.

87. Li D, Wei H, Xue H, Zhang J, Chen M, Gong Y, et al. Higher serum 25(OH)D level is associated with decreased risk of impairment of glucose homeostasis: data from Southwest China. BMC endocrine disorders. 2018;18(1):25.

88. Fang F, Wei H, Wang K, Tan L, Zhang W, Ding L, et al. High prevalence of vitamin D deficiency and influencing factors among urban and rural residents in Tianjin, China. Archives of osteoporosis. 2018;13(1):64.

89. Xia Z, Man Q, Li L, Song P, Jia S, Song S, et al. Vitamin D receptor gene polymorphisms modify the association of serum 25-hydroxyvitamin D levels with handgrip strength in the elderly in Northern China. Nutrition (Burbank, Los Angeles County, Calif). 2019;57:202-7.

90. Xie Z, Xia W, Zhang Z, Wu W, Lu C, Tao S, et al. Prevalence of Vitamin D Inadequacy Among Chinese Postmenopausal Women: A Nationwide, Multicenter, Cross-Sectional Study. Frontiers in endocrinology. 2018;9:782.

91. Yao Y, Fu S, Li N, Hu F, Zhang H, Zhu Q, et al. Sex, Residence and Fish Intake Predict Vitamin D Status in Chinese Centenarians. The journal of nutrition, health & aging. 2019;23(2):165-71.

92. Huang T, Afzal S, Yu C, Guo Y, Bian Z, Yang L, et al. Vitamin D and cause-specific vascular disease and mortality: a Mendelian randomisation study involving 99,012 Chinese and 106,911 European adults. BMC medicine. 2019;17(1):160.

93. Yan X, Zhang N, Cheng S, Wang Z, Qin Y. Gender Differences in Vitamin D Status in China. Medical science monitor : international medical journal of experimental and clinical research. 2019;25:7094-9.

94. Zhang D, Cheng C, Wang Y, Xue Y, Liu Y, Li W, et al. Serum 25-Hydroxyvitamin D Concentrations and Cardiometabolic Biomarkers in Chinese Rural Population. Hormone and metabolic research. 2021;53(2):105-11.

95. Wei J, Zhu A, Ji JS. A Comparison Study of Vitamin D Deficiency among Older Adults in China and the United States. Scientific reports. 2019;9(1):19713.

96. Liu L, Cao Z, Lu F, Liu Y, Lv Y, Qu Y, et al. Vitamin D deficiency and metabolic syndrome in elderly Chinese individuals: evidence from CLHLS. Nutrition & metabolism. 2020;17:58.

97. Jin JH, Peng H, Zhang Q, Xu J, Kong FL, et al. Association between vitamin D, parathyroid hormone levels and lipid profile in adult residents. Chin Prev Med. 2015(11).

98. Li X, Qu C, Wang Y, Mao Z, Wang C, Li W, et al. Associations of CYP24A1 copy number variation with vitamin D deficiency and insulin secretion. Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme. 2019;44(12):1367-70.

99. Wei QS, Chen ZQ, Tan X, Su HR, Chen XX, He W, et al. Relation of Age, Sex and Bone Mineral Density to Serum 25-Hydroxyvitamin D Levels in Chinese Women and Men. Orthopaedic surgery. 2015;7(4):343-9.

100. Chen F, Wang Y, Guo Y, Wang J, Yang A, Lv Q, et al. Specific higher levels of serum uric acid might have a protective effect on bone mineral density within a Chinese population over 60 years old: a cross-sectional study from northeast China. Clinical interventions in aging. 2019;14:1065-73.

101. Chen QX. Investigation on Vitamin D Nutritional Status and Influencing Factors of Han Nationality Postmenopausal Women in Dongcheng District, Beijing, Doctoral Dissertation.; 2009.
102. Ren Z, Zhao A, Wang Y, Meng L, Man-Yau Szeto I, Yang C, et al. Association of serum 25-hydroxy vitamin D with obesity-related indices in Chinese adults: A cross-sectional study. Food science & nutrition. 2021;9(4):2260-8. 103. Na Mi. Relationship between vitamin D level and thyroid peroxidase level in Qinghai Province.Chin J Endemiol. 2019;38(3).

104. Chen XW, Zhan WH, Yu WQ, Pan JH. Analysis of Vitamin D Nutritional Status of Middle-aged and Old She Nationality Women. Zhejing Medical Journal. 2017;19(8).

105. Hu YC, Chen J, Wang R, Li M, Mao DQ, et al. VITAMIN D NUTRITIONAL STATUS OF CHINESE CHILDBEARING WOMEN. Acta Nutrimenta Sinica. 2020;42(6):537-41.