Figure S1. PNN distribution in the cortex, Related to Figure 1

PNN surrounding a subpopulation of parvalbumin⁺ interneurons in the primary somatosensory cortex 1 (S1) Parvalbumin **WFA**

Parvalbumin WFA

С

ð

S1

D Density of PNN-coated cells

Ε PNN distribution under 🖌 aż ne-acepromaż ne (XA) alone F 3x Saline 3x XA

S1(BF)

Density of PNN-coated cells

Figure S3. Ketamine causes transient PNN loss in V1, and is independent from repeated XA treatment alone and mouse strain background. Related to Figure. 1

Comparison C57BL/6J and C57BL/6N PNN-coated cells in V1

8000

Q

8000-

Recovery of PNN loss by sex

120

3x Saline
3x KXA

Figure S4. Repeated KXA treatment increased MMP-9 level in Pvalb⁺ neurons and microglia located in cortical layers 3-5, Related to Figure 2.

Figure S5. CD68 expression increased during ketamine exposure and gradually recovered after last injection, Related to Figure 2.

Perineuronal net fragments inside microglia in primary somatosensory cortex (S1)

В

PNN inside microalial CD68 in S1 PNN inside microglial CD68 in S1

PNN inside microglial CD68 in V1

Figure S8. Effects of light flickering on parvalbumin⁺ neuron-microglia distance and MMP-9 expression level, Related to Figure 4.

14

Figure S9. 60 Hz light-flickering induces PNN removal via microglia, Related to Figure 4.

