
science.sciencemag.org/content/371/6531/eaba0862/suppl/DC1   
 

 

 

 

Supplementary Materials for 
 

Clinically relevant mutations in core metabolic genes  

confer antibiotic resistance 
 

Allison J. Lopatkin, Sarah C. Bening, Abigail L. Manson, Jonathan M. Stokes,  

Michael A. Kohanski, Ahmed H. Badran, Ashlee M. Earl, Nicole J. Cheney, Jason H. Yang, 

James J. Collins* 

 
*Corresponding author. Email: jimjc@mit.edu 

 

Published 19 February 2021, Science 371, eaba0862 (2021)  

DOI: 10.1126/science.aba0862 

 

This PDF file includes: 

 

Materials and Methods 

Figs. S1 to S11 

Tables S1 and S2 

Captions for Tables S3 to S15 

References  

 

Other Supplementary Material for this manuscript includes the following: 

(available at science.sciencemag.org/content/371/6531/eaba0862/suppl/DC1) 

 

Tables S3 to S15 (Excel files) 

MDAR Reproducibility Checklist (PDF) 

 

 

 

 

 

 



 

 

1 

 

Materials and Methods 

Mathematical modeling 

To estimate the likely frequencies of metabolic mutations in a classical evolution 

setup, we adapted a mathematical model previously published (20), which calculates the 

probability that a given mutation will become established in a population over multiple 

generations, following antibiotic treatment (PE): . 

Here, PE is analogous to mutation frequency in our experiments (i.e., if PE = 1, the 

mutation is fixed, and the frequency is 100%). N02
t is the size of the population at 

generation t, T is the total number of generations, SR is the survival rate of each mutation, 

and  is the probability for a mutation to occur, which is proportional to the number of 

genes related to that phenotype. Since there are many more genes involved in metabolism 

than those related to a specific drug target, the probability of acquiring (i.e., establishing) 

a metabolism-related mutation is higher; for example, Levin-Reisman et al. showed the 

probability of acquiring a mutation conferring antibiotic tolerance is higher than that of 

one conferring resistance, since there are more genes that affect tolerance (e.g., 

metabolism, toxin/antitoxin systems, etc.) (20). In the context of this model, a relatively 

high value of  corresponds to a metabolic mutation, whereas a low value of  

corresponds to a mechanism-specific mutation. Moreover, since metabolic mutations 

have a much broader range of potential effects on the cell, the probability that any 

individual metabolic mutation increases the overall fitness of a cell is smaller. In other 

words, mutations that confer a specific phenotypic advantage with the smallest overall 

effect on the cell’s fitness are most likely to be favored (44–46). Thus, to model the 

relative frequency of metabolic mutations, we assume that SR is inversely proportional to 

 (i.e., mutations in canonical genes occur infrequently but have higher probabilities of 

fixation):  where K is the mutation rate corresponding to a survival 

probability of 50%, and n is the Hill coefficient. We set to reflect the overall 

low likelihood of mutation establishment, and n=2. We note that the choice of Hill 

coefficient did not change simulation results. Moreover, we implemented Gaussian noise 

(with a coefficient of variance of 5%) to simulate heterogeneous populations. Mutation 

occurrence and survival were simulated for 60 generations; this was long enough to 

reveal the relationship between mutation frequency and establishment, whereas 

excessively long simulations would result in establishment regardless of frequency. 

Finally, we assumed that  is independent of antibiotic concentration. This code is 

archived on Zenodo (43). 
 

Classic evolution 

The Escherichia coli strain BW25113 was used for all experiments. A single colony was 

picked from a streaked agar plate, and grown in 3 mL MOPS EZ (Teknova, #M2105) rich media 

overnight shaking at 250 rpm. After 16 hours, triplicates of this clone were saved in 50% glycerol 

and stored at -80C for subsequent sequencing and experiments. Cells were diluted 500X into 

fresh MOPS EZ rich media and aliquoted into one row (12 wells) of a 96-well plate. An 

additional row of blank MOPS EZ rich media was included immediately below as a 

contamination control. Cells were sealed with an AeraSeal film (Sigma, #A9224), covered with a 

fitted plastic cover, and grown for 24 hours shaking at 450 rpm and 37C. Following the first 

cycle of pre-growth, cells were diluted 500X into fresh MOPS EZ rich media daily. Antibiotic 
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was added to all treatment wells, and sterile water was added to the control, at concentrations 

according to Table S2. All antibiotics were pre-diluted into stocks of 10X at the beginning of the 

experiment, and stored at -20C throughout. OD600 measurements were taken daily immediately 

prior to the 500X dilution. Since decreases in OD600 were observed beginning on day five, 

samples were saved daily starting on that day and for every day thereafter, until day 10. 

Populations were revived by thawing the tops of frozen samples, and diluting 1000X into 1.5 mL 

fresh MOPS EZ rich media in a deep 96-well plate, such that the top row corresponded to the 

populations saved on day 5 and the bottom row corresponded to the populations saved on day 10. 

OD600 measurements were taken the following morning to determine the terminal population (Fig. 

1C). Cells from each terminal population were streaked directly onto blank agar to acquire 

individual clones. 1 mL of this overnight culture was pelleted, and frozen at -80C for 48 hours, 

to be used directly for genomic extraction (see details below). The remaining volume was 

aliquoted into volumes of 50 L and saved in glycerol at -80C in a final concentration of 25%. 

Population aliquots were partially thawed for subsequent experiments. Individual clones were 

picked from agar and grown at 37C overnight, similarly aliquoted, and genomic DNA was 

extracted immediately. We note that blank media control wells were included for every day of the 

evolution, and no contamination was observed.   

 

Metabolic evolution 

The identical wild-type BW25113 E. coli clone as in the classic evolution was used as the 

starter strain for these experiments. As with the classic evolution protocol, cells were diluted 

500X into either MOPS EZ rich media, or MOPS minimal media supplemented with 0.04% 

glucose, and aliquoted into one row (12 wells) of a 96-well plate. An additional row of blank 

media was included immediately below. Cells were sealed with an AeraSeal film, covered with a 

fitted plastic cover, and grown for 24 hours shaking at 450 rpm and 37C. Following the first 

cycle of pre-growth, cells were diluted 500X into fresh respective media; immediately following 

this dilution, cells were equilibrated to the daily temperature for 30 minutes, followed by one 

hour of drug treatment. As an example, on day 0, freshly diluted cells were equilibrated to 20C 

for 30 minutes, after which they were treated with 40X MIC50 at the same temperature for exactly 

one hour. This concentration corresponds to the concentration reached on day 10 of the classic 

evolution protocol. Following one hour of treatment, cells were washed 2X with PBS, 

resuspended in the corresponding media, sealed as with previously, and grown at 37C for the 

remaining 22 hours with 450 rpm agitation. Every day thereafter, the equilibration/treatment 

temperature increased in one-degree increments until day 10, which ended at 30C. Prior to the 

dilution every morning, OD600 measurements were obtained to track density over the course of 

the evolution. As with previously, a control row of blank media was included for every day of the 

experiment, and no cell growth was observed throughout the evolution.  The static metabolic 

evolution was performed identically to the first metabolic evolution, with the following changes: 

only MOPS minimal media was used to control for growth, and during every antibiotic treatment 

window, the temperature was maintained at 20C. Otherwise, the protocol remained identical. 

 

MIC and growth rate measurements 

Prior to both evolutions, MIC values were determined according to the following 

protocol: an overnight WT culture (16 hours at 37C with agitation at 250 rpm) was diluted 

10,000X into MOPS EZ rich media, or MOPS minimal media supplemented with 0.04% glucose, 

and aliquoted into wells of a 96-well plate. The antibiotics strep, cipro, and carb, were diluted in a 

separate 96-well plate such that the highest final concentrations would be 50, 1, and 100 g/mL, 

respectively, and serially diluted in fold-steps of two for 12 concentrations. Plates were sealed 

and grown for 24 hours as described above, after which the OD600 was taken. All MICs were 

performed in biological triplicate. Once all replicates were obtained, a Hill curve was fit to the 
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average data as a function of the antibiotic (Fig. S1), and the half-maximal concentration was 

taken as the MIC50. The lowest concentration at which no increase in OD600 was observed was 

taken as the true MIC.  Following the evolution, all MIC measurements were obtained similarly, 

with the following exceptions: for population-level measurements, cells were diluted 500X from 

the overnight culture, as this was the cell density at which the evolution was performed, and 

ensures consistency between replicates. To enable fair comparisons between population and 

clonal samples, clonal isolates were also diluted 500X. Finally, instead of two-fold dilution steps, 

antibiotics were diluted in a gradient consistent with the daily evolution protocol (e.g., 85% with 

the highest concentration at 40X MIC50. As with MICs, for all population growth rate 

experiments, overnight cultures were initiated with 500X thawed glycerol samples. For clonal 

measurements, single colonies were picked from streaked agar and grown analogously. In all 

cases, cells were diluted 500X into fresh media, and aliquoted into a 96-well plate at a final 

volume of 200 L. When applicable, antibiotic was added at this time. Wells were sealed with 50 

L mineral oil (Sigma, #M5904) and read in a pre-warmed 37C BioRad plate reader with 

measurements taken at intervals of 15 minutes. Growth rates were quantified using a method 

established previously (47, 48). Single colony growth rates were obtained using a method 

analogous to ScanLag whereby overnight cells were diluted and spread onto pre-warmed agar 

plates, and placed upside down on an EPSON translucent-imaging scanner located inside a 37C 

warm room. Images were obtained once every five minutes, and all images were processed using 

a custom script in MATLAB. Untreated controls were included in every experiment to account 

for variability in the time between bringing cells into the warm room, and initiation of image 

collection.  

 

One-hour survival protocol 

Conditions analogous to treatment during the metabolic evolution were implemented for 

consistency; namely, overnight cultures of cells were diluted 500X, and equilibrated to the 

described temperature for 30 minutes. Following this, 40X MIC50 antibiotic was added to each 

well, and cells were incubated at the described temperature for exactly one hour. Following 

treatment, cells were washed 2X in PBS, and CFU was obtained by spot plating immediately 

thereafter. 

 

gDNA extraction, library prep, high-throughput sequencing, and variant calling 

Populations were partially thawed, and to ensure consistency across population samples, 

equivalent volumes from each well-mixed condition were grown overnight in MOPS EZ rich 

media (1,000X) in 1.5 mL volume. These overnight population cultures were first streaked onto 

blank agar to obtain individual colonies for subsequent gDNA extraction. Next, 500 L of each 

sample was saved as described previously. Finally, the remaining 1 mL was pelleted and saved 

for gDNA extraction at -80C for 48 hours. In that time, clonal plates were grown at 37C for 16 

hours; all colonies were picked and grown as described previously. gDNA from individual 

clones, populations, and the WT strain was extracted using the PureLink Pro 96 Genomic DNA 

Kit (# K182104). Pooled libraries were prepared using the plexWell 384 kit supplied from 

SeqWell; whole-genome sequencing was performed on a HiSeq 2500 Rapid Run flow cell with 

150 base paired-end reads with an average read depth of 100X at the Broad Institute. Illumina 

reads were aligned to the E. coli reference strain BW25113 (NCBI Genbank accession 

CP009273) using BWA version 0.7.17(49). Pilon(28) version 1.23 was used to call variants 

occurring with a minimum frequency of 2%; this was performed using the --vcfqe option to 

obtain quality-weighted read depths according to methods established previously to identify low-

frequency mutations(50). Additionally, we required SNPs to be supported by a minimum of five 

reads. Finally, to remove sequencing errors associated with strand bias, SNPs were further filtered 
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from positions where <33% of the reads for the alternate allele were from either the forward or 

reverse strand. 

 

Gene ontology (GO) enrichment 

Gene lists from the classic and metabolic evolutions were individually analyzed using 

either EcoCyc or the Princeton GO term finder(51). For Figure 3, GO enrichment analysis was 

performed for biological processes, and P-values were obtained using the Fisher exact test. All 

genes that overlapped with those identified in the non-treated adapted controls, and >80% of 

these genes occurred in the control samples, were excluded. Genes from the classical evolution 

were only enriched in eight categories. Since the last two categories were similar to the sixth 

category, only the top six categories were included from both evolutions in Fig. 3B-C. The entire 

list of GO classifications, along with the gene lists used for enrichment, can be found in Table S8.  

 

Comparative analysis of variants to published E. coli genomes 

All E. coli genomes with L50 < 20 were downloaded from the NCBI Pathogens database 

(https://www.ncbi.nlm.nih.gov/pathogens/) on 2/21/2018 and uniformly annotated using the 

Broad Institute’s Prokaryotic Annotation Pipeline as in Cerqueira et al. (2017)(52).  Genomes 

with classifications of either “clinical” (n=3700) or “environmental” (n=3543) were searched for 

all coding SNPs identified in our sequencing experiments. For each of the >7000 genomes, Blast 

was used to identify the top gene hit for each BW25113 gene. If the BLAST e-value was 1x10-10 

or less, and the query genome had a coverage of at least 90%, the ortholog sequence was 

extracted and multiple alignment was performed using Muscle(53). Mutated positions in all 

genomes in the database that aligned with the BW25113 SNPs were tabulated. Mutations that did 

not appear at least once in the entire pathogen database were removed from consideration; P-

values for over-representation in clinical strains were calculated using Fisher’s exact test for all 

remaining mutations and corrected using the false discovery rate method. 

 

Mutation validation  

The plasmid backbone used for all constructs is pAB; this plasmid consists of a strong 

constitutive synthetic promoter proD, chloramphenicol resistance, and a p15A origin of 

replication. The control plasmid, pAB191, contains the innocuous gene lacZ under the control of 

proD. All WT genes were obtained from the E. coli genome using PCR, and cloned into the pAB 

backbone using either Gibson assembly or USER cloning. All mutant variants were generated 

with USER cloning. All final constructs were fully sequenced for validation. The corresponding 

knockout strains for each relevant gene were obtained from the Keio collection. Each strain was 

validated using PCR, and kanamycin resistance (kanR) was removed with FLP recombinase 

(pCP20). All plasmids expressing either the WT or mutant variants were introduced into the 

strain with the corresponding gene chromosomally deleted, except for gyrA, which was 

introduced into the WT strain BW25113 since this gene is essential. Also, there was no mutant 

variant for ycgG; since the mutation from our study was a large deletion, the knockout strain 

carrying pAB191 served as the appropriate control. Table S1 provides a complete list of strains 

and plasmids used in this study, along with primer sequences. All experiments that utilized these 

strains were conducted in the presence of 100 g/mL chloramphenicol. All MICs were performed 

identically as described above. In testing drug susceptibility, we found that resistance to the 

control gene ompF was readily visibly by 10 hours, but not by 24 hours, likely due to mutation 

from the overexpressed gene. Thus, to test drug susceptibility for all constructs, MIC 

measurements were taken after 10 hours instead of 24 hours to reduce the likelihood of false 

resistance due to mutation. At least two biological replicates were obtained for each construct. 

MICs were determined based on the lowest concentration at which no growth was observed 

above the background OD600. We note that some mutants grew slightly slower than the WT 

control, including sucAM, as evidenced in Fig. S8. In these cases, MICs were verified by allowing 
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populations to reach equivalent OD600 levels to the control to ensure MICs were comparable; 

doing so did not change the calculated MIC value at 10 hours for any mutant. 

 

Oxygen consumption rate (OCR), NAD+/NADH ratio and ATP levels 

OCR was measured using the Agilent Seahorse XFe96 as previously described. Briefly, 

Seahorse XF Cell Culture microplates (Agilent, #101085-004) were pre-coated with 100 ng/mL 

poly-D-lysine (Sigma, #P6407). WT and sucAM strains were grown overnight in MOPS EZ rich 

media supplemented with 100 g/mL chloramphenicol. Cells were diluted 100X into fresh MOPS 

and grown until they reached an OD600 of approximately 0.1. Cells were then back-diluted to 

OD600 = 0.005 and 200 L diluted cells were dispensed to each well of the coated XF 

microplates. Three OCR measurements were made at 5 min intervals with 2.5 min measurements 

and 2.5 min mixing. All samples were randomized on the plate to avoid any systematic biases due 

to Seahorse measurements. For metabolite measurements, strains were grown overnight as 

described previously. After 16 hours, cells were diluted 500X in MOPS EZ rich media and 

treated with each drug, or control, at MIC50 concentrations. NAD+/NADH (Promega #G9071) 

measurements were made using the NAD/NADH-Glo Promega assay in biological triplicate after 

30 minutes of treatment. ATP measurements were obtained using the BacTiter-Glo (Promega 

#G8230) microbial viability assay on overnight cells grown in MOPS EZ rich media.  
 

Fluctuation test 

Mutation rates were measured using the well-established fluctuation test in response to 

rifampicin (rif) (Sigma, #3501) as described previously(54). Briefly, concentrations of strep, carb, 

and cipro were chosen based on the highest concentration that still allowed recovery after 24 

hours. Strains were grown overnight as described previously, and diluted 10,000X into 50 mL 

MOPS EZ rich supplemented with 100 g/mL chloramphenicol. After 3.5 hours, cells were 

diluted 1:3 into fresh media containing no drug, or one of the three drugs at the specified 

concentration. Each condition was split into 10 1-mL aliquots in 14 mL culture tubes and grown 

for 24 hours at 37C. Cells were then plated on either LB agar or agar containing 50 g/mL rif. 

The likelihood of mutations was calculated on a per plate basis as previously described, using the 

MSS maximum-likelihood method (55). The mutation rate was then determined by normalizing 

the mutation events per rif plate by the total number of bacteria observed on corresponding drug-

free LB agar plates. Statistics were calculated as previously described (55) and the error bars 

indicate 95% confidence intervals.  

 

RNA sequencing and analysis 

Strains were grown overnight as previously described. After 16 hours, all strains were 

diluted identically as in the NAD+/NADH and OCR protocol, namely, 500X into MOPS EZ rich 

media. Cells were treated with MIC50 concentrations of the control strain, and incubated at 37C 

with 250 rpm agitation for one hour.  Following one hour, cells were flash-frozen, and submitted 

to Medgenomics for RNA extraction and sequencing. RNA sequencing was performed using 

NovaSeq 150 base paired end reads with 25M total reads/sample. For analysis, raw sequencing 

files were downloaded, trimmed using Trimmomatic (56), and the quality was verified using 

FastQC. Next, trimmed sequences were aligned to the same BW25113 genome as above using 

Star (57). Gene counts of aligned reads were quantified using FeatureCounts (58), and differential 

gene expression was performed with edgeR (59). Differentially expressed genes were defined as a 

corrected P-value of < 0.05, and a log-2 fold change of >1 or <-1 for up and down regulation, 

respectively.  All raw sequencing data, differential expression data, and GO enrichment can be 

found in Tables S12-14. 
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Fig. S1. Characterization of the classic evolution protocol. 

 (A) Population genomics model of establishing a metabolic mutation. X-axis is mutation 

frequency (); high  simulates mutations in metabolic genes, whereas low  implies a 

drug target mutation. Colors of blue, orange, yellow, purple, and yellow indicate 

increasing average  (B) Calculating the MIC50. WT BW25113 was diluted 10,000X 

into MOPS EZ rich media and grown in the presence of antibiotics at a range of 

concentrations. After 24 hours, the OD600 was taken and the dose response was calculated 

according to previously established methods. The half-maximal concentration was taken 

as the MIC50. (C) Growth rates of 12 individual clones (left) or whole populations (right) 

were measured according to previous methods. Growth rates were normalized to the 

average growth rate of the WT strain, represented by the dashed black line for reference. 

Bars represent the average of either 12 clones (left) or three biological replicates (right), 

and error bars indicate standard deviation.  
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Fig. S2. Validation for clonal and population SNP detection.  

The finding that unique SNPs per sample is greater in whole population samples than 

clonal samples was maintained regardless of whether SNPs in the control samples (A) or 

in the clonal samples at frequencies less than passing (B) were included. 
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Fig. S3. SNPs detected in classic evolution.  

Heat maps show variants and their corresponding frequencies that were detected in whole 

population samples (A) or whole populations and passing clonal SNPs (B) for each drug. 

Shading from blue to red represents low to high frequency. For visualization of lower 

frequency mutants, the frequency scale is set to a maximum of 0.5. 
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Fig. S4. MICs from metabolic evolution.  

(A) Population-level MICs from whole population samples at the end of the metabolic 

evolution (orange) compared to the WT strain (gray). To ensure consistency, all 

population-level measurements were initiated with a 500X dilution from the overnight 

culture, and grown for 24 hours in MOPS EZ rich media. Following 24 hours, OD600 was 

obtained. The lowest concentration at which no growth occurred was determined as the 

MIC. Dark lines represent the average of three biological replicates, and shading 

represents the standard deviation. (B) MIC for clones from the metabolic evolution under 

minimal media. Terminal populations were streaked onto blank agar; 20 clones were 

picked for the WT strain, and 96 clones were picked for each drug-treated condition. As 

previously, OD600 was measured after 24 hours. The lowest concentration at which no 

growth occurred was determined as the MIC. Bars represent the average of all clones, and 

error bars represent standard deviation.  
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Fig. S5. Metabolic evolution sequencing results.  

(A) Sequencing overview of the metabolic evolution. 12 clones for each treatment 

condition from the rich media were sequenced, except for the control in which four 

clones were sequenced. All three terminal populations from both the rich and minimal 

media from each treatment condition were also sequenced. P stands for population and C 

for clonal. (B) Passing SNPs in sequenced clones. Green, blue, and red bar colors 

correspond to strep, cipro, and carb, respectively. (C) Heat maps of variants and their 

corresponding frequencies that were detected in whole populations and passing clonal 

samples for each drug. Shading from blue to red represents low to high frequency. For 

visualization of lower frequency mutants, the frequency scale is set to a maximum of 0.5. 

(D) Change in OD600 before and after 1-hr treatment on day 0 (20C) and day 10 (30C). 

(E) Survival for WT cells at 20C. Evolved cells at 30C is shown as comparison (same 

as in Fig. 2D).  
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Fig. S6. Static metabolic evolution.  

(A) Evolution schematic. The protocol is identical to the increasing metabolic evolution, 

except that the temperature is maintained at 20C every day during the 1-hr treatment for 

each condition. (B) Daily OD600 measurements. Shaded color represents standard 

deviation of three population replicates. Colors yellow, green, blue, and red indicate 

control, strep, cipro, and carb, respectively. (C) Heat maps of variants and their 

corresponding frequencies that were detected in whole populations for each drug. No 

clonal isolates were sequenced. Shading from blue to red represents low to high 

frequency. For visualization of lower frequency mutants, the frequency scale is set to a 

maximum of 0.5. 
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Fig. S7. Number of mutations per E. coli genome.  

(A) Total number of NCBI E. coli isolates broken down by those designated as “clinical” 

and those designated as “environmental”. (B) All NCBI E. coli isolates that had at least 

one mutation identical to one from this study are plotted against the total number of 

mutations identified in that genome. Each pathogen had less than 10 SNPs each. 
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Fig. S8. Growth inhibition for metabolic mutants, 

Growth rate (y-axis) is plotted as a function of antibiotic concentration normalized by the 

control strain’s IC50 value (shown in black). The intact BW25113 carrying pAB191 is 

used as the WT control. Error bars represent the standard deviations of three biological 

replicates. 
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Fig. S9. MICs for metabolic mutants. 

MICs measured for mutant (green) and WT (yellow) sequences of the same 

representative subset of genes as in Fig. 4B. The intact BW25113 carrying pAB191 is 

used as the WT control (vertical dashed black line). Knockout controls, which correspond 

to each strain carrying pAB191, are shown in pink. Two biological replicates were 

obtained for each condition; both are plotted in each figure without averaging to 

demonstrate variability if present.  
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Fig. S10. Rifampicin mutation rate. 

Mutation rates for the control strain compared to the ompF and sucA mutant (sucAM) 

strains. Error bars show 95% confidence interval. 
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Fig. S11. Mechanistic validation. 

(A) Left: Number of differentially expressed genes between the WT and sucAM in the 

absence (yellow) and presence (red) of carb treatment. Right: Number of differentially 

expressed genes between the treated and untreated conditions for WT (blue) and sucAM 

(green). In all cases when compared to the mutant strain, WT corresponds to BW25113 

carrying pAB191. (B) Principle component plots for WT (top) and sucAM (bottom) with 

(red) and without (black) carb treatment. Ellipses represent 1.5 standard deviations. (C) 

Oxygen consumption rates between WT (blue) and sucAM (green) are significantly 

different (P =0.0077, student two-tailed t-test). (D) ATP levels between WT (blue) and 

sucAM (green) are significantly different (P = 9.3x10-5). (E) NAD+/NADH ratios of WT 

(blue) and sucAM (green) in response to strep, cipro, or carb.  Values were normalized 

with respect to the untreated control at the same time point. NADH+/NADH ratios are 

statistically different for sucAM cells after carb treatment (P = 0.03, student two-tailed t-

test). Data are normalized to each respective cell strain in the absence of treatment. (F) 

Same data as in Fig. 4C with clustered columns in addition to clustered rows. 
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Table S1.  

(A) All strains used in this study 

 

 

Designation Description Genotype Source 

WT E. coli strain BW25113 F-, (araD-araB)567, 

lacZ4787(::rrnB-3), -, rph-1, 

(rhaD-rhaB)568, hsdR514 

Lab stock 

icd::kan E. coli strain BW25113 

with icd knocked out 
F-, (araD-araB)567, 

lacZ4787(::rrnB-3), -

, (icd724::kan), rph-1, (rhaD-

rhaB)568, hsdR514 

Keio collection; 

JW1122-2  

ushA::kan E. coli strain BW25113 

with ushA knocked out 
F-, (araD-araB)567, 

lacZ4787(::rrnB-3), -

, (ushA763::kan), rph-1, (rhaD-

rhaB)568, hsdR514 

Keio collection; 

JW0469-4 

ompF::kan E. coli strain BW25113 

with ompF knocked out 
F-, (araD-araB)567, 

lacZ4787(::rrnB-3), -

, (ompF746::kan), rph-1, (rhaD-

rhaB)568, hsdR514 

Keio collection; 

JW0912-1 

sucA::kan E. coli strain BW25113 

with sucA knocked out 
F-, (araD-araB)567, 

lacZ4787(::rrnB-3), -

, (sucA775::kan), rph-1, (rhaD-

rhaB)568, hsdR514 

Keio collection; 

JW0715-2 

gltD::kan E. coli strain BW25113 

with gltD knocked out 
F-, (araD-araB)567, 

lacZ4787(::rrnB-3), -

, (gltD742::kan), rph-1, (rhaD-

rhaB)568, hsdR514 

Keio collection; 

JW3180-1 

ycgG::kan E. coli strain BW25113 

with yccG knocked out 
F-, (araD-araB)567, 

lacZ4787(::rrnB-3), -

, (ycgG757::kan), rph-1, (rhaD-

rhaB)568, hsdR514 

Keio collection; 

JW5174-1 

acrD::kan E. coli strain BW25113 

with acrD knocked out and 

kanamycin resistance 

removed 

F-, (araD-araB)567, 

lacZ4787(::rrnB-3), -, (acrD790), 

rph-1, (rhaD-rhaB)568, hsdR514 

Keio collection; 

JW2454-1 

icd E. coli strain BW25113 

with icd knocked out and 

kanamycin resistance 

removed 

F-, (araD-araB)567, 

lacZ4787(::rrnB-3), -, (icd724), 

rph-1, (rhaD-rhaB)568, hsdR514 

Generated in this 

study  

ushA E. coli strain BW25113 

with ushA knocked out and 

kanamycin resistance 

F-, (araD-araB)567, 

lacZ4787(::rrnB-3), -, (ushA763), 

Generated in this 

study 
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removed rph-1, (rhaD-rhaB)568, hsdR514 

ompF E. coli strain BW25113 

with ompF knocked out and 

kanamycin resistance 

removed 

F-, (araD-araB)567, 

lacZ4787(::rrnB-3), -, (ompF746), 

rph-1, (rhaD-rhaB)568, hsdR514 

Generated in this 

study 

sucA E. coli strain BW25113 

with sucA knocked out and 

kanamycin resistance 

removed 

F-, (araD-araB)567, 

lacZ4787(::rrnB-3), -, (sucA775), 

rph-1, (rhaD-rhaB)568, hsdR514 

Generated in this 

study 

gltD E. coli strain BW25113 

with gltD knocked out and 

kanamycin resistance 

removed 

F-, (araD-araB)567, 

lacZ4787(::rrnB-3), -, (gltD742), 

rph-1, (rhaD-rhaB)568, hsdR514 

Generated in this 

study 

ycgG E. coli strain BW25113 

with yccG knocked out and 

kanamycin resistance 

removed 

F-, (araD-araB)567, 

lacZ4787(::rrnB-3), -, (ycgG757), 

rph-1, (rhaD-rhaB)568, hsdR514 

Generated in this 

study 

acrD E. coli strain BW25113 

with acrD knocked out and 

kanamycin resistance 

removed 

F-, (araD-araB)567, 

lacZ4787(::rrnB-3), -, (acrD790), 

rph-1, (rhaD-rhaB)568, hsdR514 

Generated in this 

study 

(B) All plasmids used in this study. CmR and ampR denotes chloramphenicol and 

ampicillin resistance, respectively. 

 

Plasmid Description Resistance 

pAB191 p15A ori; proD promoter driving lacZ cmR 

pCP20 pSC101(ts) ori; λPR promoter driving flp recombinase cmR, ampR 

pAB01a p15A ori; proD promoter driving icdA+ cmR 

pAB01b p15A ori; proD promoter driving icdA-1 cmR 

pAB02a p15A ori; proD promoter driving sucA+ cmR 

pAB02b p15A ori; proD promoter driving sucA-1 cmR 

pAB04a p15A ori; proD promoter driving ushA+ cmR 

pAB04b p15A ori; proD promoter driving ushA-1 cmR 

pAB05a p15A ori; proD promoter driving yidA+ cmR 

pAB05b p15A ori; proD promoter driving yidA-1 cmR 

pAB07a p15A ori; proD promoter driving gltD+ cmR 

pAB07b p15A ori; proD promoter driving gltD-1 cmR 

pAB08a p15A ori; proD promoter driving acrD+ cmR 

pAB08b p15A ori; proD promoter driving acrD-1 cmR 

pAB09a p15A ori; proD promoter driving ompF+ cmR 

pAB09b p15A ori; proD promoter driving ompF-1 cmR 

pAB09a p15A ori; proD promoter driving gyrA+ cmR 

pAB09b p15A ori; proD promoter driving gyrA-1 cmR 
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pAB09b p15A ori; proD promoter driving yccG-1 cmR 

(C) Primer sequences.  

 

ACCTGCAGGTGCAGUaaggaggaaaaaaaaatgcagaaca

gcgctttga 

Fwd Amplifies the 5' end of sucA 

AGTGCCGTTAATTAAGUcttttattcgacgttcagcgcgt Rev Amplifies the 3' end of sucA 

ATGCTGGCGATTGCGUggtggcagagtggcgtccg Fwd Amplifies the middle of sucA 

mutant 

ACGCAATCGCCAGCATcc Rev Amplifies the middle of sucA 

mutant 

ACCTGCAGGTGCAGUaaggaggaaaaaaaaatggctattaaa

ctcattgctatcga 

Fwd Amplifies the 5' end of yidA, 

includes SD8 RBS 

AGTGCCGTTAATTAAGUcttttaattcagcacatacttctcaat

agc 

Rev Amplifies the 3' end of yidA 

ACCTGCAGGTGCAGUaaggaggaaaaaaaaatggctattaaa

ctcattgctatcgatatggatggcccccttctgctgcccgatc 

Fwd Amplifies the 5' end of yidA 

mutant, includes SD8 RBS 

ACCTGCAGGTGCAGUaaggaggaaaaaaaaatggcgaatttc

tttattgatcg 

Fwd Amplifies the 5' end of acrD, 

includes SD8 RBS 

AGTGCCGTTAATTAAGUagcttttattccgggcgcggcttca

gc 

Rev Amplifies the 3' end of acrD 

ACCTGCAGGTGCAGUaaggaggaaaaaaaaatgacgaatttc

tttattgatcgcccca 

Fwd Amplifies the 5' end of acrD 

mutant, includes SD8 RBS 

AGGCATCTGGATUgtgcagg Fwd Amplifies the middle of ushA 

mutant 

AATCCAGATGCCUttttgttgatctggtttgcatgg Rev Amplifies the middle of ushA 

mutant 

ACCTGCAGGTGCAGUaaggaggaaaaaaaaatgagtcagaa

tgtttatcaatttatcgac 

Fwd Amplifies the 5' end of gltD, 

includes SD8 RBS 

AGTGCCGTTAATTAAGUcttttaaacttccagccagttcataat

ac 

Rev Amplifies the 3' end of gltD 

AGATAAAGCGTUcgagatgggc Fwd Amplifies the middle of gltD 

mutant 

AACGCTTTATCUttgatatagcgctcaatgttgcc Rev Amplifies the middle of gltD 

mutant 

ACCTGCAGGTGCAGUaaggaggaaaaaaaaatgttgtacgat

aaatcccttgagag 

Fwd Amplifies the 5' end of gltB, 

includes SD8 RBS 

AGTGCCGTTAATTAAGUcttttactgcgcctgcacg Rev Amplifies the 3' end of gltB 

ACCGAGCATGUgccgcataccggctctcagc Fwd Amplifies the middle of gltB 

mutant 

ACATGCTCGGUgataagacca Rev Amplifies the middle of gltB 

mutant 

ACCTGCAGGTGCAGUaaggaggaaaaaaaaatgagcgacct

tgcgagag 

Fwd Amplifies the 5' end of gyrA, 

includes SD8 RBS 
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AGTGCCGTTAATTAAGUcttttattcttcttctggctcgtcg Rev Amplifies the 3' end of gyrA 

ATGGTGACTUggcggtctatgacacgatcg Fwd Amplifies the middle of gyrA 

mutant 

AAGTCACCAUggggatggtatttaccgat Rev Amplifies the middle of gyrA 

mutant 

AACCGTAACCTAUgacttcgagc Fwd Amplifies the middle of icdA 

mutant 

ATAGGTTACGGTUttggcgttgattgcgccttccatacc Rev Amplifies the middle of icdA 

mutant 

ATCGTTGGTGCTUaGCTTATggtgcagctgaccgtacc Fwd Amplifies the middle of ompF 

mutant 

AAGCACCAACGAUaccaaagc Rev Amplifies the middle of ompF 

mutant 

ACTTAATTAACGGCACTC Fwd Linearizes pAB191 for gibson 

assembly 

TTTTTTTTCCTCCTTACTGC Rev Linearizes pAB191 for gibson 

assembly 

gcagtaaggaggaaaaaaaaATGATGAAGCGCAATATTC Fwd Amplifies the 5' end of ompF 

aggagtgccgttaattaagtCTTTTAGAACTGGTAAACGA

TAC 

Rev Amplifies the 3' end of ompF 

aggagtgccgttaattaagtCTTTTACTGCCAGCTCAC Fwd Amplifies the 5' end of ushA 

gcagtaaggaggaaaaaaaaATGCGCAATACACTCATAC Rev Amplifies the 3' end of ushA 

gcagtaaggaggaaaaaaaaATGGAAAGTAAAGTAGTT

GTTC 

Fwd Amplifies the 5' end of icdA 

aggagtgccgttaattaagtCTTTTACATGTTTTCGATGAT

C 

Rev Amplifies the 3' end of icdA 

gcagtaaggaggaaaaaaaaATGCGCAATACACTCATAC Fwd Amplifies the 5' end of ycgG 

AGGAGTGCCGTTAATTAAGTCTTTCACTCAAC

CACAAC 

Rev Amplifies the 3' end of ycgG 
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Table S2. 

(A) MIC50 values. 

 

 MOPS EZ 

Rich 

MOPS Minimal + 0.04% 

Glucose 

Catalog # 

Strep (g/mL) 1.4 0.4 Sigma, #S6501 

Cipro 

(g/mL) 

0.01 0.01 Sigma, #17850 

Carb (g/mL) 12.0 3.6 Sigma, #C1389 

 

 

(B) Classic evolution. 

 

DATE 4/29/19 4/30/19 5/1/19 5/2/19 5/3/19 5/4/19 5/5/19 5/6/19 5/7/19 5/8/19 5/9/19 

Temperature 37 37 37 37 37 37 37 37 37 37 37 

Day 0 1 2 3 4 5 6 7 8 9 10 

Drug multiple* 0.085 0.16 0.29 0.54 1.00 1.85 3.42 6.33 11.71 21.67 40.09 

Strep (g/mL) 0.1 0.2 0.4 0.8 1.4 2.6 4.8 8.9 16.4 30.3 56.1 

Cipro (g/mL) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.2 0.4 

Carb (g/mL) 1.0 1.9 3.5 6.5 12.0 22.2 41.1 76.0 140.6 260.0 481.1 
*  Drug multiple corresponds to a multiplication factor for each antibiotic MIC50 value 

 

(C) Metabolic evolution: rich media. 

 

DATE 4/29/19 4/30/19 5/1/19 5/2/19 5/3/19 5/4/19 5/5/19 5/6/19 5/7/19 5/8/19 5/9/19 

Temperature 20 21 22 23 24 25 26 27 28 29 30 

Day 0 1 2 3 4 5 6 7 8 9 10 

Drug multiple* 40.09 40.09 40.09 40.09 40.09 40.09 40.09 40.09 40.09 40.09 40.09 

Strep (g/mL) 56.1 56.1 56.1 56.1 56.1 56.1 56.1 56.1 56.1 56.1 56.1 

Cipro (g/mL) 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 

Carb (g/mL) 481.1 481.1 481.1 481.1 481.1 481.1 481.1 481.1 481.1 481.1 481.1 
*  Drug multiple corresponds to a multiplication factor for each antibiotic MIC50 value 

 

(D) Metabolic evolution: minimal media. 

 

DATE 4/29/19 4/30/19 5/1/19 5/2/19 5/3/19 5/4/19 5/5/19 5/6/19 5/7/19 5/8/19 5/9/19 

Temperature 20 21 22 23 24 25 26 27 28 29 30 

Day 0 1 2 3 4 5 6 7 8 9 10 
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Drug multiple* 40.09 40.09 40.09 40.09 40.09 40.09 40.09 40.09 40.09 40.09 40.09 

Strep (g/mL) 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 

Cipro (g/mL) 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 

Carb (g/mL) 144.3 144.3 144.3 144.3 144.3 144.3 144.3 144.3 144.3 144.3 144.3 
*  Drug multiple corresponds to a multiplication factor for each antibiotic MIC50 value 
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Captions for Tables S3 to S15 

Additional Data Table S3 (separate file) 

Sequencing maps for classic and metabolic evolutions. Sheet one has sequencing maps 

for the main classic and metabolic evolutions. Sheet two has the sequencing map for the 

static metabolic evolution. 

Additional Data Table S4 (separate file) 

Sequencing results for classic evolution. Sheet one has master data. Sheet two has WT 

genotype for two replicates. In all subsequent results, tabulations exclude mutations that 

appeared in the WT strain (dicC and rbsR). 

Additional Data Table S5 (separate file) 

Classic evolution sequencing with KEGG classifications. KEGG and BRITE hierarchy 

classifications included for the classic evolution sequencing results. Sheet one lists all 

genes by sample group, and sheet two lists all KEGG functional groups with each 

associated gene. 

Additional Data Table S6 (separate file) 

Sequencing results for metabolic evolution. Column ‘evol_exp’ designates rich (2_2M) 

or minimal media (2_1M). 

Additional Data Table S7 (separate file) 

Sequencing results for metabolic evolution with static temperature. Sheet one contains 

master data. Sheet two contains the unique genes for each treatment group. 

Additional Data Table S8 (separate file) 

Gene ontology (GO) enrichment for biological processes results. Gene list for GO 

enrichment from classical evolution. First sheet has data used in Fig. 3B-C. Gray shading 

indicates rows used for plotting. Sheet two has the list of genes from the metabolic 

evolution used for GO enrichment and sheet three has the list of genes from the classic 

evolution used for GO enrichment. 

Additional Data Table S9 (separate file) 

Comprehensive list of all NCBI pathogens used in the comparative analysis. 

Additional Data Table S10 (separate file) 

Comparative analysis for top genes with >= 1 hit in NCBI pathogen list. Table includes 

gene name, mutation, number in clinical isolates, number in total isolates, P-value, and 

corrected P-value. Yellow rows highlight those used for subsequent validation 

experiments.  
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Additional Data Table S11 (separate file) 

Metabolic and canonical gene co-occurrence likelihood. Number of strains that had a 

mutation in canonical-canonical, metabolic-metabolic, or one of each, was tabulated. 

Fisher’s exact test was used to calculate likelihood of co-occurring mutations. 

Additional Data Table S12 (separate file) 

Raw gene count output from FeatureCounts for each of the 12 samples. 

Additional Data Table S13 (separate file) 

Differential gene expression for pair-wise sample comparison. Log-2 transformed and 

TMM-normalized CPM for WT and sucAM cells with and without treatment. Differential 

expression was determined between treated and untreated conditions for each strain-type.  

Additional Data Table S14 (separate file) 

GO enrichment for treated WT compared to sucAM. Sheet one contains the corresponding 

list of genes in the order they were clustered (Fig. 4C). Sheet two contains GO pathway 

enrichment for all differentially expressed genes between carb-treated WT and sucAM.  

Additional Data Table S15 (separate file) 

Gene tabulation across conditions. Sheet contains representative metabolic and canonical 

mutations along with the conditions in which they occurred; closely related genes are 

included (e.g., sucA and satP). Sheet two contains the number of unique genes identified 

from each condition, along with the overlap between conditions. UN is untreated control. 
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