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1. DETAILED SI-SFDI ALGORITHM

Here we describe the detailed algorithm of Speckle Illumination Spatial Frequency Domain
Imaging (si-SFDI) to calculate optical properties from laser speckle images. For each speckle
pattern Ii, we first apply a median filter with a kernel size of 3 pixels to reduce shot noise. The
DC parameter is then estimated as:

MDC =
∑N

i=1 Ii
N

, (S1)

which is smoothed using another median filter to generate an MDC map. In our case, we chose a
kernel size of 7 pixels, which was the average distance between speckle grains. The estimated
MDC is subtracted from each Ii to isolate tissue response to spatially varying speckle patterns.
We subsequently iterate through each image with a step size of 11 pixels to extract 73× 73-pixel
sliding windows (wi(x, y)). This window size corresponds to a frequency resolution of 0.2 mm−1.
The lowest non-zero spatial frequency resolvable by the sliding window is inversely related to
the window size. To achieve a finer spatial frequency resolution, a larger window would be
needed, but this would come at the expense of a lower spatial resolution of the reconstructed
optical property maps. The step size of the sliding window depends on the desired resolution and
computational resources. For samples with high levels of heterogeneity, a smaller step size may
be preferred for higher resolution, at the cost of a longer computational time. The autocorrelation
function (ACF) of each window is calculated using the Wiener-Khinchin theorem:

awi (x, y) = F−1[W∗i (kx, ky) ·Wi(kx, ky)], (S2)

where Wi(kx, ky) and W∗i (kx, ky) stand for the Fourier transform of the extracted window and its
complex conjugate, respectively. For each window, we compute the mean of the ACFs across N
speckle patterns:

aw(x, y) =
∑N

i=1 awi (x, y)
N

, (S3)

and radially average aw(x, y) to produce an ACF curve (aw(r)). The power spectral density (PSD)
is then computed as its Fourier transform:

SW(kr) = F [aw(r)]. (S4)

We define the high spatial frequency response parameter as:

MAC =
∫ 0.5

0.1

√
SW(kr)dkr, (S5)



which is the sum of the frequency response corresponding to the first two non-zero points of the
PSD (0.1mm−1 ≤ kr ≤ 0.5mm−1).

After repeating the same steps for a reference phantom with known optical properties, the AC
and DC diffuse reflectance (Rd) of the new sample can be calculated as:

Rd =
M

Mre f
· Rd,re f ,pred. (S6)

In this calibration, Rd,re f ,pred denotes the diffuse reflectance of the reference phantom predicted by
Monte-Carlo simulations [1]. Finally, the optical properties can be found using a pixel-wise lookup
table search that correlates (µa, µ′s) with (Rd,DC, Rd,AC). The LUT is generated by performing
Monte-Carlo simulations of Rd,AC at 0.1mm−1 increments and summing them together to match
the range of frequencies sampled by the first two non-zero points of the measured PSD centered
at 0.2mm−1 to 0.4mm−1, which represent the response from 0.1mm−1 to 0.5mm−1. The frequency
resolution and the lowest non-DC spatial frequency are affected by the window size. For the
window size used in this proof-of-concept study, the PSD frequency resolution is 0.2mm−1.
We assume that each point in the PSD curve represents the integrated response over a band
of frequencies. For example, the first non-zero point of the PSD is centered at 0.2mm−1 and
represents the integrated response of the frequencies between 0.1mm−1 and 0.3mm−1. We took
this into account when constructing the LUT with Monte-Carlo simulations by conducting these
simulations at smaller spatial frequency increments than our PSD resolution. For example, to
find the response at 0.2mm−1, we simulated the reflectance at 0.1mm−1, 0.2mm−1, and 0.3mm−1

and used the average of these responses. The same process is performed for the calibration
phantom. The data flow is also summarized in Algorithm S1. For comparison, the conventional
SFDI processing flow is shown in Algorithm S2.

Algorithm S1. si-SFDI algorithm

1: procedure SI-SFDI(x, y, r, ss, N, Ii)
2: average N patterns (Ii) and smooth to obtain MDC
3: subtract MDC from each Ii
4: while (x− d, y− d) > (0, 0) and (x + d, y + d) ≤ size(Ii) do . d is window radius
5: for n = 1 : N do
6: extract window (wi(x, y)) with width = 2d
7: calculate autocorrelation awi (x, y)
8: aw(x, y)← 1

N ·∑
N
i=1 awi (x, y)

9: radially average aw(x, y) to obtain aw(r)
10: SW(kr)← F [aw(r)] . SW(kr) is power spectral density
11: MAC(x− ss

2 : x + ss
2 , y− ss

2 : y + ss
2 )←

∫ 0.5
0.1

√
SW(kr)dkr . ss is step size

12: x ← x + ss
13: y← y + ss
14: repeat above steps for reference phantom
15: calibrate to obtain Rd,DC and Rd,AC
16: fit (µa, µ′s) using an LUT
17: return µa and µ′s

2. PHANTOM RESULTS

The mismatch in illumination wavelengths (526nm for SFDI and 520nm for si-SFDI) was first
corrected using the predicted optical properties of India ink and titanium dioxide. The expected
absorption was calculated as µa,si−SFDI = µa,SFDI,meas

ε(520nm)
ε(526nm)

= 1.013µa,SFDI,meas, where ε is the
extinction coefficient of India ink at the corresponding wavelengths [2]. A Rayleigh scattering
relationship (µ′s ∝ λ−4) was assumed for µ′s as the diameter of titanium dioxide nanoparticles
was much smaller than the wavelengths used in this study. Thus, the expected scattering

coefficient was defined as µ′s,si−SFDI = µ′s,SFDI,meas
(520nm)−4

(526nm)−4 = 1.047µ′s,SFDI,meas. The results of
si-SFDI applied on tissue-mimicking phantoms using one and four speckle images are shown
in 2-D scatter plots in Figure S1. Compared to one speckle pattern (Figure S1(a)), si-SFDI with
four patterns (Figure S1(b)) shows improved accuracy with lower variances. This is expected
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Algorithm S2. Conventional SFDI algorithm

1: procedure SI-SFDI(I0(xi, fx), I 2
3 π(xi, fx), I 4

3 π(xi, fx))
2: M(xi, fx)←√

2
3

√
[I0(xi, fx)− I 2

3 π(xi, fx)]2 + [I 2
3 π(xi, fx)− I 4

3 π(xi, fx)]2 + [I 4
3 π(xi, fx)− I0(xi, fx)]2

. xi is pixel location; fx is spatial frequency; I0, I 2
3 π , and I 4

3 π are images at three phases
3: MDC(xi)← M(xi, 0)
4: MAC(xi)← M(xi, 0.2mm−1)
5: repeat above steps for reference phantom
6: calibrate to obtain Rd,DC and Rd,AC
7: fit (µa, µ′s) using an LUT
8: return µa and µ′s

since individual speckle patterns are often noisy and averaging multiple patterns improves the
confidence in ACF estimations.

(a) (b)

’ ’

Fig. S1. Scatter plots of phantom optical properties measured by si-SFDI. (a) Results using one
speckle pattern. (b) Results using four speckle patterns. SFDI ground truth is shown in both
plots. Markers indicate mean values and error bars indicate variance over a central 150×150
pixel region of interest.

Representative PSD plots are also shown in Fig. S2 for five homogeneous phantoms with differ-
ent optical property pairs. Expected results simulated by Monte-Carlo models are also shown in
dashed lines. Our measurements demonstrate strong agreement with simulations, especially for
spatial frequencies up to 0.4mm−1. As expected, the shape of the curves is determined by both µa
and µ′s. We observe that the measured PSDs tend to underestimate expected curves. This could
be caused by the image filtering described in the si-SFDI processing pipeline, which improves the
accuracy of the results but leads to errors at high spatial frequencies.

3. EFFECT OF SURFACE TOPOGRAPHY

To explore the effect of surface topography on the accuracy of si-SFDI, we compare the absolute
percentage difference (Fig. S3(a) for µa and (b) for µ′s) with surface normal angles (Fig. S3(c)) of
the pig esophagus sample. Qualitatively, regions with larger angles are associated with higher
error rates. This is expected since the ground truth is profile-corrected SFDI while si-SFDI does
not account for surface topography. We additionally plotted the normalized mean absolute
error (NMAE) with respect to surface normal angles (Fig. S3(e)). The mean error of si-SFDI
is below 20% for relatively flat regions (<10 degrees) and increases with larger tissue angles.
Moreover, absorption coefficients appear to be more affected by surface normal angles than
reduced scattering, which corresponds to findings in previously published studies [3, 4] and may
additionally be due to the window-based approach for calculating MAC. Moreover, theoretically,
because of the broader bandwidth of spatial frequencies contained in the illumination pattern,
si-SFDI is expected to sample optical properties from a larger axial range than SFDI. Although
this was not assessed here, it may warrant further investigation in future studies.
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Fig. S2. (a) Representative power spectral density plots for 5 homogeneous phantoms with
varying absorption and reduced scattering coefficients. Measured results are plotted in solid
lines and simulated data in dashed lines. (b) Top: Simulated PSD plots with fixed µa and vary-
ing µ′s; bottom: simulated PSD plots with fixed µ′s and varying µa.

4. EFFECT OF BLOOD FLOW ON SI-SFDI OPTICAL PROPERTY ESTIMATION

To evaluate the effect of blood flow on si-SFDI measurements, we performed an in vivo occlusion
study where a pressure cuff was applied to an arm for 3 minutes at approximately 200mmHg.
Both si-SFDI and SFDI data were acquired before and near the end of occlusion (Fig. S4). This
study protocol was approved by Johns Hopkins Institutional Review Board.

To measure the level of blood flow, local speckle contrast (K) is computed within 5× 5-pixel
sliding windows as the ratio between the standard deviation and mean intensity. As expected, a
higher K is observed during occlusion due to reduced blood flow (Fig. S4(g)-(i)). The reduced
scattering coefficients at baseline (resting) and occlusion measured by SFDI and si-SFDI (N = 1)
are shown in Fig. S4(a)-(b) and (d)-(e), respectively. The relative change in µ′s is shown in (c) and
(f). We hypothesize that, while µa changes with the level of oxygenation, µ′s is not affected by
occlusion, and thus only µ′s results are analyzed here. Despite a global increase in speckle contrast
during occlusion (approximately 30%), there is not an overall change in µ′s measured by either
SFDI or si-SFDI (less than 1%). Therefore, we conclude that si-SFDI measurements are relatively
insensitive to blood flow. This is due to optical properties being a function of the low-spatial
frequencies, whereas flowing particles blur the high-spatial frequencies of the illumination. The
si-SFDI algorithm described here analyzes the tissue response to spatial frequencies less than
0.5mm−1. To illustrate this effect, we plot the PSD over a range of spatial frequencies for an ROI
with high K contrast changes due to occlusion (Fig. S4(j)). We observe little difference in the PSD
between resting and occlusion at the low spatial frequencies used for optical property calculations.
The effect of flow becomes more pronounced at spatial frequencies greater than 1mm−1, with
increased attenuation of the PSD at high spatial frequencies due to resting blood flow. This
result highlights the potential to image optical properties and flow contrast simultaneously by
analyzing different spatial frequency ranges of the computed PSD.

5. DRIFT

We tested the drift of the si-SFDI system by measuring the same phantom every 10 min for 100
min. The standard deviation of the absolute variation in µa and µ′s were 5.54% and 3.15%, which
is similar to other SFDI drift results [5] and demonstrates stability of the system over time. An
improved laser source with more stable output would further reduce system drift.

6. STEP FUNCTION

To evaluate the resolution of si-SFDI, we record its response to a step function phantom and
compare it with conventional SFDI (Fig. S5). The phantom was constructed by cutting two
phantoms with different optical properties and press-fitting them together. The resolution is
defined to be the distance where the contrast is reduced by 90%. For µa, the resolution is 4.1mm
for conventional SFDI and 6.3mm for N = 1 si-SFDI. For µ′s, the resolution is 2.9mm and 7.3mm
for conventional SFDI and N = 1 si-SFDI, respectively. µ′s resolution of si-SFDI is worse than µa
due to windowing and a stride size larger than 1 pixel.
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Fig. S3. Absolute percentage difference between si-SFDI and SFDI applied to the full pig
esophagus specimen. (a) Absorption error map. (b) Reduced scattering map. (c) Raw image of
the sample. (d) Surface normal angles. Background is masked out in (a), (b), and (d). (e) Nor-
malized mean absolute error (NMAE) of si-SFDI as a function of surface normal angles. si-SFDI
optical properties are calculated from four input speckle patterns. Top plot in (e) shows the full
range, and the region highlighted by the dashed box (between 0 and 10 degrees) is magnified
in the bottom plot.

7. FUTURE DIRECTIONS

Potential future directions are discussed here in addition to the main manuscript. For example,
a source of discrepancy between SFDI and si-SFDI results is the difference between sampling
depth. Theoretically, because of the broader bandwidth of spatial frequencies contained in the
illumination pattern, si-SFDI is expected to sample optical properties from a larger axial range than
SFDI. Although this was not assessed in this study, it may warrant further investigation in future
studies. Moreover, real-time acquisition is imperative for incorporating si-SFDI into future clinical
endoscopic applications. For the same illumination power, the exposure time to acquire a single
si-SFDI image is similar to conventional SFDI. The total acquisition speed for an optical property
estimate depends on the number of speckle patterns used. In the setup used for this study, a
4-image si-SFDI sequence took approximately 2 seconds to acquire. However, for constant power,
this speed could be dramatically increased if the object is placed at endoscopic-distances from
the camera (typically 2-5cm instead of the 25-30cm tested in our setup). Additional research is
needed to study the utility of diffuse and sub-diffuse optical signatures in endoscopic applications.
We believe that si-SFDI can be applied to endoscopic measurements of tissue oxygenation by
estimating the absorption coefficients at different wavelengths. Scattering coefficients could also
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Fig. S4. Occlusion study. (a)-(c): Resting and occlusion µ′s maps measured by SFDI and the
percentage difference; (d)-(f): Resting and occlusion µ′s maps measured by N = 1 si-SFDI
and the percentage difference; (g)-(i): Resting and occlusion speckle contrast maps (K) and the
relative change. K is computed as the local standard deviation over mean of a 5× 5 pixel sliding
window; (j): PSD plots for an ROI during resting and occlusion. The ROI is highlighted by the
black box in (c), (f), and (i).
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Fig. S5. Response to a step function phantom. Figures in the left column are absorption and fig-
ures in the right column are reduced scattering coefficients. From top to bottom: conventional
SFDI, si-SFDI with 1 speckle pattern, si-SFDI with 4 speckle patterns, and average line profiles.
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be used to distinguish between tissue types, such as benign and malignant tissues [6].
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