

Supplementary Material

Supplementary figures

Figure S1. Dot plot analysis between genomes of European turnip and Chinese cabbage. In the dot plot, the *x*- and *y*-axes indicate positions in the contigs of European turnip and the corresponding aligned genomic regions of Chinese cabbage, respectively.

Figure S2. Functional protein domains enriched in the European turnip-specific orthologous gene cluster. Functional protein domains of genes belonging to the European turnip-specific orthologous gene cluster were searched using InterProscan. Enrichment of Pfam domains was analysed by using DAVID with a cutoff EASE score <1E-03.

Figure S3. Functional protein domains enriched in expanded gene families within the genome of European turnip. Functional protein domains were identified by a Pfam search, and domain enrichments were analysed by the Z-test (p-value <0.001). The heatmap shows the relative abundance (Z-score) of functional domains across six plant genomes: European turnip (*B. rapa* ssp. *rafifera*), Chinese cabbage (*B. rapa* ssp. *pekinensis*), *B. oleracea*, *B. nigra*, *Raphanus sativus*, and *Arabidopsis thaliana*.

Figure S4. Functional enrichment for genes showing tissue-specific expression. RNA-Seq data derived from inner leaf, outer leaf, main root, and lateral root tissues were analysed by using DESeq2 with a cutoff of q<0.05, absolute≥2-fold change, and at least one tissue≥10 FPKMs. Functional annotation for genes showing tissue-specific expression was performed by using DAVID with a cutoff EASE score <1*E*-04.

Figure S5. Prediction of membrane-associated resistance genes in the genome of European turnip. RGAs, such as RLKs and receptor-like proteins (RLPs), were predicted using an RGAugury pipeline. A total of 1,135 genes—119 RLPs, 742 RLKs, and 274 TM-CCs—were identified.

Figure S6. Comparison between genomic regions linked to *BraA.CR.a* and *BraA.CR.b* loci in European turnip and their counterparts in Chinese cabbage.

Figure S7. Identification of genome rearrangements between European turnip (ET) and other *B. rapa* subspecies including Chinese cabbage (CC) (v3), pak choi (PC) (Li et al., 2020), and yellow sarson (YS) (Belser et al., 2018). Comparisons: (A) CC vs. ET (presented in Fig. 1B), (B) CC vs. PC, (C) CC vs. YS, (D) PC vs. ET, and (E) YS vs. ET.

Figure S8. Validation of genome rearrangements between European turnip and Chinese cabbage. (A) The strategy for detecting genome rearrangements based on Illumina paired-end read mapping. For example, paired-end reads of European turnip, which were properly mapped to a 600-kb region in its contig00007136, were mapped to 18.243-Mb region for one side and 19.583-Mb regions for other side in A10 of Chinese cabbage, respectively, showing the collapse of paired-end read mapping in the genome of Chinese cabbage. (B and C) The visualization of read mapping in a hotspot using IGV (https://software.broadinstitute.org/ software/igv/).

Figure S9. Orthologous gene clusters among *B. rapa* **subspecies sequenced (A) and functional annotation for species-specific genes in three subspecies (B).** (A) Orthologous gene clusters among Chinese cabbage (v3), European turnip, and yellow sarson (Belser et al., 2018) were analyzed by using OrthoMCL. (B) Functional protein domains of genes belonging to subspecies-specific orthologous gene cluster were searched using InterProscan. Enrichment of InterPro domains was analyzed by using DAVID with the cutoff of EASE score < 1*E*-02.

Figure S10. Procedure of genome assembly for European turnip. In procedure, the yield of generated and filtrated data is summarized for each of steps.

Supplementary tables

Table S1. Summary for whole-genome sequencing data of European turnip

Table S2. Anchoring contigs of European turnip to the genome of Chinese cabbage

Table S3. Assessment of the genome assembly of European turnip using BenchmarkingUniversal Single-Copy Orthologues (BUSCOs)

 Table S4. Identification of genome rearrangements between European turnip and

 Chinese cabbage

Table S5. Abundance of transposable elements (TEs) identified in the genome of European turnip

Table S6. Summary of RNA-Seq of different tissues of European turnip

Table S7. Identification of plant *R* genes in the genome of European turnip

 Table S8. Mapping of microsatellite markers linked to clubroot resistance loci to the draft

 assembly of European turnip

Table S9. List of R genes within conserved blocks that are linked to clubroot resistance loci.

 Table S10. BUSCO scores with multiple rounds of error correction in Pilon.

Figure S1. Dot plot analysis between genomes of European turnip and Chinese cabbage. In dot plot, *x*- and *y*-axes indicate positions in contig of European turnip and the corresponding aligned genomic regions of Chinese cabbage, respectively.

Figure S2. Functional protein domains enriched in European turnip-specific orthologous gene cluster. Functional protein domains of genes belonging to European turnip-specific orthologous gene cluster were searched using InterProscan. Enrichment of Pfam domains was analyzed by using DAVID with the cutoff of EASE score < 1E-03.

Figure S3. Functional protein domains enriched in expanded gene families within the genome of European turnip. Functional protein domains were identified by Pfam search and domain enrichments were analyzed by the Z-test (p-value < 0.001). The heatmap shows the relative abundance (Z-score) of functional domains across six plant genomes, including European turnip (*B. rapa* ssp. *rafifera*), Chinese cabbage (*B. rapa* ssp. *pekinensis*), *B. oleracea*, *B. nigra*, *Raphanus sativus*, and *Arabidopsis thaliana*.

Figure S4. Functional enrichment for genes showing tissue-specific expressions. RNA-Seq data derived from inner leaf, outer leaf, main root, and later root tissues were analyzed by using DESeq2 with the cutoff of q < 0.05, absolute ≥ 2 -fold change, and at least one tissue ≥ 10 FPKMs. Functional annotation for genes showing tissue-specific expressions was performed by using DAVID with the cutoff of EASE score < 1E-04.

Figure S5. Prediction of membrane-associated resistance genes in the genome of European turnip. The resistance gene analogs (RGAs), such as receptor-like protein kinases (RLKs) and receptor-like proteins (RLPs), were predicted using a RGAugury pipeline. A total of 1,135 genes, including 119 receptor-like proteins (RLPs), 742 receptor-like kinases (RLKs), and 274 TM-CCs, were identified.

Figure S6. Comparison between genomic regions linked to *BraA.CR.a* and *BraA.CR.b* loci in European turnip and the counterparts in Chinese cabbage.

Figure S7. Identification of genome rearrangements between European turnip (ET) and other *B. rapa* subspecies including Chinese cabbage (CC) (v3), pak choi (PC) (Li et al., 2020), and yellow sarson (YS) (Belser et al., 2018). Comparisons: (A) CC vs. ET (presented in Fig. 1B), (B) CC vs. PC, (C) CC vs. YS, (D) PC vs. ET, and (E) YS vs. ET.

Figure S8. Validation of genome rearrangements between European turnip and Chinese cabbage. (A) The strategy for detecting genome rearrangements based on Illumina paired-end read mapping. For example, paired-end reads of European turnip, which were properly mapped to a 600-kb region in its contig00007136, were mapped to 18.243-Mb region for one side and 19.583-Mb regions for other side in A10 of Chinese cabbage, respectively, showing the collapse of paired-end read mapping in the genome of Chinese cabbage. (B and C) The visualization of read mapping in a hotspot using IGV (https://software.broadinstitute.org/ software/igv/).

Figure S9. Orthologous gene clusters among *B. rapa* subspecies sequenced (A) and functional annotation for species-specific genes in three subspecies (B). (A) Orthologous gene clusters among Chinese cabbage (v3), European turnip, and yellow sarson (Belser et al., 2018) were analyzed by using OrthoMCL. (B) Functional protein domains of genes belonging to subspecies-specific orthologous gene cluster were searched using InterProscan. Enrichment of InterPro domains was analyzed by using DAVID with the cutoff of EASE score < 1E-02.

Figure S10. Procedure of genome assembly for European turnip. In procedure, the yield of generated and filtrated data is summarized for each of steps.

Sequencing (Platform)	Read length	No. of reads	Total bases (Gb)
	(bp)		(Sequencing depth, x)
Long read sequencing	10,578	6,677,347	70.63
(PacBio)			(136.4x)
Short-insert paired-end	100	477,856,020	72.16
sequencing			(139.3x)
(Illumina)			

Table S1. Summary for whole-genome sequencing data of European turnip.

Chromosome	Total le	ength of conserved block	s (Mb)
of Chinese cabbage	in Chinese cabbage	in European turnip	Coverage (%) in Chinese cabbage
A01	29.60	24.12	81.50%
A02	31.44	27.30	86.84%
A03	38.15	36.20	94.87%
A04	21.93	20.73	94.53%
A05	28.49	21.95	77.02%
A06	29.17	23.35	80.07%
A07	28.93	26.31	90.94%
A08	22.98	20.93	91.07%
A09	45.16	41.24	91.32%
A10	20.73	18.35	88.55%
Total	296.58	260.48	87.83%

Table S2. Anchoring contigs of European turnip to the genome of Chinese cabbage.

Туре	European turnip	Chinese cabbage
Complete BUSCOs	423 (99.6%)	423 (99.6%)
Complete and single-copy BUSCOs	350 (82.4%)	359 (84.5%)
Complete and duplicated BUSCOs	73 (17.2%)	64 (15.1%)
Fragmented BUSCOs	1 (0.2%)	1 (0.2%)
Missing BUSCOs	1 (0.2%)	1 (0.2%)

Table S3. Assessment of the genome assembly of European turnip using BenchmarkingUniversal Single-Copy Orthologs (BUSCO).

	Chi	inese cabbaş	ge (CC)	Europea	n turnip (ET	No. of	No. of genes in block			
No. of hotspot	A	ligned regio	n (kb)	Alignee	l region (kb))	conserved	rto. or genes in bloc		
notspot	Chr.	Start	End	#Contig	Start	End	fragment	CC	ET	
1	A02	12,643.5	13,041.7		17.7	434.3	12	73	65	
1	A07	19,223.8	19,473.9	config00000190	481.8	719.9	8	53	59	
2	A01	6,541.1	6,800.9		1,385.8	1,659.0	8	43	51	
Z	A02	2,493.5	3,814.5	config00000704	17.9	1,363.2	51	288	257	
2	A03	6,833.3	7,011.5		21,756.4	21,912.6	7	39	36	
3	A03	10,470.3	32,568.3	contig00007081	14.9	21,730.4	738	3,937	4,083	
4	A03	5,575.4	9,883.2		7.6	2,433.7	69	786	471	
4	A04	9,474.5	17,996.1	contig00007082	2,472.3	10,942.3	305	1,302	1,376	
5	A10	18,057.7	18,217.2	aantia00007126	629.5	774.9	7	40	40	
5	A10	18,966.7	19,568.7	contig00007136	11.5	579.4	21	149	147	
6	A06	9,650.1	9,822.0	aanti 200007025	81.3	290.0	9	22	32	
0	A08	20,065.6	20,322.4	config00007955	315.3	582.6	11	66	63	
7	A08	15,275.0	15,916.9		17.0	584.1	20	110	113	
1	A08	19,265.7	19,459.0	configu0008006	603.5	770.7	8	39	37	
0	A07	21,403.1	21,916.8		15.5	586.9	20	91	117	
ð	A09	12,363.9	17,725.1	conug00133/48	637.0	5,822.9	153	695	653	

Table S4. Identification of genome rearrangements between European turnip and Chinese cabbage.

TE	Searched length (Mb)	%
Class I elements	74,403,737	(66.07)
LTR (subtotal)	55,743,062	(49.50)
Ty3/Gypsy	33,187,081	29.47
Ty1/Copia	21,075,761	18.71
Cassandra	534,532	0.47
Caulimovirus	110,190	0.10
ERVK	104,868	0.09
Pao	25,523	0.02
Others/Unknown	705,107	0.63
Non-LTR (subtotal)	18,660,675	(16.57)
LINE	16,252,136	14.43
SINE	2,408,539	2.14
Class II elements	38,210,745	(33.93)
DNA (subtotal)	38,210,745	(33.93)
hAT family	13,158,681	11.68
(with Ac/Charlie/Tag1/Tip100)		
MULE-MuDR	6,365,507	5.65
CMC-EnSpm	5,138,318	4.56
PIF-Harbinger	4,752,496	4.22
Helitron	4,547,650	4.04
TcMar family	2,748,934	2.44
(with ariner/Pogo/Stowaway/Tc1)		
Others/Unknown	1,499,159	1.33

Table S5. Abundance of transposable elements (TEs) identified in the genome of European turnip.

Samples	Raw reads	Clean reads (%)	Mapped reads (%)	Uniquely mapped reads (%)	Spliced reads (%)
ECD4	53,575,142	52,580,078	47,327,902	45,613,520	18,465,410
inner leaf_1		(98.14)	(88.34)	(85.14)	(34.47)
ECD4	60,300,348	59,523,582	54,193,196	52,210,572	20,646,224
inner leaf_2		(98.71)	(89.87)	(86.58)	(34.24)
ECD4	54,416,502	52,970,948	46,230,010	44,583,200	16,679,664
outer leaf_1		(97.34)	(84.96)	(81.93)	(30.65)
ECD4	63,194,702	61,958,158	55,507,212	53,553,276	19,928,777
outer leaf_2		(98.04)	(87.84)	(84.74)	(31.54)
ECD4	57,775,686	55,980,324	48,593,302	46,930,456	17,995,378
outer leaf_3		(96.89)	(84.11)	(81.23)	(31.15)
ECD4	55,676,998	53,707,262	45,907,882	44,208,654	15,232,827
main root_1		(96.46)	(82.45)	(79.40)	(27.36)
ECD4	56,979,834	55,943,520	49,945,806	48,163,920	16,709,783
main root_2		(98.18)	(87.66)	(84.53)	(29.33)
ECD4	58,162,354	56,707,134	49,476,864	47,692,428	16,172,743
main root_3		(97.50)	(85.07)	(82.00)	(27.81)
ECD4	60,672,526	58,771,946	49,381,450	47,685,294	15,795,713
lateral root_1		(96.87)	(81.39)	(78.59)	(26.03)
ECD4	74,434,806	72,847,398	63,282,286	61,160,122	19,825,123
lateral root_3		(97.87)	(85.02)	(82.17)	(26.63)

Table S6. Summary of RNA-Seq of different tissues of European turnip.

Domains	ET	CC	YS	Во	Bi	Rs	At
NBS-encoding R genes							
CNL	23	28	26	9	40	24	39
CN	8	3	8	3	8	11	1
TNL	67	78	74	45	112	54	74
TN	14	22	21	22	29	15	15
NL	51	53	29	33	58	69	21
NBS	15	8	13	31	24	16	5
TX	57	55	42	89	77	44	34
Others	17	17	11	8	24	21	15
Membrane-associated R gen	es						
RLP	119	109	120	75	177	160	71
RLK	742	629	731	559	777	755	519
TM-CC	274	238	223	207	251	221	141

Table S7. Identification of plant resistance R genes in the genome of European turnip.

ET, European Turnip; CC, Chinese cabbage; YS, Yellow sarson, Bo, *B. oleracea*; Bi, *B. nigra*; Rs, *R. sativus*; At, *A. thaliana*

Microsatellite		Alignmen	t of primer se	equence to th	e assembly o	f ECD4	Alignment of primer sequence to the genome of Chinese cabbage				
marker	Linked marker	#ECD4	Forward	Forward primer		e primer	Chinese	Forward primer		Reverse primer	
primer		contig	Start (bp)	End (bp)	Start (bp)	End (bp)	chromosome	Start (bp)	End (bp)	Start (bp)	End (bp)
SASS45c		tig00007081	7,389,147	7,389,167	7,389,455	7,389,475	A03	25,405,695	25,405,715	25,405,391	25,405,411
SASS45b	BraA CR a	tig00007081	7,389,208	7,389,228	7,389,432	7,389,451	A03	25,405,634	25,405,654	25,405,415	25,405,434
SASS79b	DruA.CK.u	tig00007081	7,553,845	7,553,864	7,554,063	7,554,082	A03	25,203,690	25,203,709	25,203,402	25,203,421
S33R33		tig00007150	2,598,625	2,598,642	2,598,359	2,598,377	A08	10,467,070	10,467,087	10,466,804	10,466,822
S30R30	distant to	tig00007150	2,983,800	2,983,814	2,983,529	2,983,547	A08	10,800,075	10,800,093	10,799,804	10,799,822
S23R23	BraA.CR.b	tig00007150	3,534,116	3,534,135	3,533,823	3,533,841	A08	11,348,314	11,348,333	11,348,027	11,348,045
S17R17		tig00007150	3,816,659	3,816,678	3,816,375	3,816,393	A08	11,625,330	11,625,349	11,625,042	11,625,060
S14R14		tig00007150	4,125,571	4,125,589	4,125,281	4,125,299	A08	11,962,215	11,962,233	11,961,933	11,961,951
S11R11	· •	tig00007150	4,359,930	4,359,946	4,359,625	4,359,643	A08	12,241,864	12,241,883	12,241,559	12,241,577
S08R08	Proximal to	tig00007150	4,544,186	4,544,205	4,543,910	4,543,928	A08	12,395,582	12,395,601	12,395,306	12,395,324
S07R07	DIUA.CK.U	tig00007150	4,555,737	4,555,755	4,555,460	4,555,478	A08	12,407,122	12,407,140	12,406,841	12,406,859
S06R06		tig00007150	4,590,418	4,590,436	4,590,143	4,590,161	A08	12,433,875	12,433,893	12,433,600	12,433,618

Table S8. Mapping of microsatellite markers linked to clubroot resistance loci to the draft assembly of European turnip.

¹ Microsatellite markers reported by Hirani et al. (2018).

² (Con)tig00007081 and tig00007150 contain genomic regions spanning clubroot resistance loci *BraA.CR.a* and *BraA.CR.b*, respectively. Supplementary Figure 6 shows the comparison between tig00007081 and its counterpart in A03 (25.2 Mb ~ 25.4 Mb) and between tig00007150 and its counterpart in A08 (10.4 Mb ~ 11.6 Mb and 11.9 Mb ~ 12.4 Mb) of Chinese cabbage.

³ Hirani, A. H., Gao, F., Liu, J., Fu, G., Wu, C., McVetty, P., Duncan, R. W., and Li, G. (2018). Combinations of Independent Dominant Loci Conferring Clubroot Resistance in All Four Turnip Accessions (*Brassica rapa*) From the European Clubroot Differential Set. *Frontiers in plant science*, 9, 1628. https://doi.org/10.3389/fpls.2018.01628.

Table S9. List of *R* genes within conserved blocks that are linked to clubroot resistance loci.

	Plant resistance <i>R</i> genes											
Linked to	Chinese cabbage					Collinearity of genes	ECD4					
marker	Conomia		Positio	on (bp)		between Chinese	ECD4		Positio	on (bp)		
	regions (bp)	Gene ID	Start	End	Domain	cabbage and ECD4	Assembly (counterpart)	Gene ID	Start	End	Domain	Note
Proximal to BraA.CR.a	A03: 25,203,402 - 25,405,715	BraA03g049600.3C	25,213,983	25,217,814	RLK	Yes: BraA03g049600.3C - GENE22552.1	tig00007081	GENE22552.1	7,488,865	7,491,493	RLK	
						No		GENE35902.1	3,430,277	3,433,000	RLP	
	BraA08g012910.3C 11,232,393 11,235,117 1	RLP	Yes: BraA08g012910.3C - GENE35904.1		GENE35904.1	3,445,195	3,447,572	RLP				
Distant to BraA.CR.b A08: 10,466,804 - 11,625,349	A08: 10,466,804 -	BraA08g012940.3C	11,267,185	11,268,651	RLK	Yes: BraA08g012940.3C - GENE35906.1	tig00007150	GENE35906.1	3,456,500	3,457,966	RLK	
	11,625,349	BraA08g012990.3C	11,291,257	11,292,552	RLP	Yes: BraA08g012990.3C - GENE35908.1		GENE35908.1	3,473,295	3,475,298	RLP	
						No		GENE35916.1	3,524,122	3,524,888	TM-CC	
						No		GENE35952.1	3,730,220	3,739,922	TNL	Rcr6 homolog ¹
						No		GENE35955.1	3,752,622	3,757,359	TNL	Rcr6 homolog
		BraA08g014350.3C	12,162,113	12,169,372	RLK	Yes: BraA08g014350.3C - GENE36062.1		GENE36062.1	4,290,699	4,296,694	RLK	
	4.08.					No		GENE36077.1	4,366,191	4,367,740	TM-CC	
Proximal to BraA.CR.b	11,961,933 - 12,433,893	BraA08g014480.3C	12,271,553	12,276,276	TNL	Yes: BraA08g014480.3C - GENE36082.1	tig00007150	GENE36082.1	4,399,833	4,403,361	NL	Rcr6 homolog
		BraA08g014530.3C	12,326,397	12,329,524	RLK	Yes: BraA08g014530.3C - GENE36087.1		GENE36087.1	4,433,805	4,436,979	RLK	

¹ Homology to *Rcr6* ^{*}: GENE35952.1 (BLASTP *E*-value: 4*E*-63), GENE35955.1 (3*E*-24), GENE36082.1 (0.0)

* Rcr6: Chang, A., Lamara, M., Wei, Y. et al. (2019). Clubroot resistance gene Rcr6 in Brassica nigra resides in a genomic region homologous to chromosome A08 in B. rapa. BMC Plant Biol. 19, 224. doi:10.1186/s12870-019-1844-5

Туре	1 st round	2 nd round	3 rd round	4 th round
Complete BUSCOs	423 (99.6%)	421 (99.0%)	421 (99.0%)	421 (99.0%)
Complete and single-copy BUSCOs	350 (82.4%)	344 (80.9%)	344 (80.9%)	344 (80.9%)
Complete and duplicated BUSCOs	73 (17.2%)	77 (18.1%)	77 (18.1%)	77 (18.1%)
Fragmented BUSCOs	1 (0.2%)	2 (0.5%)	2 (0.5%)	2 (0.5%)
Missing BUSCOs	1 (0.2%)	2 (0.5%)	2 (0.5%)	2 (0.5%)

Table S10. BUSCO scores with multiple rounds of error correction in Pilon.