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Experimental Details 
 
Heterologous Expression of NaChBac  
The same expression system as detailed previously (1) was used. Point mutations were 
introduced into the WT NaChBac cDNA in a modified pLenti6-CMV2 expression vector using 
the QuikChange site-directed mutagenesis method (Agilent). cDNA was amplified in New 
England Biolabs (Ipswich, MA) stable competent E. coli (NEB C3040). HEK-293 cells transiently 
transfected using polyethylenimine (Polysciences, Warrington, PA) transfection protocol were 
cultured in Dulbecco's modified Eagle's medium/F-12 (Invitrogen, Carlsbad, CA) with 5% (v/v) 
fetal bovine serum (BioSource International, Camarillo, CA) and 5%/95% CO2/O2 (v/v) at 37°C 
for 24-48 hours before electrophysiology recording. 
 
Electrophysiology 
Whole-cell patch clamping experiments were performed using an IonFlux Mercury HT 
automated electrophysiology instrument (Fluxion Biosciences, Alameda, CA), which allows 
groups of up to 64 independent measurements to be collected simultaneously, with each 
individual measurement consisting of averaged responses from 20 parallel cells. The 
extracellular solution (ECS) contained (in mM): 140 NaCl, 4 KCl, 1.5 CaCl2, 1.5 MgCl2, 10 
Hepes, 5 D-glucose, and pH 7.4 adjusted using NaOH. The intracellular solution (ICS) 
contained (in mM): 15 NaCl, 80 CsF, 40 CsCl, 10 EGTA, 10 Hepes, and pH 7.3 adjusted with 
CsOH. The measured osmolality for ECS and ICS was 310 and 295 mOsm/kg H2O, 
respectively. A 200-mM stock solution of propofol or 4fp was dissolved in DMSO and then 
diluted to experimental concentrations by ECS. CBFS was purchased as sodium salt (Sigma-
Aldrich Inc, St. Louis, MO). The stock solution of CBFS (200 µM) was prepared in DMSO and 
diluted by ECS to the desired concentrations. All dilutions were prepared to have a final 
concentration of 0.05% DMSO and used on the same day. In all experiments, control recordings 
were collected prior to the additions of the anesthetic or CBFS conjugation. Following the 
baseline recordings, 1 µM propofol or 4fp was perfused for 2 minutes before data collection. For 
CBFS conjugation, 10 µM CBFS was perfused for 30 s, followed by 2 minutes wash with ECS, 
before additional measurements with and without exposure to propofol (or 4fp) were conducted. 
 
The standard protocol for voltage-dependent activation of Na+ currents consisted of 200-ms 
depolarizing steps in increments of ΔV = 10 mV from –100 to +60 mV. The holding potential 
(Vhold) was –100 mV. In mutants that showed no activation in this voltage range, measurements 
were repeated with depolarization steps from –100 to +290 mV in 15-mV increments. Pre-pulse 
inactivation was assessed with a two-pulse protocol: (1) a 2-s conditioning pulse in increments 
of ΔV = 10 mV from –120 mV to 0 mV, followed immediately by (2) a 50-ms test pulse to –20 
mV (Vhold = –100 mV). The peak chord conductance (G) was calculated by 
 

𝐺 = !
(#$#!"#)

      (1) 
 

where I is the peak Na+ current, V is the test potential, and Vrev is the Na+ reversal potential. G 
was normalized to the maximum peak conductance Gmax and voltage dependence of activation 
(G-V curve) was fit to Boltzmann function: 
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where V1/2a is the midpoint voltage of activation and ka is the slope factor. Similarly, the pre-
pulse inactivation parameters were fit to Boltzmann function: 
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where Imax is the maximum current amplitude, V1/2in is the midpoint voltage of inactivation, and kin 
is the slope factor. Time constants of activation (τa) and inactivation (τin) were derived from the 
rising and decaying components of the Na+ current, respectively, by fitting to single exponential 
function 

𝐼(𝑡) = (𝐴𝑒±
.
/ + 𝐶-     (4) 

 
where A is the amplitude, C is the plateau constant, t is time, and τ is the time constant of 
activation or inactivation. 
 
NMR data acquisition and analysis 
The same procedures as described previously were used for cysteine mutations and 19F 
labeling with BTFA (1, 2). Briefly, purified NaChBac with a single-point cysteine mutation was 
treated briefly with the reducing agent tris-(2-carboxyethyl)phosphine (TCEP). After removing 
TCEP on a desalting column, BTFA in 50x molar access was incubated with the protein for 3 
hours at room temperature and then overnight at 4°C. Free 19F labels were removed by 3 
exchanges of dialysis in 100x volume, followed by size exclusion chromatography. Typical NMR 
samples contain ~100 µM NaChBac in 1-2% n-dodecyl-β-D-maltose (DDM), 100 mM NaCl, 50 
mM Tris at pH 7.7, and 5% D2O for frequency lock. Typically, 4fp was titrated into NMR samples 
up to 200 µM for STD measurements. All NMR spectra were acquired at 10°C using a 19F-
cryoprobe on a Brucker Biospin Avance 600 spectrometer. 
 
The STD NMR spectra were derived from interleaving collections of on- and off-resonance 19F 
spectra with frequency-selective saturations at −83.8 and −45.00 ppm, respectively. Selective 
saturation of different durations, ranging from 0.05 s to 4.0 s, was achieved by a train of 3-ms 
Gaussian-cascade-(Q3.1000)-shaped pulses spaced by inter-pulse delays of 3-ms each. The 
intensities and corresponding errors of 4fp 19F peak were analyzed using Mnova and TopSpin. 
Graphpad Prism software was used to fit the STD data to the mono-exponential function: 
 

𝑆𝑇𝐷 =	𝑆𝑇𝐷123(1 −	𝑒$40%.5)    (5) 
 

where t is the saturation time, STDmax is the maximum (plateau) STD, ksat is the saturation rate 
constant, and STD is calculated from the 4fp spectral intensities with on- and off-resonance 
saturation of the protein peak, Ion and Ioff, respectively: 
 

𝑆𝑇𝐷 = !122$!1-
!122

× 100     (6) 

 
The site-selective binding of the ligand at the 19F-labeled site is measured by the cross-
relaxation rate constant, σ: 
 

𝜎 = 𝑆𝑇𝐷123 × 𝑘625    (7) 
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Molecular dynamics simulations 
Experimental NaChBac structures were not available until recently when cryo-EM structures in 
inactivated states were reported (3). To gain insights into the structural basis of functional 
changes, we modeled the resting, activated (open), and inactivated (closed) structures of 
NaChBac by comparing several experimental structures of prokaryotic and eukaryotic NaV 
channels as templates. Specifically, we referenced PDB ID 6P6W of NavAb for the resting state 
(4), 5HVX of NavMs (5), 6A90 of NavPas (6), and 5XSY/6AGF of Nav1.4 (7, 8) for various 
structural features of an open conformation, as well as 5VB2 of NavAb (9) for inactivated states. 
The homology models were built using SWISS-MODEL software (10). Refinement of sidechain 
rotameric states was performed using the software Scwrl (11).  The modeled inactivated 
structures were not significantly different from the recently published cryo-EM structures 
(6VX3/6VWX) of NaChBac (3): the root-mean-squared deviation (RMSD) between the 
homology model of the closed state (initial frame of our simulation) and the NaChBac cryoEM 
model (pdb code: 6VWX) is 2.5 Å (considering all non-hydrogen atoms) and 1.6 Å (considering 
only the backbone atoms). Importantly, the cryo-EM structures of an inactivated NaChBac show 
the interaction between T140 of the S4-S5 linkers and N225 of the domain-swapped S6 helices. 
 
The molecular systems for MD simulations were assembled using CHARMM-GUI (12) and the 
channel models were embedded in a fully hydrated POPC lipid bilayer. The number of ions in 
the bulk was set to 0.15 M KCl. Each molecular system contained about 180,000 atoms. 
Calculations were performed using the NAMD 2.12 software (13), using the all-atom potential 
energy function CHARMM36 for protein and phospholipids and the TIP3P potential for water 
molecules (14, 15). Periodic boundary conditions were applied, and long-range electrostatic 
interactions were treated by the particle mesh Ewald algorithm (16). The 4-fluoropropofol 
molecule (4fp) was modeled using the CGenFF webserver (17, 18). Molecular systems were 
equilibrated for 2 ns with decreasing harmonic restraints on the protein atoms, the pore ions, 
and the water molecules localized in the selectivity filter.  Restraints were removed in the 
production run. To model four 4fp molecules bound to the closed conformation, we considered 
the final configuration of our previous flooding simulation with propofol; the propofol molecules 
bound to the four equivalent T140 pockets were chemically modified into 4fp and subject to 
energy minimization.  All trajectories were generated with a time step of 2 fs at constant normal 
pressure (1 atm) controlled by a Langevin piston and constant temperature (300 K) using a 
Nosé-Hoover thermostat. Pore radius profiles were calculated using the HOLE software (19). 
 
Statistical analyses were performed using Prism 8.1.2 (GraphPad Software, San Diego, CA). All 
evaluated parameters in electrophysiology were reported as mean ± SEM. The paired-samples 
t-test was used to assess significant differences between paired sets from the same cells in the 
absence and presence of propofol and/or CBFS. A p value of 0.05 was considered significant. 
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Fig. S1. (A) Electrophysiology measurements of WT NaChBac and various mutants showing 
voltage-dependent activations in T140A, T140S, T140C, and the inactivation-disabled mutants 
T220A and T140C/T220A. (B) Mutations at T140 with side chains too small or too large 
compared to Thr are non-functional with activation voltages ranging from –100 mV to +290 mV. 
Data are shown as mean ± SEM from n = 7-15 independent measurements.  
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Fig. S2. Mutation-induced abolition of slow inactivation. (A) Representative traces of voltage-
dependent activation in the WT NaChBac, along with the averaged I-V curves from multiple 
independent measurements. (B) The single-point mutation T220A is known to abolish slow 
inactivation of NaChBac. This mutation prepositions the channel in an activated state, as 
reflected in the large left shift of the I-V curve. (C and D) The same T220A mutation introduced 
into the T140C channel produced the same elimination of slow inactivation.  The T140C and 
T140C/T220A constructs allowed for 19F labeling at the Cys residue in T140C to measure site-
specific binding by NMR in activated and inactivated conformations. Data are shown as mean ± 
SEM (n > 7). 
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Fig. S3. Nearly identical effects of propofol and 4fp on activation and slow inactivation of 
T140C NaChBac. In addition to the similar functional effects on the WT NaChBac and the same 
anesthetizing concentrations between propofol and 4fp, the comparable results of propofol and 
4fp on T140C, as shown here, validate the use of 4fp as a molecular probe in the 19F-NMR STD 
measurements of the specific propofol binding at the T140 site. Values are given as mean ± 
SEM (n = 7-10).  
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Fig. S4. 4-fluoropropofol (4fp) binding in pocket between the S4-S5 linker and S6 helices. 
(A) A typical pose of 4fp within the pocket near T140 in the S4-S5 linker from molecular 
dynamics simulations. The orientations of 4fp and the binding pocket marked by residues L133 
(pink) and T140 (green) in the S4-S5 linker and I147 (purple) and N225 (red) from the adjacent 
subunit are shown as sticks. (B) The time dependence of the minimum among all-atom 
distances between 4fp and L133/I147 atoms at the distal end of the T140 pocket in the closed, 
inactivated structure model. 4fp is consistently bound to the T140 pocket throughout the entire 
160 ns simulations. 
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Fig. S5. Effects of covalent modification of the T140 binding pocket on channel gating 
and propofol binding. Steady-state activation (A and C) and inactivation (B and D) of the WT 
and T140C NaChBac, respectively, before (blue) and after (purple) conjugation reaction with 8-
(chloromercuri)-2-dibenzofuransulfonic acid (CBFS), followed by exposure to 1 µM propofol 
(red) after washout of CBFS. Conjugation can only occur at the cysteine side chain in T140C 
since no other cysteine residues are naturally present in NaChBac. Data are presented as mean 
± SEM (n = 6-8) and solid lines are best fit to the data using Eq. (2) or Eq. (3) with the CBFS- 
and propofol-induced changes summarized in Table S4. 
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Table S1. Baseline gating parameters of NaChBac WT and mutants† 

 
Parameters WT T140A T140S T140C T220A T140C/T220A 

V1/2a –45.7±0.82 –33.6±1.61** –30.4±0.52*** –25.8±1.51*** –64.7±1.13** –34.6±1.14** 

ka 5.5 ±0.69 10.1±1.43* 3.9±0.57 11.0±1.36** 5.4±0.91 10.9±0.99* 

V1/2in –52.4±1.30 –52.8±1.07 –48.4±1.41 –54.3±0.77 / / 

kin 7.1±1.15 8.3±0.95 7.87±1.24 9.1±0.69* / / 

 
†Values are given as mean ± SEM (n = 6-11). Gating parameters of NaChBac WT and mutant are 
evaluated by unpaired t test: * p < 0.05, ** p < 0.01, *** p < 0.001. 
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Table S2. Propofol-induced changes in gating parameters of NaChBac WT and mutants† 

 
Parameters WT T140A T140S T140C 

ΔV1/2a –9.3 ±2.9*** –0.74±1.6 –10.0±2.3* –2.4±0.8* 

ΔV1/2in –7.3 ±2.5** –0.5±1.8 –3.5±2.9 –7.8±2.2* 

 
†Values are given as mean ± SEM (n = 5-10). Gating parameters of NaChBac WT and mutant are 
evaluated by paired t test: * p < 0.05, ** p < 0.01, *** p < 0.001. 
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Table S3. Comparison of fitting parameters of 19F-NMR STD in 4-fluoropropofol 
 

 

  

19F-Labeled Mutant STDmax (%) ksat (s–1) σ×100 (s–1) 

T140C 18.1±1.4 1.7±0.4 30.9±7.8 

T140C/T220A ~2% (@2s) / / 

F227C 17.4±0.9 2.5±0.4 42.6±7.6 

F227C/T220A 17.2±1.1 1.6±0.3 27.5±5.4 
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Table S4. Effect of CBFS and propofol on gating parameter changes in NaChBac† 
 

Drugs Parameters WT T140C T220A T140C/T220A 

Propofol ΔV1/2a –9.3 ±2.9*** –2.4±0.8* –7.9±1.9* 6.1±1.7* 

 ΔV1/2in –7.3 ±2.5** –7.8±2.2* / / 

CBFS 
ΔV1/2a –1.2 ±0.7 –4.3±0.9** –2.0±1.0 –6.9±0.9** 

ΔV1/2in –0.3 ±1.0 –4.5±0.9** / / 

CBFS+ 
Propofol 

ΔV1/2a –6.6±1.4** –4.6±1.8** –8.4±1.4** 3.5±1.3* 

ΔV1/2in –5.5±1.2** –4.0±0.8** / / 

 
†Values are reported as mean ± SEM (n = 6-8). Gating parameters of NaChBac WT and mutants 
evaluated by paired t test: * p < 0.05, ** p < 0.01, *** p < 0.001. 
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